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Abstract
Denial-of-Service (DoS) attacks have long been a major threat

to the availability of the World Wide Web. While prior works

have extensively studied network-layer DoS and certain types

of application-layer DoS, such as Regular Expression DoS

(ReDoS), little attention has been paid to memory exhaustion

DoS, especially in Java Web containers. Our research target

is a special type of memory exhaustion DoS vulnerabilities

that retain user data in web containers, which is defined as

Data Retention DoS (DRDoS) in this paper. To the best of

our knowledge, there are no systematic academic studies of

such DRDoS vulnerabilities of Java Web Containers except

for a few manually found vulnerabilities in the Common Vul-

nerabilities and Exposures (CVE) database.

In this paper, we design and implement a novel static anal-

ysis approach, called DR. D, to detect and assess DRDoS

vulnerabilities in Java web containers. Our key insight is to

analyze the request handling process of web containers and

detect whether client-controlled request data may be retained

in the containers, thus leading to DRDoS vulnerabilities. We

apply DR. D on four popular open-source Java web contain-

ers, discovering that all of them have DRDoS vulnerabilities.

Specifically, DR. D finds 25 zero-day, exploitable vulnerabili-

ties. We have responsibly reported all of them to correspond-

ing developers and received confirmations. So far, we have

received seventeen CVE identifiers (three of them assigned

with high severity). Based on scan results from search engine,

e.g., Shodan, we identify that over 1.5 million public IP ad-

dresses are hosting vulnerable versions of Java web containers

potentially with DRDoS found by DR. D, demonstrating the

spread of DRDoS vulnerability.

1 Introduction

A Denial-of-Service (DoS) attack is a cyber attack that makes

a host server unavailable to its users, which poses a signif-

icant threat to the World Wide Web. Generally speaking,

there are two types of DoS attacks: network- and application-

layer attacks. On one hand, a network-layer attack—e.g.,

Distributed DoS (DDoS) [55] and TCP SYN Flood [57]—

targets and exhausts network-layer resources, e.g., network

bandwidth. Prior works [1, 7, 22, 23, 36, 52, 54] have exten-

sively studied such DoS attacks and proposed many defense

mechanisms [17, 18, 20, 27, 60, 61]. On the other hand, an

application-layer attack [3, 9, 19, 24] targets an application

vulnerability to exhaust application-layer resources, e.g., CPU

and memory. Such attacks usually leverage low-bandwidth,

highly-targeted, and intensive requests to overwhelm a tar-

get system, thus being more challenging to detect. The most

notorious one is Regular Expression Denial-of-Service (Re-

DoS) [8,10,40,44,49,53], which exploits a regex vulnerability

for a polynomial or exponential matching time. Other exam-

ples include memory exhaustion DoS vulnerabilities intro-

duced by C/C++’s memory consumption bugs [16, 41, 47, 50].

The research question of this paper is to detect a special

type of application-layer DoS vulnerabilities, which we call

Data Retention DoS (DRDoS), in Java web containers (e.g.,

Eclipse Jetty [12]), i.e., widely-used middleware that man-

ages low-level request handling for web apps. Specifically,

since web containers inevitably cache user request data for

processing, such cached data—if not handled, e.g., released,

properly—may be retained and accumulated in the memory,

thus leading to DoS consequences. Broadly speaking, DR-

DoS is a type of memory exhaustion DoS [15]. However, to

the best of our knowledge, there is no systematic study of

detecting memory exhaustion DoS in Java let alone DRDoS.

Previous works in C/C++ [16, 41, 47, 50] are not applica-

ble here because of the differences in memory management

between C/C++ and Java, making it challenging to detect

retained data in Java. That said, the best that we can find for

Java is a few DRDoS vulnerabilities [45, 46] that people have

found in the past manually and are being documented by the

Common Vulnerabilities and Exposures (CVE) database.

In this paper, we design and implement a novel static analy-

sis approach, called DR. D (Data Retention Diagnoser), to de-

tect and assess vulnerable data retention in Java web contain-

ers. The key idea is to analyze the request handling process

and detect if client-controlled request data may be retained



in the containers for a long time. While intuitively simple, it

faces the following challenges:

• Locating request handlers of web containers. Web contain-

ers provide a multitude of request handlers for developers

to customize request processing pipelines and implement

application business logic. These functions are invoked

according to the developer’s configurations, making them

challenging to analyze from low-level request reception

entry points. Even worse, they are scattered throughout con-

tainers with non-standardized specifications and lack com-

prehensive documentation. Hence, a detection approach

should understand the container’s request processing and

locate as many request handlers as possible.

• Discovering long-lived objects that can retain and accu-

mulate request data for an extended period. While some

long-lived objects may exhibit clear syntactic features, e.g.,

static variables, a substantial number of them lack appar-

ent characteristics. These objects are intricately linked to

container implementation and shaped by their runtime ref-

erence relationships, which are hard to model through static

analysis. Furthermore, dynamic approaches like heap dump

analysis are inherently limited in code coverage, and a no-

ticeable gap exists between runtime memory objects and

their counterparts in static analysis. That said, a detection

approach should discover such long-lived objects through a

container-independent approach.

• Lightweight yet efficient vulnerability assessment. The exe-

cution of request handlers in web containers often depends

on intricate deployment configurations. While dynamic

fuzzing techniques have been extensively studied for gen-

erating inputs that trigger vulnerabilities, the configuration

constraints are hard to automate through methods like input

mutation, often requiring significant manual effort. Hence,

a detection approach should conduct a lightweight yet effi-

cient analysis to confirm exploitability.

Specifically, DR. D consists of three stages, which solve

the challenges above. First, DR. D locates request handlers

through a request data-driven approach. It automatically iden-

tifies container-specific Java classes representing request data

and then analyzes the relationships among methods that ma-

nipulate request data to locate request handlers. Second,

DR. D classifies Java classes that may have a long lifecy-

cle using a learning-based method through feature analysis.

Finally, based on the results of the first two stages, DR. D

employs a precise data flow analysis to detect if request data

is retained in long-lived objects. It further assesses the ex-

ploitability of data retention by modeling and analyzing their

exploit restrictions.

We apply DR. D on four widely-used open-source Java

web containers, including Apache Tomcat, Eclipse Jetty, Red

Hat Undertow, and Caucho Resin. DR. D finds all of them

vulnerable to DRDoS attacks and locates 25 unique zero-day,

exploitable DRDoS vulnerabilities in total. We responsibly
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Figure 1: The Typical Architecture of Java Web Container.

disclosed our findings and vulnerabilities to respective devel-

opers and received confirmations from all of them. So far, we

received seventeen CVE identifiers (including three of high

severity) for these vulnerabilities. We also perform practical

experiments in real-world environments by deploying our

own vulnerable web containers and applications on popular

cloud service platforms with their DoS protection enabled.

The results reveal that our attacks can exhaust server memory

resources successfully without triggering any alerts. Lastly,

we assess possible affected IP addresses using Shodan’s [38]

scan results, specifically targeting web containers with vulner-

able versions. Our results reveal that over 1.5 million public

IPs, a huge number of victims, are hosting a vulnerable ver-

sion of web containers affected by the DRDoS vulnerabilities

found by DR. D.

We summarize the contributions of this paper as below:

• We conduct the first systematic study of DRDoS,

an application-layer DoS attack targeting memory re-

sources, by analyzing data retention in Java web contain-

ers. They suffer from DRDoS due to their inherent data

retention requirements for specific functionalities despite

Java’s automated memory management mechanisms.

• We design and implement a novel static approach, named

DR. D, to effectively detect vulnerable data retention in

Java web containers and assess their exploitability in a

lightweight way.

• We apply DR. D on 4 popular web containers to identify

and confirm 25 unique zero-day DRDoS vulnerabilities,

which can be easily exploited for remote DoS attacks.

We responsibly disclosed them to respective developers

and received their confirmations and acknowledgments.

2 Overview

2.1 Background

Java web containers, also known as servlet containers, are

a core component of Java application servers, designed to

manage and execute Java-based web applications. Originat-

ing from Java EE (now Jakarta EE), web containers provide



a standardized environment for handling network requests

and responses, managing the lifecycle of Servlets, and sup-

porting JavaServer Pages. Unlike standalone applications,

web containers serve as a runtime environment capable of

hosting multiple web applications simultaneously, each with

its own set of endpoints. Furthermore, web containers pro-

vide a suite of predefined request handlers for various tasks,

such as user authentication and session management, allow-

ing applications to assemble and customize tailored to their

requirements.

