
Towards Automatic Detection and Exploitation of Java Web Application

Vulnerabilities via Concolic Execution guided by Cross-thread Object Manipulation

Xinyou Huang1*, Lei Zhang2*, Yongheng Liu1, Peng Deng1, Yinzhi Cao3, Yuan Zhang2, and Min Yang2

1: Fudan University, {xinyouhuang22, yhliu24, pdeng21}@m.fudan.edu.cn

2: Fudan University, {zxl, yuanxzhang, m_yang}@fudan.edu.cn

3: Johns Hopkins University, yinzhi.cao@jhu.cn

*: co-first authors

Abstract
Java Web applications are of great importance for informa-

tion systems deployed across critical sections of our society as

demonstrated in the severe impacts caused by notorious log4j

vulnerability. One major challenge in detecting Java Web

Application vulnerabilities is cross-thread dataflows, which

are caused by shared Java objects and triggered by multiple

web requests in the same session. To the best of our knowl-

edge, none of the prior works can handle such cross-thread

dataflows in Java Web applications.

In this paper, we design and implement the first framework,

called JAEX, to automatically detect and exploit Java Web

Application vulnerabilities via concolic execution guided by

so-called Cross-thread Object Manipulation. Our key insight

is that cross-thread dataflows can be triggered by manipu-

lation of shared Java objects using different requests, thus

guiding concolic execution to reach the sink and generate ex-

ploits. We also evaluate JAEX on popular Java applications,

which discovers 35 zero-day vulnerabilities. We responsibly

disclosed all the vulnerabilities to their vendors and received

acknowledgments for all of them.

1 Introduction

Java Web applications (apps) are extensively deployed in in-

formation systems across critical sections of society, such as

enterprises and government departments. Such wide deploy-

ment also draws the attention from adversaries: For example,

the notorious log4j vulnerability [1] brought a nightmare to

the entire Internet, which affected millions of web apps. There-

fore, automatic detection and exploitation of Java Web apps

are of critical importance to minimize security risks.

One major barrier of automatic vulnerability detection and

exploitation is due to the nature of Java Web apps, which are

multi-threads by default. That is, each request of the same

session may generate a new thread and the Java objects are

shared across different threads within the session. Such a

cross-thread dataflow inevitably renders vulnerability detec-

tion and exploitation challenging. First, a specific sequence of

requests is needed to reach the final sink via different cross-

thread dataflows. Second, payloads with complex structures

and inter-dependencies are needed to trigger each cross-thread

dataflow.

To the best of our knowledge, none of the prior works can

handle cross-thread dataflows for automatic vulnerability de-

tection and exploitation of Java Web apps. Let us describe

prior works from two aspects. On one hand, previous works

have studied non-Java Web apps [2–11], sometimes involving

dataflows across requests or threads, in their program analy-

sis. For example, NAVEX [3] proposed a Navigation Graph-

guided symbolic execution approach for PHP Web apps with

connecting the dataflows between different requests. Many

works for Android apps [8–11], e.g., Horndroid [11], also

modeled cross-thread dataflows, for information flow anal-

ysis, e.g, privacy leaks. However, it is challenging to apply

them in detecting and exploiting complex vulnerabilities of

Java Web apps. Specifically, NAVEX, focusing on PHP appli-

cations, cannot model shared cross-thread Java objects in their

navigation graph. Then, Horndroid, which is mainly designed

for information flow analysis, cannot provide or generate in-

puts to exploit Java vulnerabilities.

On the other hand, previous Java vulnerability detection

focuses more on specific types of vulnerabilities, e.g., Deseri-

alization Vulnerabilities [12–15] and Denial-of-Service Vul-

nerability [16–18], which do not have cross-thread dataflows

heavily involved. Witcher [19], a multi-language fuzzer of

web apps, does support Java Web apps, but their guidance

is based on code coverage. That is, Witcher is unaware of

cross-thread dataflows, let alone able to specifically generate

request sequences and related payloads. Joern [20], a well-

known static analysis framework supporting Java white-box

code analysis, also lacks support for cross-thread dataflow

analysis. Furthermore, Joern often suffers from a large num-

ber of false positives in its detection result, because of over-

approximations in the static analysis [21] and lack of con-

straint solving.

In this paper, we design and implement the first automatic

framework, called JAEX, to detect and exploit Java Web Ap-

plication vulnerabilities via concolic execution guided by

so-called Cross-thread Object Manipulation. Our key insight

is that cross-thread dataflows are connected and triggered via

shared Java Objects, and therefore the manipulation of such

objects via different requests to the web application can guide

concolic execution to reach the sink.