Figure 1 illustrates the typical architecture of Java web con-

tainers, which manage requests and support various network

protocols like HTTP, AJP, and custom protocols. When a

client initiates a request, the containers listen on a designated

port and parse the network stream to structured request ob-

jects. These requests are then processed by a series of request

handlers based on deployment configurations, before being

sent to the web app. Ultimately, the containers transform

container-specific request objects into standardized servlet

requests, adhering to the Jakarta EE specification [14], which

are then routed to the appropriate web app based on the re-

quest URL. Besides, to enhance performance, some request

processing tasks (e.g., loading and parsing multipart data) are

deferred and only executed when required by web apps. These

methods are not actively invoked by the container. Instead,

they are executed on demand when web apps invoke specific

request processing APIs provided by the web container.

The request handlers vary in implementation across web

containers, each with unique configuration requirements. For

example, Tomcat’s FormAuthenticator implements the cus-

tom Valve interface to authenticate access to protected re-

sources. As shown in Figure 2, configuring this handler in-

volves adding the FormAuthenticator valve in Tomcat’s

server.xml, specifying the form-based authentication method,

and defining login, error pages, and access paths for protected

resources in the web app’s web.xml. When Tomcat receives

a client request, it invokes FormAuthenticator to check if

the request targets protected resources and whether the user

is authenticated. Unauthenticated users are redirected to a

predefined login page, and upon successful authentication,

the request continues to the protected resources.

2.2 A Motivating Example

Figure 3 illustrates a zero-day DRDoS vulnerability uncov-

ered by DR. D in Eclipse Jetty. This vulnerability lies in a

request handler, PushSessionCacheFilter, used to imple-

ment the HTTP/2 Server Push feature. This feature improves

web page loading performance by caching request URIs (e.g.,

/home) and related resources (e.g., script.js), enabling the

server to proactively push potentially required resources to

the client. However, Jetty lacks robust limitations and effec-

tive management of the retained data, enabling a malicious

client to exhaust the container’s memory resources and render
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Figure 2: A Request Handler Example in Apache Tomcat.
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Figure 3: A Motivating Example in Eclipse Jetty.

all deployed web applications unavailable to users.

Specifically, Jetty caches request URIs and related re-

sources within a Map-type object, named _cache (lines 7-13),

using URIs as keys to store each URI only once. Jetty also

restricts requests reaching this request handler under its associ-

ated web app’s host. However, this design is based on a flawed

security assumption, presuming that all client-requested URIs

correspond to existing web app resources. While regular users

typically access a limited set of valid URIs via the web app’s

UI, attackers can craft a multitude of requests for non-existent

URIs. This causes the size of _cache to grow indefinitely, con-

suming significant memory resources. Even worse, since the

_cache object is managed by Jetty and not subject to Garbage

Collection (GC), the retained URIs persist and accumulate in

the Jetty’s memory, without being released.

Here is how DR. D detects this vulnerability. First,

DR. D identifies all Jetty’s request classes (e.g.,



ServletRequest) and examines methods related to

request data manipulation to locate this request handler (i.e.,

PushSessionCacheFilter.doFilter()). Then, DR. D

identifies long-lived classes in Jetty and considers their

instances as long-lived objects. Next, DR. D performs a

comprehensive data flow analysis, starting from the request

handler. The analysis revealed that some client-controlled

request data (i.e., URI) is saved in the field (i.e., _cache) of a

long-lived object, causing an increase in its size. Thus, DR. D

identified this as a case of DRDoS. Lastly, DR. D conducts

an assessment to determine its exploitability, which involves

an examination of whether the value space of source request

data (URI) is substantial enough, whether the data retention

has any size limitations, and whether there are any temporal

constraints on the retained data.

We responsibly disclosed this vulnerability to Jetty de-

velopers, who acknowledged it and stressed the need for a

systematic analysis of similar issues within their project.

2.3 Threat Model

In our threat model, we consider attacks targeting remote web

containers deployed in typical cloud-based or on-premises

systems. Since web containers share the same Java process

and memory resources with the web apps they host, the attack

could render all deployed web apps in the victim container

unavailable to users. We assume the defender operates as

a typical web service provider that has deployed common

DDoS defense mechanisms, typically including attack de-

tection based on traffic volume and request characteristics.

Moreover, we assume that deployments prioritize maintain-

ing stable containers, with limited rotation and resetting, to

optimize operational costs and efficiency.

The attacker only needs to control a single web client capa-

ble of accessing the target web container, such as a desktop

computer in our experiments, without needing a large-scale

botnet. This is because the attack payloads are retained and ac-

cumulated in the container’s memory for an extended period

after request processing is completed. The attacker can flexi-

bly design the size and sending frequency of attack requests

by comprehensively considering the exploitation conditions

of the target vulnerability and the server-side defense mecha-

nisms. Furthermore, the attacker requires no special identity

or privileges as the attack exploits data management flaws in

the general request processing tasks.

3 Methodology

Figure 4 illustrates the system architecture of DR. D, which

operates in three main stages. Given a web container, DR. D

first locates request handlers by automatically identifying

container-specific request classes and clustering the request

data manipulation methods. In the second stage, DR. D classi-

fies long-lived Java classes via a machine learning model

Table 1: Jakarta Servlet Request Specifications.

Type Name

Interface

jakarta.servlet.ServletRequest

jakarta.servlet.http.HttpServletRequest

javax.servlet.ServletRequest

javax.servlet.http.HttpServletRequest

Class

jakarta.servlet.http.HttpServletRequestWrapper

jakarta.servlet.ServletRequestWrapper

javax.servlet.http.HttpServletRequestWrapper

javax.servlet.ServletRequestWrapper

trained on class features. Finally, DR. D detects vulnera-

ble data retention by analyzing whether any request data

propagates from request handlers into long-lived objects

through data flow analysis. Furthermore, DR. D assesses the

exploitability of each vulnerability candidate by statically

examining the restrictions on request data value space, data

retention capacity, and the lifespan of retained data. The fol-

lowing sections delve into the details of each stage.

3.1 Locating Request Handlers

In this stage, DR. D locates request handlers as entry points

for analyzing request processing, as they are key functional-

ities of web containers and usually function as independent

processing tasks. Treating them as entry points avoids the

complexity of low-level network data analysis and aids in

assessing and verifying vulnerability exploitability. However,

this is challenging because request handlers are scattered

throughout the container, lacking standardized implementa-

tion and comprehensive documentation. Even worse, many

of them are not invoked by default. To address this, we pro-

pose a request data-driven approach, starting by identifying

container-specific classes representing request data and then

locating request handlers by analyzing the relationships be-

tween request data manipulation methods.

Identifying Request Classes. Regardless of the network pro-

tocols, web containers typically parse network streams into

structured data objects for subsequent processing. These ob-

jects, though varied in class specifications, generally conform

to the Jakarta servlet request specification for web app usage.

Specifically, they either implement servlet request interfaces

or can be transformed into servlet requests. Hence, DR. D

leverages these characteristics to identify container-specific re-

quest classes. First, DR. D scans the web container for classes

implementing the interfaces or extending the base classes

derived from Jakarta docs [14], as listed in Table 1. Then,

DR. D examines the constructors of these classes to identify

parameters that are fully customized and not part of JDK stan-

dard classes. These parameter classes can be transformed into

servlet requests. Besides, DR. D identifies classes that extend

them as request classes.
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Figure 4: The Overview Architecture of DR. D.

Clustering Request Data Manipulation Methods. After

identifying all request classes, DR. D detects request data ma-

nipulation methods by extracting methods with parameters

of the request class types. In addition to leveraging the iden-

tified request classes, DR. D also considers wrapper classes

containing fields of the request class type.

Intuitively, we can analyze the invocation relationships

among these methods and select methods with no callers as

entry points. However, there exist intricate invocations among

the request handlers due to Java polymorphism. Failing to par-

tition these independent handlers will affect the effectiveness

of data flow analysis and pose challenges for vulnerability

validation. Thus, DR. D further locates and delineates request

handlers among the request data manipulation methods.

The key insight here is that, despite variations in naming

and functionality, request handlers exhibit common charac-

teristics in design patterns for flexible configurability. Specif-

ically, they are clusters of methods designed for different

implementations of request processing tasks, e.g., form-based

and OpenID-based authenticators for request authentication.

To enable flexible configuration and unified invocation, meth-

ods in each cluster typically adhere to the same specification,

e.g., implementing or overriding the same method. Addition-

ally, the organization and management of these clusters follow

common design patterns. As shown in Figure 5, we identify

two management approaches by investigating how request

handlers are configured and invoked. In centralized manage-

ment, request handlers are stored in a queue based on devel-

oper configuration, with the manager invoking each handler se-

quentially (e.g., doFilter()). In decentralized management,

the next handler is explicitly configured within the current

one through its field, which invokes the subsequent handler.

Based on these characteristics, DR. D locates request han-

dlers by clustering request data manipulation methods. DR. D

first groups methods sharing the same subsignature (iden-

tical function names, parameters, and return values). Then,

for each group, DR. D analyzes the invocation relationships.

If these methods lack direct invocations but share the same

caller, which is also their common callee, they are identified

as utilizing centralized management. If direct mutual invoca-

tions exist between these methods and target the same field

Handler1

Decentralized Management

Handler2.doHandle()

Handler2

Handler3.doHandle()
...Request

Filter1.doFilter() ... FilterN.doFilter()

Filter Chain Manager
Request

Centralized Management

Figure 5: Two Request Handler Management Approaches.

within their class, they are identified as using decentralized

management. These methods are designated as request han-

dlers for independent request processing task analysis, and

DR. D neglects the invocation edges pointing to them. Be-

sides, DR. D collects public methods from request classes and

the remaining request data manipulation methods that are not

invoked by the identified request handlers, as web apps may

directly invoke them to trigger implicit request processing.

3.2 Identifying Long-Lived Data

In this stage, DR. D identifies long-lived objects within web

containers. While some long-lived objects can be identified

through Java’s syntactic features, such as static variables that

persist in memory from class loading to program termination,

many long-lived objects lack explicit characteristics. These

objects are intricately linked to the web container’s internal

implementation, initialized during component startup, and

held in reference by the container. They are immune to GC

and are managed entirely by the container.

Identifying such container-managed long-lived objects

poses a considerable challenge. While much research [32, 58,

62–64] has been conducted on modeling runtime object life-

times, static analysis for heap/reference modeling in complex

programs remains an open problem. This is particularly true

in web containers, which involve numerous multi-threading,

dynamic class loading, and reflection behaviors during startup.

Although dynamic memory dump analysis can capture run-

time object reference relationships, it is limited by code cover-



age issues, especially given the complex configurations in web

containers. Additionally, mapping runtime object instances to

static analysis is difficult due to the gap between data flows in

the request processing and component startup. To address this

challenge, DR.D employs a machine learning-based approach

to classify Java classes that may exhibit long lifecycles. The

key insight here is that in object-oriented languages like Java,

each class is designed with a specialized responsibility, often

determining whether its instances have long lifecycles during

runtime. Therefore, DR. D can analyze the characteristics of

a class to infer whether its instances exhibit a long lifecycle.

Extracting Class Features. Since there is no available long-

lived class database, we manually construct a dataset for

feature analysis and model training. Specifically, we collect

classes in two ways. On one hand, we identify the container’s

startup entry point by analyzing its launch script, and then

manually analyze its startup process. On the other hand, we

run the web container with a basic configuration and dynam-

ically analyze class instance information in memory using

JProfiler [21]. For each class, three analysts with expertise in

Java web development independently assess it as long-lived

or short-lived. A label is assigned when at least two analysts

have the same judgment (see detailed results in §4).

By comparing the long-lived and short-lived classes in our

dataset, we make the following observations from four distinct

perspectives: class instantiation, class utilization, inter-class

relationships, and intra-class attributes:

• Long-lived classes tend to have fewer instances and

instantiation operations are less likely to occur in fre-

quently triggered request processing procedures.

• Long-lived class objects tend to exhibit lower mobility

in function invocations.

• Long-lived classes are typically managed by the con-

tainer and used to manage container resources, thus they

are less referenced by other classes and have more refer-

ences to other classes.

• Configurable classes are more likely to be long-lived.

• Classes that are not globally accessible are less likely to

be long-lived, such as anonymous inner classes.

• Iterable classes often represent collections of data that

can change frequently and are less likely to be long-lived.

• Long-lived classes are more likely to be used concur-

rently by multiple threads, leading to more concurrent

access-protected fields and functions in the class.

• Long-lived classes tend to have a lower proportion of

static methods considering isolation and concurrency.

Based on the above observations, we have identified 13 class

features, detailed in Table 2. DR. D automatically extracts

these features with specific details provided in Appendix A.1.

Classifying Long-lived Classes. Based on the above dataset

and class features, we trained a binary classification model

for class lifecycle prediction utilizing the widely used Ran-

Table 2: List of Class Features

No. Class Feature Description

1 # of class instantiations

2 % of instances created during request processing

3 # of times as function parameter

4 # of times as function return value

5 # of times referenced by other classes

6 # of fields in class

7 Whether is configurable (True or False)

8 Whether is globally accessible (True or False)

9 Whether is iterable (True or False)

10 # of times maintained within iterable objects

11 # of fields can be accessed concurrently

12 # of methods can be accessed concurrently

13 % of static methods among all methods in class

dom Forest [56] algorithm. This algorithm is chosen for its

effectiveness in handling multiple features and reducing over-

fitting risks. Each class is represented as a vector of values

corresponding to the 13 identified features, along with a la-

bel of ‘1’ for long-lived classes or ‘0’ for short-lived classes,

before being fed into the model. During the analysis, DR. D

automatically extracts features for each class within the con-

tainer and utilizes the trained model for lifecycle prediction.

For classes identified as long-lived, DR. D treats all their in-

stances as long-lived objects, and their fields are considered

as long-lived data. Additionally, DR. D identifies all static

fields as long-lived, irrespective of their classes.

3.3 Detecting and Assessing Vulnerability

In this stage, DR. D detects vulnerable data retention and

assesses their exploitability. Static analysis is effective in de-

tecting taint-style vulnerabilities like data retention, but its

high false positives introduce substantial overhead for devel-

oper verification. Fuzzing techniques can be used to validate

static analysis results and reduce this overhead. However, they

struggle to automatically understand and manage the intricate

deployment configurations within web containers. For exam-

ple, to verify a vulnerability in OpenID authentication, one

must configure the module’s activation within the web con-

tainer, register a web app with third-party OpenID providers

(e.g., Google Cloud), and define URLs that require authenti-

cation. Only after these configurations are properly set up can

a client’s request trigger the execution of the vulnerable code.

To address this, we propose a lightweight yet effective

method to statically assess vulnerability exploitability with

minimal human intervention. By modeling and analyzing the

essential conditions for exploiting vulnerable data retention,

DR. D categorizes and rates the exploitability of vulnerabili-

ties through static analysis. This approach can effectively filter

out unexploitable candidates, helping developers prioritize

which vulnerabilities to validate.



Detecting Vulnerable Data Retention. Starting from the en-

try points identified in §3.1, DR. D performs precise context-,

field-, and flow-sensitive data flow analysis with the request

data as taint source. Specifically, DR. D considers two sce-

narios. On one hand, request data is retained in long-lived

server data, leading to cumulative memory consumption. In

this case, DR. D examines whether tainted data is appended to

size-expandable objects referenced by long-lived classes. To

identify size-expandable objects, we initially compile a list of

Java native iterable classes (e.g., Map) with their addition/re-

moval instructions and size properties from JDK documen-

tation [34]. Then DR. D automatically identifies container-

specific classes that extend or implement these native classes

or interfaces through class hierarchy analysis. It determines

their instructions and size properties based on the correspond-

ing native classes or interfaces. Additionally, DR. D supports

container-specific classes acting as wrappers around native

classes (e.g., by using them as fields). In such cases, DR. D

unfolds their function implementations to trace the underlying

native operations during analysis. Furthermore, some classes

implement a size property as an independent field. DR.D iden-

tifies such cases by analyzing the implementations of their

element addition and removal functions to detect fields that in-

crease or decrease correspondingly. To ascertain the longevity

of a size-expandable object, DR. D scrutinizes its reference

source, examining if it is a field within long-lived classes or

referenced by such a field. On the other hand, request data is

loaded into memory from the network stream without size lim-

itation. Although developers often impose size limits during

deserialization, we found that request parsing doesn’t always

happen during initial deserialization. To optimize server per-

formance, the parsing of all request content, i.e., loading into

memory, is deferred until specific request processing tasks

are triggered. In this scenario, DR. D checks if tainted data

can control the data loading loop. If tainted data influences

a loop’s termination condition, in which the tainted data is

continually added to size-expandable objects, DR. D reports

a potential vulnerability.

Assessing Vulnerability Exploitability. Data retention is ex-

ploitable only if attacker-controlled request data is retained in

server data without size limitation and is not released. Hence,

DR. D analyzes the exploit restrictions from three perspec-

tives: request data value space, data retention capacity, and

server data lifespan. The key insight here is that data retention

is typically an essential part of request processing, so we can

focus on analyzing the critical conditions that impact memory

consumption statically, without grappling with runtime path

and configuration constraints. Figure 6 illustrates how DR. D

analyzes exploit restrictions for a specific data retention.