Specifically, JAEX constructs the request sequence and

then the payloads of each request via concolic execution. The

first step is the request sequence construction. JAEX first

analyzes the whole program to extract all potential execution

paths to sinks and the objects that can not be influenced by the

input entry of these paths with a pre-generated cross-thread

dataflow graph. After that, JAEX marks these objects as guid-

ance symbols and utilizes them to guide concolic execution

with an on-demand, iterative path exploration strategy, thereby

figuring out the correct web entry (i.e., request) sequence to

trigger the sinks. The second step is the payload construc-

tion. JAEX records and solves the path constraints and the

data-flow dependencies among execution paths of different

threads during concolic execution, represents such dependen-

cies using a novel Cross-thread Object Manipulation Graph,

and eventually constructs the concrete payloads.

We evaluate JAEX’s capabilities on 25 of the latest ver-

sions of popular Java apps and discover over 35 zero-day

vulnerabilities, of which exploits were generated for all of

them. All discovered vulnerabilities have been reported to the

respective vendors, and acknowledgments have been received.

We also evaluate JAEX on a benchmark consisting of 92

historical vulnerabilities from 16 popular Java open-source

apps. The results demonstrate that JAEX detected 90 vulner-

abilities in this benchmark and generated exploits for 87 of

them. In contrast, our baselines, Witcher [19] and Joern [20]

detected only two and 44 of these vulnerabilities, respectively,

and were unable to generate any exploits.

To sum up, this paper makes the following contributions:

• We introduce for the first time an Automated Exploit

Generation (AEG) approach for Java Web apps. We have

designed and implemented our prototype tool, JAEX,

to address the unique challenges brought by Java Web

apps.

• We are the first to highlight cross-thread vulnerabilities

in Java and propose a sink-guided, on-demand, and step-

forward path exploration strategy for concolic execution

approach to generate exploits.

• Our approach has successfully identified 35 zero-day

vulnerabilities and generated exploits for each of them,

demonstrating its efficacy in detecting and exploiting

complex vulnerabilities in Java Web apps.

2 Overview

In this section, we describe a real-world vulnerability discov-

ered by JAEX as a motivating example in §2.1, then illustrate

the challenges and the overview of our solutions in §2.2.

Request IV

POST /execute HTTP/1.1

Host: www.target.com

Content-Type: application/json

{"name": "bad-wf",

...

}

Request III

POST /eventhandler HTTP/1.1

Host: www.target.com

Content-Type: application/json

{"name":"bad-wf:bad-task",

 "condition":"RCE exploit"

 "active": true, ...}

Request II

POST /workflowDef HTTP/1.1

Host: www.target.com

Content-Type: application/json

{"name":"bad-wf",

 "type":"EVENT",

 "tasks":[{/*bad-task*/}],...}

Request I

POST /taskDef HTTP/1.1

Host: www.target.com

Content-Type: application/json

{"name":"bad-task",

...

}
22

11

33

Figure 1: The exploit of our motivating example. Fields with

a red dashed underline indicate the control flow conditions

that must be met for vulnerability exploitation.

2.1 A Motivating Example

This subsection illustrates a motivating example using a zero-

day, remote code execution (RCE) vulnerability found by

JAEX in a widely-used open-source component. Figure 1

shows the exploit code with four HTTP requests and then Fig-

ure 2 illustrates the vulnerable code, which contains four web

entry methods (Lines 4, 10, 16, and 30) accessible via POST

requests and a sink function (i.e., where the vulnerability is

located) at Line 55. We have reported this vulnerability to the

developers and assisted them in fixing it in the latest version.

We now describe how this vulnerability and its exploit

work. The exploitation starts with the first two HTTP re-

quests in Figure 1, which add TaskDef and WorkflowDef

into the database. After that, the third request needs to be

sent to trigger the addEventHandler method (Line 16 in

Figure 2). This action will add the eh (a EventHandler

object) into the database, and then the background thread

method refreshEventQueues method (Line 21) loads the

newly added EventHandler from the database and sets up

an ObQueue as a listener (i.e., a new background thread)

with the name of new EventHandler to handle message

generated at program runtime. Finally, the attacker needs to

send the fourth request to startWorkflow method at Line

30 to ultimately finish the exploitation. In this method, the

WorkflowDef, i.e., wfd added by Request II is retrieved from

the database with the status set to ‘RUNNING’, and the

handleWorkflow method is invoked with wfd as a parameter.