First, DR. D assesses the potential of request data to cause

high memory consumption. Through field-sensitive data flow

analysis, DR. D identifies which fields in the request class are

retained. By manually annotating these fields, DR. D deter-

size = server.size;

if(size > limit)

   server.remove();

 Request Data

Retention

Server Data

Value 

Space

Capacity

Lifespan

localPort;      → Uncontrollable

requestMethod; → Limited Value Space

_uri;      → Unlimited Value Space

inputStream;      → Stream Type

size = server.size;

if(size < limit){

     server.add();

t2 = now – data.t;

if(t2 > limitTime)

   server.remove(data)

t = currentTime();

data.setTime(t);

server.add(data)

 

 

Figure 6: Exploit Restrictions Analysis For Data Retention.

mines if attackers can control the retained data and if it has

sufficient value space. Specifically, each field in the request

classes is first annotated for client manipulability. For control-

lable fields, their value space is further annotated based on

type and semantics. This is because request data may be re-

tained in objects with implicit deduplication operations, such

as Map keys, requiring attackers to generate diverse data for

memory accumulation. Additionally, stream-type fields are

annotated as they enable the container to load large amounts

of data into memory. It is noteworthy that manual annotation

requires only limited human effort since the number of re-

quest classes is limited and dependencies exist between fields

in different request classes. In our experiments, the annotation

for each container, on average, can be completed by an analyst

within half an hour.

Second, DR. D assesses capacity limitations for data re-

tention operations. Specifically, for adding elements to size-

expandable objects, DR. D scrutinizes the presence of size

checks on data addition. Starting from a data addition instruc-

tion, DR. D first conducts backward analysis to identify all

condition checks that inspect the object’s size. If a condition

check’s alternative branch prevents the addition instruction

from executing, DR. D identifies it as a capacity limit. More-

over, DR. D employs forward analysis to detect all subsequent

size checks on the object. If element removal operations (e.g.,

remove()) occur after a condition check, DR. D also considers

it as a capacity limit. For data loading within loops, DR. D

analyzes tainted condition branches within the loop. If a con-

dition check compares tainted data to an integar constant, and

one of its branches results in an exception or loop exit, it is

considered a capacity limit.

Third, DR. D examines the lifespan restrictions on retained

data. Although the retained data is referenced by long-lived

server data and is not subject to GC, web containers may

periodically check its last accessed or saved time to remove

outdated and inactive data. To identify lifespan restrictions,

DR. D examines whether a timestamp record is associated

with the request data when it is incorporated into the server

data. Specifically, during data flow analysis, DR. D identifies

all timestamp generation operations and labels them as a

distinct taint type. If both the timestamp taint and request data



Table 3: Vulnerability Exploitability Level Assessment.

Exploitability

Level

Request Data

Value Space

Retention

Capacity

Server Data

Lifespan

Unconstrained Unlimited Unlimited Unlimited

Time-Constrained Unlimited Unlimited Limited

Context-Constrained Unlimited Limited —

Unexploitable Limted — —

taint propagate to the server data, DR. D considers there exists

a lifespan restriction.

Based on the above analysis, DR. D rates each vulnerability

candidate into 4 exploitability levels, as shown in Table 3.

• Unconstrained. In this category, client-controlled request

data with a large value space is retained without capac-

ity constraints, and the resulting server data lacks lifespan

management. A real case is the example in §2.2.

• Time-Constrained. In this category, the lifespan of retained

data is limited. Attackers must exhaust the container’s mem-

ory within a limited time frame. We demonstrate that this

type of attack is still practical (detailed in §5.2).

• Context-Constrained. When capacity limits are in place

for data retention operations, attackers cannot exhaust the

web container’s memory resources. However, the limit is a

double-edged sword and may be abused for DoS attacks, as

exemplified by the size-based limit in Resin’s form-based

authentication feature (detailed in §6.1).

• Unexploitable. Data retention cannot be exploited if attack-

ers cannot control the retained request data or fail to cause

large memory consumption due to limited value space.

Leveraging these assessment results, developers can filter out

unexploitable candidates and swiftly identify those worth

further verification by analyzing their restrictions.

4 Implementation.

We implemented a prototype of DR. D with over 6,400 LOC

new Java code for static analysis, built on the Soot frame-

work [39], and 135 LOC Python code for machine learning,

utilizing scikit-learn [37] for the random forest algorithm.

DR.D was developed with Java 1.8.0_121 and Python 3.10.11,

and it processes Java bytecode files (i.e., class files) extracted

from the release builds of web containers as its inputs.

Machine Learning Model Training. Following the approach

in §3.2, we collected a dataset comprising 634 long-lived and

732 short-lived classes from Tomcat and Jetty. We randomly

selected 80% of the classes for training and the remaining 20%

for testing. The model achieved 85.98% precision, 92.16%

recall, and an F1 score of 0.89 on the testing set. Furthermore,

to assess generalizability, we manually validated 200 ran-

domly selected classes from Undertow and Resin, achieving

precisions of 85.04% and 81.53% respectively.

Data Flow Analysis. We have incorporated several advanced

techniques to improve the accuracy and efficiency of DR. D’s

data flow analysis. Firstly, for achieving field-sensitive taint

tracking, we employ access paths [2] to represent fine-grained

field taint information, effectively handling the nested struc-

tures of Java classes. In this context, DR. D recursively gener-

ates a new abstract memory object for each embedded field

upon access, maintaining the relationship between the new

object and its parent object. Following state-of-the-art static

analysis works [2, 43], DR. D sets the access path length

threshold to 5. This approach helps alleviate over-tainting is-

sues and significantly reduces false positives. Secondly, rather

than maintaining a binary "tainted or not" state, we introduce

taint tags to record and propagate multi-dimensional taint at-

tributes. This enhancement enables DR. D to perform precise

analysis by querying taint information, such as taint sources

and value space. Thirdly, we implement method summary-

based analysis to prevent redundant analyses and enhance

efficiency. This ensures that each method is analyzed only

once within the same context.

5 Evaluation

In this section, we evaluate DR. D on four widely-used open-

source Java web containers in their latest version. Specifically,

we selected the top three most popular open-source containers

from GitHub, including Apache Tomcat, Eclipse Jetty, and

Red Hat Undertow. Furthermore, we searched for commercial

web containers to see if they offer open-source counterparts

and found Caucho Resin. We chose open-source web con-

tainers due to their publicly available community and exten-

sive source code comments, which aid in understanding and

testing their request processing. In contrast, closed-source

web containers often pose challenges for both vulnerability

identification and validation. The difficulty in accessing their

source code, combined with a lack of transparency and acces-

sible documentation, significantly limits researchers’ ability

to conduct detailed analyses. Furthermore, non-paying users

typically have access only to restricted versions, such as those

without security patches. This, along with limited technical

support during deployment and configuration, creates addi-

tional barriers to validating identified vulnerabilities. The ex-

periments are performed on a MacBook Pro running Sonoma

14.2.1 (Intel core i5 2GHz, 16GB RAM). On average, each

container’s analysis is completed within 3 minutes.

5.1 Effectiveness of DR. D

Table 4 summarizes DR. D’s overall detection results. In stage

1, DR. D identifies 61 request classes, with Resin having the

most since it designs dedicated request classes for various

request processing scenarios and introduces some customized

protocols. Based on these request classes, DR. D analyzes

request data manipulation methods and ultimately identifies



Table 4: DR. D’s detection results on 4 popular open-source Java web containers. Among the identified 88 potential exploitable

DRDoS vulnerabilities, 28 are successfully verified, resulting in 25 unique vulnerabilities (detailed in Table 6).

Web Container Version

Stage 1 Stage 2 Stage 3

Request

Classes

Analysis

Entry Points

Long-Lived

Classes
Unconstrained

Time-

Constrained

Context-

Constrained
Unexploitable

Tomcat 10.1.10 10 107 911 7 4 5 17

Jetty 11.0.15 10 206 547 10 9 4 16

Undertow 2.3.7 7 361 474 12 5 2 8

Resin 4.0.66 34 445 3,309 25 1 4 16

Table 5: Breakdown of Identified Request Handlers.