The handleWorkflow method processes the task according

to the task.type, gets an ObQueue with the name of the

WorkflowDef and taskDef that is created by the Request III,

and sends a message to the queue(Lines 40-42). Finally, the

message will be received by Daemon Thread II (Lines 46-

49), handled by EventProcessor (Line 50), and triggered

the vulnerability (Line 55).

Note that there are many cross-thread dataflows triggered

by different requests here. First, the field tasks of the payload

of Request II should contain the taskDef sent by Request

I; Second, the field active at Request III should be ‘true’

(1) to ensure the Daemon Thread II is set up; Third, the

field type at Request II should be ‘EVENT’ (2); Fourth, the

field eventName (3) should be a specifically formatted string

composed of taskName and workflowName. This ensures

that the application can correctly retrieve the ObQueue on

Line 42 in Figure 2 after receiving the fourth request.

2.2 Challenges and Solution Overview

In this subsection, we describe how cross-thread dataflows in

Java Web apps bring challenges for vulnerability detection

and exploitation via our motivating example. Then, we also

describe how JAEX solves these challenges.

Challenge I: Identifying attack request sequence with a

specific order. Because of cross-thread dataflow dependen-

cies, certain requests have to be prepared in a specific order so

that other requests can proceed. For example, Figure 1 shows

that these four HTTP requests have to come in the stated or-

der so that all the data dependencies in Code Snippet (c) of

Figure 2 can be fulfilled. Existing works [3, 19, 20] are blind

to or insufficiently address cross-thread dataflow, which can

either be unable to generate such a sequence or generate a

wrong sequence.

To address this Challenge I, JAEX proposes an on-demand,

iterative vulnerability path searching algorithm (details are

presented later in Algorithm 1), which considers cross-thread

dataflows. The key observation here is that to reach the sink,

a series of shared objects need to be manipulated via different

requests. As a result, by analyzing when and by which request

these objects need to be manipulated, JAEX can infer the cor-

rect request sequence. For example, along the potential vulner-

ability path triggered by Request IV method startWorkflow,

the eh needed to exploit the vulnerability (Line 53) is gen-

erated from Request III method addEventHandler (Line

17), and therefore JAEX can find that the addEventHandler

should be invoked before the startWorkflow.

Challenge II: Generating attack payloads for each request

to exploit the vulnerability. Vulnerability exploitation re-

quires valid, highly structured payloads for each request iden-

tified in Challenge I, with these payloads being interdependent

across requests. Figure 3 shows the dependencies between

the payloads of different requests in the motivating example

in the form of a Cross-thread Object Manipulation Graph

(COMG, see § 3.5). For instance, the List field wfDef.tasks

in Request II needs to include the tDef as an item from

Request I. This is challenging for previous fuzzing-based

approaches, e.g., Witcher [19], because they are unaware of

cross-thread dataflows, and the payloads are generated ran-

domly, e.g., adopting AFL’s random strategy.

Note that these dependent fields between these payloads

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

class WorkflowController {

 /** Entry for Request IV **/

 @Post("/execute")

 void startWorkflow(StartWorkflowReq req) {

 WorkflowDef wfd = DB.getWorkflowDef(req.name);

 wfd.status = RUNNING;

 handleWorkflow(wfd)

 }

 void handleWorkflow(WorkflowDef wfd){

 if (wfd.status == RUNNING) {

 for (TaskDef task : wfd.tasks) {

 if (task.type.equals("EVENT")) {

 Message msg = doTask(task);

 String qn = wfd.name + ":" + tDef.name;

 ObQueue q = QueueManager.qMap.get(qn);

 if (queue != null) { q.mq.push(msg); }

}}}}

class ObQueue {

 EventProcessor ep; MsgQueue mq;

 void enable() {// Daemon Thread II

 List messages = mq.pop();

 messages.forEach(ep::handle(this, msg));

}}

class EventProcessor {

 void handle(ObQueue queue, Message msg) {

 String name = queue.getEventName();

 EventHandler eh = DB.getEventHandler(name);

 ScriptEvaluator.eval(eh.condition, msg);

}} RCE exploit here!