Functionality Tomcat Jetty Undertow Resin

Security 8 16 28 16

Resource Management 28 35 86 31

Performance Optimization 2 6 35 20

Lifecycle Management 3 46 32 3

Filtering & Forwarding 16 18 47 42

Sum 57 121 228 112

a total of 1,119 methods as entry points for request process-

ing analysis, which consists of 518 request handlers and 601

public methods. In stage 2, DR. D identifies that, on aver-

age, 20.07% of the classes in each web container may have a

prolonged lifecycle. More long-lived classes are recognized

in Resin due to its larger project size and greater number of

classes. Then DR. D collects 28,601 fields from these classes

and another 20,782 static fields from other classes. These

data, not subject to GC, require careful management by web

containers. In stage 3, DR. D detects 145 vulnerable data

retention candidates through data flow analysis. It then as-

sesses the exploitability of each candidate, categorizing them

into four levels: 54 unconstrained, 19 time-constrained, 15

context-constrained, and 57 unexploitable candidates.

Request Handler Analysis. In total, DR. D identified 518 re-

quest handlers across the four web containers. These handlers

are designed for specific request processing tasks and require

customized configurations for utilization. As shown in Table 5,

Undertow offers greater configurability and richer function-

alities, featuring up to 228 request handlers, while Tomcat

has the fewest, with only 57 handlers. We further break down

their functionalities into 6 categories, which are mainly used

for resource management, request filtering and forwarding,

and lifecycle management. Although different web containers

incorporate request handlers with similar functionalities, the

methods and strategies used in their implementations vary,

leading to differences in their security protection measures.

An example is the aforementioned form-based authentication

request handler and more details are presented in §6.1.

Vulnerability Validation. Based on DR. D’s detection results,

we can swiftly sieve out vulnerability candidates worthy of

further verification. First, unexploitable-level candidates are

dismissed due to uncontrolled requests and data retention.

Second, for context-constrained candidates, we examine the

purpose of retained data. If it is used in a sensitive context,

e.g., authentication, the candidate is kept for additional analy-

sis. Third, for time-constrained candidates, we examine the

lifespan and size of retained data to filter out those with low

memory consumption capability. As a result, 63 candidates

are selected for subsequent validation. To validate their ex-

ploitability, we manually deploy and configure the relevant

request handlers in the web containers. Then we construct

requests to test if the target data retention instructions can be

executed and if they lead to the retention of large volumes of

attack data. As a result, 28 of them are successfully verified,

resulting in 25 unique vulnerabilities (detailed in Table 6).

False Positive Analysis. Overall, the false positive rate is

55.6% and we argue that it is practical for real-world use

considering the number of detection outcomes. We further

analyze their root causes and summarize as follows. First, 15

of them execute successfully but fail to retain significant data

due to existence constraints on server-side data. For example,

Tomcat’s CrawlerSessionManagerValve stores the context

path of URIs in a long-lived Map, but only those paths that

are pre-registered by developers, even though the URI value

space is controlled by the client. Such constraints are difficult

to identify as they require understanding the semantics and

state of server-side data. Second, 11 are false alarms caused

by long-lived class classification. Third, 5 of them stem from

the over-approximation of data flow analysis. For example, if

an element in a collection ‘A’ is tainted, all elements in the

collection ‘A’ are considered tainted, resulting in excessive

data flow propagation. Fourth, 4 of them cannot be exploited

due to size constraints that are difficult to detect, such as

asynchronous data-consuming operations.

False Negative Analysis. Since DR. D is the first systematic

study of DRDoS vulnerabilities, there is no benchmark avail-

able to evaluate the false negatives. After manually analyzing

475 web container vulnerabilities on CVE, we found only two

known DRDoS vulnerabilities. Both of them can be detected

by applying DR. D on corresponding web containers.



5.2 Vulnerability Analysis

Table 6 presents the details of 25 verified unique exploitable

DRDoS vulnerabilities. We further conduct some analysis to

gain more insights into them.

Retained Request Data. We first analyze the types of request

data retained within the web containers. Among the 25 vulner-

abilities, 11 involve request URIs, 16 involve request bodies,

and only 3 involve data from request headers. In addition, to

exploit these vulnerabilities, 2 require urlencoded-type attack

requests, 4 require multipart-type requests, 3 require XML-

type requests, while the rest have no specific requirements.

Long-lived Container Data. We also analyze where the re-

quest data is stored within the containers. The results show

that out of 25 vulnerabilities, only 2 of them are stored in

static variables, while the rest are stored in long-lived data

identified by machine learning.

Data Retention Purposes. We then analyze the purposes of

these vulnerable data retentions, as outlined in Table 6. In

detail, 5 instances are utilized for security authentication, 5

for resource management, 3 for access analytics, 3 for spe-

cialized request parsing, 2 for performance optimization, and

5 exist in on-demand request content loading. Additionally, 2

retentions intended for network-layer DoS protection can be

abused to launch DRDoS attacks. They have garnered signifi-

cant attention from developers, who rated them high severity

(detailed in §6.2).

Attack Performance. We investigate the attack performance

of these vulnerabilities from the perspective of data retention

time and payload size. Specifically, 11 vulnerabilities have no

data retention time and payload size restrictions. Furthermore,

7 vulnerabilities are designed with time-based constraints.

Among them, 5 have an infinite default retention time set, 1

can be controlled by client requests with a maximum of 168

hours (#2), and the remaining 1 has a fixed data retention time

of 120 minutes (#1). Additionally, 14 vulnerabilities have size

limitations on the payload carried by a single request. This is

because web containers set size constraints on different parts

of the Request, e.g., URL and headers. In detail, 2 of them

are set at 200KB, 2 at 16KB, 2 at 8KB, and the remaining 8

at 4KB. Although the individual payload size is limited, these

data persistently exist in the web container without being

released, making them easily exploitable by attackers.

Data Retention Management Challenges. We further an-

alyze why web containers do not impose strict restrictions

on these data retentions. Unfortunately, we find that balanc-

ing security and availability makes this a challenging task

for web containers. Even worse, the transparency of upper-

layer web apps limits the container’s ability to robustly check

the retained data. For example, in cases where request URIs

are retained, the web container lacks complete knowledge of

all valid URI information within the upper-layer web apps.

Therefore, it cannot accurately determine which URIs are

Figure 7: Geographical Distribution of Affected Public IPs.

malicious when storing them. While some containers (e.g.,

Undertow) attempt to analyze the response code correspond-

ing to a request to assess URI legitimacy, attackers can still

bypass security checks by adding numerous illegal query pa-

rameters to valid URIs. Furthermore, when setting size and

time limitations, selecting an appropriate threshold requires

the web container to understand client usage patterns and the

business requirements of web apps. This goes beyond the

capabilities of web containers.

Real-World Affected Network Assets. Web containers, as

fundamental infrastructure components, are extensively em-

ployed in web development and are default integrations in

many popular frameworks like Spring Boot. Thus, their vul-

nerabilities can affect a large number of web applications. To

assess potentially affected network assets in the real world,

we leverage Shodan’s publicly available scan results (from

2024.4.20 to 2024.5.20) to identify server IPs associated with

vulnerable web container versions. The results unveil that

a total of over 1.5 million IPs are potentially affected by

the vulnerabilities we discovered. Figure 7 presents their ge-

ographical distribution, with the majority originating from

China, the United States, and Japan.

5.3 Cloud-based Attack Evaluation

To demonstrate the practicality of DRDoS attacks in real-

world scenarios, we deployed our own vulnerable web con-

tainers and applications on popular cloud service platforms.

Then we conducted attack tests to assess their effectiveness

and the impact of the attacks under realistic conditions.

Specifically, we conducted attack experiments on four ma-

jor cloud platforms: Google Cloud, Microsoft Azure, Alibaba

Cloud, and Huawei Cloud. To ensure consistency across exper-

imental environments, we selected equivalent instance types

(commonly referred to as SKUs) on all platforms. Table 7 in

Appendix A.2 lists the specific configurations of each virtual

machine (VM) instance. Then we deployed web containers

on these VMs and developed web applications to support test-

ing various request handlers. The versions of web containers

used in our experiments align with those listed in Table 4

and the memory resource limit for each container process is

set to 2 GB via JVM options. Furthermore, we enabled the



Table 6: The Unique Exploitable Data Retention Vulnerabilities Exposed By DR. D.

ID
Web

Method with Vulnerable Data Retention Functionality
Exploitability Payload

Status
Container Level Size✝

1
Tomcat

FormAuthenticator.saveRequest() Form-based Authentication Time-Constrained 4KB Confirmed

2 WebdavServlet.doLock() Resource Lock Management Time-Constrained 4KB Confirmed

3

Jetty

FormAuthenticator.validateRequest() Form-based Authentication Time-Constrained 200KB CVE Assigned

4 OpenIdAuthenticator.getChallengeUri() OpenId Authentication Time-Constrained 200KB Confirmed

5 PushSessionCacheFilter.doFilter()-1 Session-Scoped Server Push Unconstrained 4KB Confirmed

6 PushSessionCacheFilter.doFilter()-2 Access Time Logging Time-Constrained 4KB Confirmed

7 DoSFilter.getRateTracker() DoS Protection Time-Constrained 4KB CVE Assigned

8 PushSessionCacheFilter$1.requestDestroyed() Referer Analytics Unconstrained 4KB Confirmed

9 ThreadLimitHandler.getRemote() DoS Protection Unconstrained 8KB CVE Assigned

10 PushCacheFilter.doFilter() HTTP/2 Server Push Unconstrained 4KB Confirmed

11

Undertow

FormAuthenticationMechanism.sendChallenge() Form-based Authentication Time-Constrained 16KB CVE Assigned

12 HttpServletRequestImpl.loadParts() Multipart Content Loading Unconstrained Unlimited CVE Assigned

13 PushCompletionListener.exchangeEvent() Referer Analytics Unconstrained 4KB CVE Assigned

14 FormEncodedDataParser.doParse() Form-Encoded Data Parsing Unconstrained Unlimited CVE Assigned

15 MultiPartUploadHandler.parseBlocking() Multipart Data Parsing Unconstrained Unlimited CVE Assigned

16

Resin

FormLogin.loginChallenge() Form-based Authentication Context-Constrained 8KB Confirmed

17 Encoding.getMimeName() MIME Encoding Management Unconstrained Unlimited CVE Assigned

18 Encoding.getJavaName() Java Encoding Management Unconstrained 16KB CVE Assigned

19 MemcachedConnection.handleSingleRequest() Hmux Request Handling Unconstrained Unlimited CVE Assigned

20 DeleteCommand.execute() Cache Delete Unconstrained Unlimited CVE Assigned

21 IncrementCommand.execute() Cache Value Increment Unconstrained Unlimited CVE Assigned

22 MultipartFormParser.parsePostData() Multipart Data Parsing Unconstrained Unlimited CVE Assigned

23 Form.parsePostData() Form-Encoded Data Parsing Unconstrained Unlimited CVE Assigned

24 XmlParser.parsePITail() XML PI Parsing Unconstrained Unlimited CVE Assigned

25 XmlParser.parseValue() XML Attribute Value Parsing Unconstrained Unlimited CVE Assigned

✝ The payload size is largely equivalent to the size of attacker-controlled data, with minor discrepancies from essential content required for valid requests.

standard version of DDoS protection mechanisms on each

cloud platform (more details are provided in Appendix A.3).

The attacks were initiated from a desktop computer

equipped with an Intel Core i7 2.1GHz CPU, 16 GB of RAM,

and a wired network interface card. To enhance attack effi-

ciency, we leveraged multithreading (500 threads) for vulner-

abilities with payload size limitations to increase concurrency.

The same exploit was used for each vulnerability across dif-

ferent platforms. As a result, all attacks were successfully

executed without exceeding the traffic thresholds of any plat-

form or triggering any alerts. Figure 9 in Appendix A.4 shows

the heap memory usage of web container processes over time

on different platforms, with subplot IDs corresponding to

vulnerability IDs in Table 6.

It can be observed that memory usage fluctuates during

its increase, which is primarily due to Java’s garbage collec-

tion mechanism. During each request processing, the web

container generates many temporary data objects which, un-

like attack data, will be actively reclaimed by the garbage

collector at specific intervals. This leads to temporary reduc-

tions in memory usage. The fluctuations tend to be more

pronounced in exploitations with smaller data retention, as

the temporary data generated during request processing sig-

nificantly exceeds the size of the retained data. Furthermore,

we observed that the time required for an attack can vary sig-

nificantly, even with identical payload sizes. This variation is

influenced by three key factors. First, the data amplification

effect. The actual size of the resident data may exceed the

payload size because additional uncontrollable data can be

stored during request processing. For instance, in vulnerabil-

ity 1, each attack request stores not only the payload but also

creates a new session object for additional client information.

Second, the efficiency of server-side request processing can

affect the attack request rate. For example, exploiting vulner-

ability 9 triggers exception handling, substantially increasing

server execution overhead and thereby reducing the server’s

request processing throughput. Third, the network communi-

cation quality. While we have made efforts to deploy VMs

in locations as geographically close as possible across plat-

forms, they are not identical. These differences impact the

network communication speed between the target server and

the attacker’s client. As a result, even with the same client

configuration and exploit, the time required for an attack can

vary significantly.

We further analyze why existing DDoS defenses are inef-

fective in defending against DRDoS attacks. Typically, DDoS

defenses rely on pattern-based methods to identify and filter

attack traffic, monitoring factors like request rates, content,

and access patterns. However, these methods prove insuffi-

cient against DRDoS attacks. First, DRDoS attacks do not

necessitate a continuous stream of attack requests and can

be executed at a low and inconspicuous access rate. Second,

DRDoS attacks exploit design flaws in data management and

leverage the expected functionalities of web containers. Thus,



the attack requests lack any malicious content, such as escaped

characters, making them challenging to distinguish from rou-

tine business requests through content analysis. Third, each

DRDoS attack request is self-contained and complete, de-

void of problematic access patterns like semi-connections.

Although cloud platforms have implemented absolute limits

on request traffic volume and access frequency, these thresh-

olds are inadequately set for DRDoS attacks. This is because

existing limits are designed to mitigate traditional network-

layer DoS attacks, which rely on a substantial volume of

continuous and uninterrupted attack traffic.

6 Case Study

6.1 Exploiting Form-Based Authentication

Form-based authentication is a fundamental and widely used

authentication method [31]. It utilizes an HTML form to trans-

mit user credentials to the server. When an unauthenticated

client requests a protected resource, the server issues an HTTP

302 redirect to a developer-specified login page. Then, the

user inputs and submits credentials. Upon successful authen-

tication, the server redirects back to the original URI with

an authentication cookie. Our experiments show that all four

web containers implement form-based authentication and all

of them are vulnerable to DRDoS attacks.

Specifically, to ensure correct access to the original re-

source after authentication, the web container retains the

user’s original request until authentication is completed. This

raises security concerns: what if the client requests protected

resources but does not complete the authentication? We ob-

serve that web containers store the original request in the

session for an extended period. Although each session stores

only one unauthenticated request, an attacker can easily create

new sessions by modifying the request content. Consequently,

a malicious client can craft numerous different requests, ex-

hausting the web container’s memory resources.

Distinct Security Considerations. These containers employ

a similar design to implement the authentication functionality,

i.e., storing the same request data, but with varying levels of

security measures in place to manage retained data. Specifi-

cally, Jetty and Undertow do not impose dedicated restrictions

on this feature. They merely apply generic constraints on the

size of individual requests, set at 200KB and 16KB, respec-

tively. In contrast, Tomcat and Resin have implemented more

stringent protections. As illustrated in Figure 8, Tomcat has

specifically configured a size limit (4KB) for unauthenticated

requests and retention time constraints (i.e., 120 minutes).

Resin goes a step further by restricting the number of unau-

thenticated requests allowed for retention to 4096.

Exploitation in Real World. Despite these mitigation mea-

sures, they are insufficient to defend against DRDoS attacks.

In particular, Jetty and Undertow lack constraints on data re-

FormAuthenticator.java

Size-Based Check in Resin

Class StandardSession{

  boolean isValid() {

   int timeIdle = getIdleTime(); 

   if (timeIdle >= maxInactiveTime){

    expire(true);

   }

   ...

 }

}

Time-Based Check in Tomcat

StandardSession.java

<session-config>

  <session-max>4096</session-max>

</session-config>

Class SessionManager{

 int _sessionMax = 4096;

 void init() {

  this._sessions = 

   new LruCache(this._sessionMax);

  ...

 }

 SessionImpl createSession(...){

  session = this._sessions.

    putIfNew(sessionId, session);

  ...

 }

}

{Resin_home}\conf\web.xml

SessionManager.java

Class FormAuthenticator{

 int authSessionTimeout = 120;

 void saveRequest(...){

  session.setMaxInactiveInterval(

        authSessionTimeout);

  ...

 }

}

Figure 8: Distinct Security Checks in Tomcat and Resin.

tention time, allowing attackers to freely send attack requests

and accumulate memory consumption, leading to memory

exhaustion and server unavailable to other users. Although

Tomcat has set a data retention time limit (120 minutes), this

threshold proves ineffective in preventing real-world attacks.