13

14

15

16

17

18

19

20

21

22

23

24

25

26

class EventController {

 /** Entry for Request III **/

 @Post("/eventhandler")

 void addEventHandler(EventHandler eh) {

 DB.addEventHandler(eh);

}}

class QueueManager {

 static QueueMap qMap;

 void refreshEventQueues(){//Daemon Thread I

 EventHandler e = DB.getNewEventHandler());

 if(e.active)

 qMap.put(e.name, new ObQueue(e.name));

 static ObQueue getQueue(String name) {...}

}

(b) Codes behind the Request III

(c) Codes behind the Request IV

class TaskDefController {

 /** Entry for Request I **/

 @Post("/taskDef")

 void addTaskDef(TaskDef tDef) {

 DB.addTaskDef(tDef);

}}

class WorkflowDefController {

 /** Entry for Request II **/

 @Post("/workflowDef")

 void addWorkflowDef(WorkflowDef wfDef) {

 DB.addWorkflowDef(wfDef);

}}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

(a) Codes behind the Request I and II

Daemon Thread I to Req IV

(ObQueue)

Req IV to Daemon Thread II

(msg)

Req III to Daemon Thread II

(eh)

Req III to Daemon Thread I

(eh)
11

22

33

Req II to IV

 (wfDef)

Figure 2: The vulnerable code of our motivating example. The

code is simplified to facilitate presentation, e.g., uniformly

representing all database operations using methods from DB.

Dashed arrows in different colors represent cross-thread data

flows of different objects.

are connected by the cross-thread dataflows triggered by dif-

ferent requests. As shown in Figure 2, the eh (Line 17) from

Request III flows to the qMap.key with a newly generated

ObQueue (Line 24). Then, the new ObQueue can be obtained

with qn at Line 41, and the qn is constructed by the wfd.name

and tDef.name that flow from Request I and II. Therefore,

with these dataflow relations, JAEX can infer that the de-

addTaskDef addWorkFlowDef

addEventHandlerstratWorkflow

TaskDef

name

EventHandlerWorkflowReq

POST:/taskDef:JSON

...

active name condition

POST:/workflowDef:JSON

POST:/eventhanlder:JSONPOST:/execute:JSON

name ...

WorkflowDef

Request #I Request #II

Request #IIIRequest #IV

tasks nametype

Constraints

tDef wfDef

ehreq

C1: eh.active == true

C2: eh.name == tDef.name

 + ":" + wfDef.name

C3: wfDef.type == "EVENT"

C4: ...

Invocation Order

Object/Field

HTTP Description

Payload Mapping

...

...

Web EntryWeb Entry

Direct DependenceDirect Dependence

11

22

33

44

55

Figure 3: The Simplified COMG of the Motivating Example

pendency between eh.name, tDef.name, and wfDef.name

in each payloads.

JAEX uses concolic execution to identify cross-thread

dataflow dependencies and help construct these payloads via

two steps. First, by tracking user input during concolic execu-

tion, JAEX precisely identifies which fields in the input have

cross-thread dataflow dependencies. Second, by incorporat-

ing a constraint solver, JAEX determines the constraints that

are met to pass through specific branches so that the injected

payload can reach the final sink.

2.3 Threat Model

In this work, we focus on all Java apps that have web ac-

cess interfaces (i.e., accepting HTTP requests) and can be

deployed on a server, collectively referred to as Java Web

apps. That is, our victim is a server-side Java Web application,

and our adversary is a malicious client that directly sends

one or more HTTP requests with malicious payloads through

these web interfaces to exploit vulnerabilities. Our in-scope

vulnerability primarily includes injection vulnerabilities in

Java Web apps, such as SQL injection, command injection,

and expression injection [22]. Other vulnerability types, e.g.,

Denial of Service (DoS) and deserialization, are currently out

of the scope of JAEX, but may be included in the future with

sufficient modeling because cross-thread dataflows can also

be involved for these vulnerabilities.

addEventHandler

eh

refreshEventQueues

DB.addEventHandler DB.getNewEventHandler

e

handle

DB.getEventHandler

eh

condition

name

queue

name

QueueManger.getQueue

QueueManager.qMap

Cross-thread Objects

New queue

put

1 1

2222

Database Database

 Global Var Global Var

Figure 4: The Simplified Cross-thread DFG of the partial of

codes in Motivating Example

3 Approach

In this section, we first present the system architecture of

JAEX at §3.1 and how it works on the motivating example.

Then, we describe the details of each module.

3.1 System Architecture

Architecture Overview. Figure 5 presents the overall ar-

chitecture of JAEX, which is a hybrid framework with four

phases in two main stages.

Stage 1: Static analysis. In this stage, JAEX detects the

potential vulnerability and extracts the information that is

needed for conducting concolic execution.