According to our experiments, a malicious client can exploit

this vulnerability to occupy over 180GB of server memory,

significantly impacting numerous web applications in the

wild. Furthermore, while Resin mitigates memory exhaustion

by limiting the quantity of retained requests, it remains vul-

nerable to DoS attacks exploiting data semantics. Specifically,

the original request is stored in the session to redirect the user

to the protected resource after authentication and update the

authentication status. Attackers can exploit Resin’s quantity

limitation by sending a substantial number of requests when

a user enters credentials, causing the victim’s session and

original request to be removed. This prevents the user from

completing authentication and accessing the target resource.

Disclosure and Mitigation. We responsibly disclosed the

vulnerabilities to developers, who acknowledged our findings.

Eclipse and Red Hat have assigned 2 CVE identifiers for

them. We are actively collaborating with developers on mit-

igation strategies. Tomcat developers express the challenge

of eliminating DRDoS risks while maintaining the desired

functionality. As a patch, they reduce the data retention time

from 120 minutes to 2 minutes to limit attackers’ capabilities.

Meanwhile, Jetty developers, recognizing the limitations of

time and size-based approaches in fully mitigating DRDoS

risks, are working on optimizing the form-based authentica-

tion feature to minimize retained data.

6.2 Exploiting DoS Defense Module

DoSFilter is a request handler in Jetty designed to prevent

abuse from request flooding by tracking the number of re-

quests from each client per second. If the limit is exceeded,



the request will be rejected, delayed, or throttled [13]. To im-

plement rate tracking, it uses the sessionId to identify each

client and creates a RateTracker object for each client to store

relevant information about their access. Although the ses-

sionId is generated by Jetty and undergoes validation before

retention, an attacker can easily generate numerous valid ses-

sionIds by constructing different request contents, leading to

Jetty creating numerous RateTracker objects. These objects

are stored in a long-lived Map object and are not actively re-

leased by default. As a result, the request handler intended for

network-layer DoS protection suffers from a DRDoS attack.

We have reported this vulnerability to Jetty developers, who

expressed a keen interest in our findings. They promptly took

corrective action, modifying the rate tracking implementation

to only support client identifiers that are difficult for attackers

to forge on a large scale, e.g., IP addresses. They mentioned

that the DoSFilter was originally designed for DoS protec-

tion but introduced a new DoS attack vector. As a result, the

developers assessed this vulnerability as high severity and

assigned a CVE identifier for it.

7 Mitigation, Limitation, and Discussion

Mitigation. In client-server architectures, retaining client data

on servers is often essential for certain functionalities. To

mitigate DRDoS risks, developers should implement data re-

tention cautiously and design robust management strategies.

On one hand, during data retention implementation, it is ad-

visable to retain data with limited value space or data that

is difficult for attackers to forge on a large scale. Combin-

ing this with deduplication checks can restrict the quantity

of retained data and memory usage. Additionally, it is essen-

tial to ensure end-to-end data validation and set size limits

based on intended use and scenarios. On the other hand, for

retained data, developers should design efficient management

strategies. For non-sensitive data, such as that used for perfor-

mance enhancement, developers can set capacity limits and

employ a least recently used (LRU) management approach to

reclaim memory resources promptly. For purpose-sensitive

data, where removal could impact functionality, custom con-

siderations are necessary. Developers should explicitly warn

users of associated risks in documentation, providing flexi-

ble size- and time-based management strategies. This allows

users to create tailored management policies for their specific

production scenarios.

Besides, some standalone mitigation mechanisms, while

unable to eliminate the root cause of memory exhaustion, can

help mitigate its immediate impacts. For example, deploy-

ing OOM killers can free up resources by terminating and

restarting memory-intensive web container processes. On the

one hand, developers can leverage JVM-provided program-

ming interfaces, e.g., JMX, to design independent monitoring

processes that track the memory usage of the target process.

When memory usage reaches the JVM limit and triggers an

OOM error, the monitoring process can proactively terminate

and restart the target process. On the other hand, in scenarios

where the entire system runs out of memory, developers can

utilize the OS-level OOM killer by configuring the oom_score

for the target process, ensuring it is prioritized for termina-

tion.1 Additionally, network defenses that flag clients with

excessive traffic can increase the attacker’s hardware or time

costs, especially in vulnerability exploits with a limited attack

time window. However, the thresholds must be tailored to the

specific business requirements of the protected web services

and the available resource capacity, balancing operational

needs and security considerations.

Limitations. We discuss three limitations of DR. D: (i) self-

developed expandable data types, (ii) potential bias of ma-

chine learning model, and (iii) manual work.

• First, although DR. D supports the automatic detection of

container-customized expandable data types derived from

JDK implementations, there may still be self-developed

expandable classes. Nevertheless, our manual investigation

revealed that over 90% of the expandable data types in these

containers are inherited or dependent on JDK ones, such

as MultiMap in Jetty and LRUCache in Undertow, which

can be covered by DR. D. Moreover, DR. D can be easily

extended to incorporate specified expandable data types.

• Second, DR. D considers only syntactic features when iden-

tifying long-lived classes. Introducing semantic informa-

tion such as class names and comments might improve the

identification efficiency. Nevertheless, we argue that DR. D

has demonstrated good effectiveness in detecting DRDoS

vulnerabilities, as evidenced by the experimental results.

• Third, DR. D requires manual effort for vulnerability assess-

ment and verification. However, the request class annotation

is worthwhile, requiring only about half an hour while en-

abling DR. D to filter out a significant portion (39%) of

non-exploitable candidates from the analysis results. More-

over, manual vulnerability verification is common in static

vulnerability detection tasks. Each request handler in web

containers requires specific deployment configurations, and

automating the inference and generation of these configura-

tions remains an ongoing challenge, which is beyond the

scope of this paper.

Discussion. This paper focuses on Java web containers due to

their critical role in web development. DRDoS vulnerabilities

may also exist in other web components, and DR. D can be

extended to support these cases or provide design insights

for targeted solutions. First, DR. D can be directly applied

to other Java web containers. For instance, we applied it to

the popular closed-source commercial WebLogic (restricted

developer version). WebLogic includes extensive features

and complex dependencies, with technical support limited

1Excessive swapping between RAM and disk-based swap space may

occur, causing high disk I/O and thrashing, undermining the OOM Killer’s

effectiveness and exacerbating system-wide resource starvation.



to product purchasers, making comprehensive vulnerability

validation challenging. Nevertheless, we have successfully

verified one DRDoS vulnerability, which Oracle confirmed

and assigned a CVE identifier. Second, DR.D can be extended

to support general Java web frameworks (e.g., Spring MVC)

and analyze web apps by extending the request handler recog-

nition module to support framework-specific features, such as

annotation-based request data mapping. Furthermore, DR.D’s

framework and design approach offer valuable insights for

detecting DRDoS vulnerabilities in other web components

or those built in different programming languages. This is

particularly true for vulnerability modeling and exploitability

assessment, given that web components often involve com-

plex internal configurations and external dependencies.

Overall, our study highlights that, even with automated

memory management languages, effective data retention man-

agement is essential for ensuring program performance and

availability. This paper takes the first step in addressing this

problem, and further research in this area is warranted, in-

cluding but not limited to enhancing DRDoS vulnerability

detection techniques and developing targeted defensive mea-

sures. We leave these for future work.

8 Related Work

Network-Layer DoS Attacks. The network-layer DoS at-

tacks, also known as DDoS attacks, involve flooding the target

system with a large volume of requests within a short time.

This category of attacks has been extensively studied, yielding

numerous classic attack approaches such as TearDrop [54],

Ping of Death [52], and amplification attacks [1, 7, 22, 23, 36].

Fortunately for defenders, network-layer DoS attacks incur

high attack costs (e.g., acquiring a large-size botnet to mount

the attack) and exhibit noticeable traffic patterns. Many ef-

fective methods for detecting and mitigating them have been

proposed, including CDNs [20], rule-based filters [17, 60, 61],

and queue/congestion management [18, 27]. However, In this

paper, we focus on specific vulnerabilities within containers

during request processing, rather than at the network layer.

This makes our attack requests challenging to distinguish

from routine business requests. Furthermore, our attack ex-

ploits data retention within containers, allowing for flexible

execution by sending attack requests at a low frequency. As a

result, our attack does not exhibit problematic network-layer

patterns, making existing network-layer DoS detection and

defense approaches ineffective.

Application-Layer DoS Attacks. Application-layer DoS at-

tacks have garnered substantial attention in recent years. They

exploit specific implementation flaws within applications

and utilize low-bandwidth, highly targeted, and application-

specific traffic to overwhelm a target system [3, 9, 19, 24].

However, existing research primarily focuses on vulnerabil-

ities leading to CPU resource exhaustion, such as ReDoS

[26, 28, 40, 53] and algorithmic complexity (AC) vulnerabil-

ities [25, 30, 33, 35, 48, 51], and is hardly applied to address

DRDoS vulnerabilities in web containers. Specifically, some

studies [11, 28, 42] focus on modeling and detecting specific

types of AC vulnerabilities, which have limited application

scope. Others [4, 33, 35, 48] apply general approaches such

as fuzzing to obtain runtime statistics on resource (e.g., CPU

time) consumption triggered by individual inputs. However,

these tools are insensitive to memory consumption. Moreover,

they struggle to handle the complex configuration constraints

necessary for executing various request handlers within web

containers. In this paper, we conduct the first systematic study

of memory-oriented application-layer DoS attacks and pro-

pose an automated approach for detecting and assessing such

vulnerabilities in web containers.

Memory Leak Detection. Many studies [5, 16, 41, 47, 50]

focus on detecting memory leaks in C/C++ programs, employ-

ing static or dynamic methods to identify memory objects that

are unreferenced and not explicitly released by developers.

However, such vulnerabilities do not exist in Java, a memory-

safe language, as Java’s garbage collector will automatically

reclaim unreferenced objects. Some research [29, 59] aims

to detect ‘memory leaks’ in Java programs through runtime

heap analysis. They detected vulnerabilities by locating un-

needed but unreleased data in memory, which is not suitable

for DRDoS vulnerabilities. This is because the request data

are designed to be stored in the web container’s memory for

desired functionalities and future use, and therefore cannot be

considered as unneeded objects.

9 Conclusion

In this paper, we conduct the first systematic study of DRDoS

vulnerabilities in web containers and design a novel static ap-

proach, named DR. D, to detect and assess their exploitability.

Our evaluation of DR. D on 4 popular Java web containers

uncovers 25 unique zero-day, exploitable vulnerabilities. We

responsibly disclosed them to respective developers and re-

ceived their confirmations and acknowledgments. So far, we

have received seventeen CVE identifiers (three assigned with

high severity). We further analyze the Shodan’s scan results

and find over 1.5 million public IP addresses hosting these

vulnerable web containers. Our study highlights that data

retention management is crucial even in languages with auto-

mated memory management and warrants further research.
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A Appendix

A.1 Class Feature Extraction

DR. D extracts class features through static analysis. Specif-

ically, DR. D scans all methods in the web container to

analyze the invocation times and locations (i.e., methods)

of constructors for each class, facilitating the extraction of

class instantiation-related features (#1 and #2). Subsequently,

DR. D collects the parameter types and return value types of

all methods to analyze their mobility features (#3 and #4). For

inter-class reference features (#5 and #6), DR. D enumerates

the number and types of fields in each class. For feature #7,

DR.D considers classes containing request handlers as config-

urable. For feature #8, DR. D analyzes the access modifiers of

each class to determine if they are globally accessible. Then,

DR. D recursively examines the interfaces and parent class

information implemented by each class to ascertain their iter-

ability (feature #9). Furthermore, DR. D analyzes all methods

to record the actual parameter types of all iterable objects’

adding instructions, e.g., HashMap.add(), thereby collecting

feature #10. To identify fields susceptible to concurrent access

(feature #11), DR.D examines the modifiers and types of each

field in the class. If a field is declared volatile or synchronized,

or if its type belongs to data types in the Java concurrency

library (i.e., java.util.concurrent), it is considered prone to

concurrent access. Regarding methods potentially subject to

concurrent access (feature #12), DR. D scrutinizes the method

signatures to determine if they are synchronized and examines

the presence of synchronized code blocks within the method

implementations. Finally, feature #13 is addressed by directly

analyzing the modifier information of each method within the

class to identify static methods.

A.2 Attack Scenario Description

Table 7 lists the hardware and software configuration details

of the virtual machines created on the four cloud platforms,

including CPU model, RAM size, disk configuration, network

bandwidth, operating system, Java runtime version, and the

Round-Trip Time (RTT) between the simulated attacker and

the server. It is worth noting that although the maximum

bandwidth on Google Cloud and Microsoft Azure is not cus-

tomizable and exceeds 300 Mbps, we ensured that the traffic

throughout the experiments remained below 300 Mbps.

A.3 DDoS Defenses

Table 8 lists the DDoS defense strategies enabled on each

platform. In our experiments, the attack requests were not

detected by the DDoS defense mechanisms of any platform

and did not trigger any alerts. We attempted to understand the

specific implementations of each platform’s DDoS defense

strategies. However, these implementations are black boxes to

developers. Based on an analysis of their documentation, we

found that their designs primarily consist of two components:

traffic volume analysis and traffic behavior analysis.

Traffic volume analysis involves monitoring the incom-

ing traffic size of the protected instances to check whether

it exceeds the platform-specified threshold. Traffic behavior

analysis identifies anomalous attack traffic based on known

DDoS attack patterns, using feature matching or machine

learning methods. When abnormal traffic is detected, the sus-

picious traffic is redirected from the original network to the

platform’s scrubbing services. These services identify and

filter out malicious traffic, reinject sanitized legitimate traffic

back into the original network, and forward it to the target

while generating analysis reports and alerts for users.

Regarding traffic volume thresholds, Alibaba Cloud and

Huawei Cloud explicitly provided threshold values in their

consoles, whereas Google Cloud and Microsoft Azure did not

disclose specific numbers. According to their documentation,

these thresholds are automatically generated for different in-

stances based on proprietary machine learning algorithms. As

for anomalous behavior characteristics, the platforms did not

disclose the supported attack patterns and feature lists but

claimed to detect common DDoS attacks, such as SYN Flood

attacks, UDP reflection attacks, and HTTP Flood attacks.

A.4 Memory Usage Visualization

Figure 9 shows the heap memory usage of web container pro-

cesses over time during vulnerability exploitation on different

platforms, with subplot IDs corresponding to vulnerability



Table 7: Hardware and Software Configurations of Virtual Machines Deployed on Four Cloud Platforms

Google Cloud Microsoft Azure Alibaba Cloud Huawei Cloud

CPU
Intel Xeon (Cascade Lake) Gold

6268CL @2.80GHz 8vCPU

Intel Xeon (Cascade Lake) Platinum

8272CL @2.50GHz 8vCPU

Intel Xeon (Cascade Lake) Platinum

8269CY @2.50 GHz 8vCPU

Intel Xeon (Cascade Lake) Gold

6278C @2.60GHz 8vCPU

RAM 8GB 8GB 8GB 8GB

Disk

(Max IOPS/Throughput)

Balanced Persistent Disk 40GB

(15000 / 240MB/s)

Premium SSD 30GB

(3500 / 170MB/s))

ESSD Entry 40GB

(6000 / 150MB/s)

General Purpose SSD 40G

(20000 / 250MB/s)

Bandwith >300Mbps >300Mbps 300Mbps 300Mbps

OS Ubuntu 22.04 LTS - x64 Ubuntu 22.04 LTS - x64 Ubuntu 22.04 LTS - x64 Ubuntu 22.04 LTS - x64

Java Runtime Java 17 Java 17 Java 17 Java 17

RTT

(Min/Max/Avg)
295/302/297ms 339/342/340ms 9/10/9ms 5/7/5ms

Table 8: Summary of Enabled DDoS Defense Strategies Across Four Cloud Platforms.

Cloud Platform Defense Name
Traffic Volume

Analysis

Traffic Behavior

Analysis
Defense Alert

Google Cloud Cloud Armor Standard Adaptive Threshold ✓ Not Triggered

Microsoft Azure DDoS IP Protection Adaptive Threshold ✓ Not Triggered

Alibaba Cloud DDoS Protection Basic 450Mbps | 100kpps ✓ Not Triggered

Huawei Cloud Anti-DDoS Service Basic 120Mbps ✓ Not Triggered

IDs in Table 6. The memory usage was monitored via JMX

with a sampling frequency of once per second until an Out-

OfMemory (OOM) error was triggered. The servers typically

became unresponsive before the OOM error due to excessive

garbage collection in the final stages. The vulnerability 16 is

context-constrained and does not lead to memory exhaustion.

Therefore, it is not included in the figure. Notably, the ex-

ploitation of vulnerabilities in Resin did not fully exhaust the

container’s memory resources but still caused a DoS due to

Resin’s watchdog security mechanism [6]. Specifically, Resin

servers are started and monitored by a separate watchdog

process, which continuously checks the server’s health and

proactively kills the Resin instance if it becomes unresponsive.

While the watchdog process automatically restarts the server

after a default period of two minutes, the hosted web appli-

cations cannot be accessed during this time. By repeatedly

exploiting the vulnerability, attackers can induce a continuous

DoS.
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Figure 9: The Heap Memory Usage of Web Container Processes Over Time on Four Cloud Platforms
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