In Phase 1, JAEX models and identifies the source and sink

APIs that indicate the vulnerabilities. One obstacle here is

that, Java Web apps commonly contain a lot of abstract-type

objects (e.g., using dependency injection to declare Java ob-

jects), JAEX hardly can obtain a complete control-flow graph

(CFG) of the app, resulting a high false negative of source/sink

identifications. Thus, we propose a pointer-based ICFG by

utilizing pointer-to analysis to enhance the construction of

the control-flow graph.

In Phase 2, JAEX identifies shared objects and builds a

cross-thread data-flow graph (DFG) to connect the sources

and sinks across different threads. Specifically, JAEX uses

a sink-guided, on-demand iterative algorithm (will be illus-

trated with Algorithm 1 at §3.3) to search the DFG and detect

if the parameters of sinks could be tainted by user input. Once

a vulnerable data flow is identified, JAEX further extracts

the execution path from CFG. Then, it could infer the web

entry invocation sequence by identifying the API manipu-

lation sequence of shared objects (e.g., a write API should

be executed before a read API). Last, for guiding concolic

execution, JAEX will further extract the needed code context

and initialize the necessary information with the identification

of entries, sinks, and shared objects among different threads.

Stage 2: Concolic Execution. In this stage, JAEX verifies

the possible vulnerabilities detected by static analysis and

Java Web
App

Entries and Sinks

Identification

Phase1: Initialization Phase2: Vuln. Searching

Pointer-based ICFG

Construction

Object Manipulation

Graph Construction

Vuln. and Attack

Sequence Identification

Path Constraints Solving

and Objects Dependency

Analysis

Phase4: Concrete Exp. Generation

Vuln. Exploiting

Context Extraction

Minimum Runtime

Environment Setting Up

Concolic Execution

Engine

Phase3: Vuln. Validation

Vuln. and

 Attack Seq.

Real World Exploit

Adaptation

Object based

Input

Runtime

Feedback

Object

Exploit
Real World

Exploit

Static Analysis Concolic Execution

Cross-thread DFG

Construction

Vuln. Context

Additional

Searching

Exploits
Template DB

Figure 5: The Overall Architecture of JAEX with Four Phases.

generates exploits for them.

In Phase 3, JAEX first set up the minimum runtime en-

vironment needed for concolic testing of each potential vul-

nerability. After that, JAEX will generate initial input based

on the information extracted from static analysis and pass

them to the corresponding entry method for driving concolic

execution. During the execution process, JAEX collects con-

straints along the execution path through instrumentation and

solves them to help the execution engine generate the next

input. Additionally, if any conditional statements are found

to be unaffected by the current inputs during this process, the

concolic engine will feed this information back to the static

analysis stage to refine path searching.

In Phase 4, JAEX generates exploits for verified vulnera-

bilities. Specifically, it utilizes a Cross-thread Object Manipu-

lation Graph (COMG) to depict the relationships between the

input, the shared objects and the sink’s parameters, as well

as the constraints that should be satisfied along the execu-

tion path. Then, it constructs the sequence of HTTP requests

required for exploitation based on expert-derived exploit tem-

plates and the obtained COMG.

Analyzing the Motivating Example. We now describe how

JAEX works on the motivating example.

In the static analysis stage, after phase 1 and constructing

the Cross-thread DFG like Figure 4, JAEX first identifies a

potential vulnerability path in the Daemon Thread II, i.e.,

enable at Line 46 in Figure 2 that reaches the sink at Line 54.

Then, because the ObQueue object associated with the back-

ground thread method enable is currently uncontrollable.

JAEX conducts cross-thread analysis with the goal of un-

derstanding how to influence it through user inputs. With the

ICFG and the Cross-thread DFG, JAEX finds that the enable

method is invoked by another background thread method,

refreshEventQueues (Line 21). Within this method, the

ObQueue object needed by the aforementioned background

thread is created through e, which is also an uncontrollable

object but can be found have cross-dataflow from web entry

addEventHandler (Line 16) in Figure 2. At this point, the

ObQueue object associated with the background thread and

e object, previously marked as uncontrollable objects have

converged. JAEX iterates through multiple rounds of analy-

sis until all uncontrollable objects along the path converge,

which we refer to as a sink-guided, on-demand iterative algo-

rithm, and detect the potential vulnerabilities. Besides, based

on the order of convergence, a sequence of web entry methods

invocations that can represent the request sequence is derived.

In the concolic execution stage, JAEX performs concolic

execution based on the web entry invocation sequence and

expected execution paths. Specifically, the concolic execution

engine applies Step-forward Strategy, that is, it executes these

entries one by one, sets the aforementioned uncontrollable

objects in the execution path of the next web entry as target

points, and continue to execute subsequent web entry only if

these uncontrollable objects can be influenced. During each

web entry’s execution, JAEX extracts and solves path con-

straints For example, when JAEX reaches Line 23 in Figure 2,

it detects that the active field in the input EventHandler

should be true and feeds this information back to the execu-

tion engine to construct the next input. Additionally, JAEX

records the data dependencies among objects along the path.

For instance, the qn at Line 40 originates from the concate-

nation of the name field of the WorkflowDef and TaskDef

objects (i.e., wfd and tDef) inputted through Request I and

Request II. Furthermore, ObQueue at Line 41 is associated

with qn, and ObQueue is linked to the name of EventHandler

at Line 24 through the key of queueMap at Line 24. JAEX

will further represent these data relationships in the COMG

(see Figure 3). Finally, once it reaches the sink, JAEX uses the

COMG to generate the concrete exploits as seem in Figure 1.

3.2 Phase 1: Initialization for Vulnerability De-

tection

In this phase, JAEX identifies sources and sinks with pointer-

based ICFG construction to facilitate subsequence vulnerabil-

ity detection.

Pointer-based ICFG Construction. Since Java Web apps

commonly involve a lot of dynamic features, e.g., reflection,

dependency injection, etc., their CFGs contain many abstract

objects and method invocations. To enhance the precision

Table 1: Entries/Sources Used in Static Analysis

Name Category
Entry

Type

Entry Pattern

Numbers
Examples

Spring Web Framework Web 2 @Controller

Structs2 Web Framework Web 2 XWorks2 APIs

Servlet J2EE APIs Web 2 Methods (e.g., doGet)

JAX RS/WS J2EE APIs Web 2 @POST

JDK Native Libs Thread 3 Methods (e.g., Tread.run)

Third Party Libs Thread 6 Asyn. APIs

and completeness of our analysis, we use pointer analysis to

construct the necessary Inter-procedural Control Flow Graph

(ICFG). To ensure our analysis is as sound as possible, we

extended Andersen’s pointer analysis algorithm to support

common framework features in Java Web apps (e.g., support

for Spring’s Dependency Injection and AOP mechanisms).

Additionally, for abstract type variables that cannot be re-

solved to specific types during static analysis, JAEX switches

the graph construction algorithm to Class Hierarchy Analysis

to ensure the analysis is as comprehensive as possible.

Entries/Sources Identification. For entries, we categorize

them into two types, shown in Table 1:

• Regular web entry points, including the methods that

handle HTTP request-mapped objects extracted from

mainstream web application frameworks, e.g., doGet

method of Servlet.

• Thread entry points, including Java’s built-in threading

mechanisms (e.g., Thread.run) and the asynchronous

communication APIs provided by third-party frame-

works and libraries.

As shown in Table 1, JAEX utilizes 17 patterns to iden-

tify these entries, summarized by analyzing five major web

frameworks, including Spring, Struts2, Servlet, JAX RS and

JAX WS. Given a Java Web app, JAEX would traverse

all its classes and extract the corresponding web entries by

matching these patterns. Noting that, to identify thread entry

points, JAEX also performs control flow analysis on the Inter-

procedural Control Flow Graph (ICFG) to determine whether

the thread entry method has been invoked or if it runs as a

background thread (such as methods in infinite loops).

Sinks Identification. For sinks, to make JAEX as generaliz-

able as possible, we collected over 500 dangerous methods

(e.g., command execution method, Runtime.exec()) as well

as several framework-level dangerous method patterns (e.g.,

user-defined SQL API in ORM frameworks like Mybatis).

JAEX identifies the call sites of these methods throughout

the app as sinks for subsequent analysis.

3.3 Phase 2: Vulnerability Detection and At-

tack Request Sequence Identification

In this phase, JAEX detects potential vulnerabilities in the

app as well as the entry invocation sequence, i.e., the attack

request sequence to trigger them. Specifically, JAEX first con-

structs a Cross-thread Dataflow Graph (DFG) that represents

the potential cross-thread dataflow to facilitate vulnerability

detection. Then, it uses a sink-guided, on-demand, and itera-

tive algorithm to search vulnerabilities and infer the sequence

of requests required to trigger the vulnerabilities.

Constructing Cross-thread DFG. We first describe how to

construct the cross-thread DFG, which represents the potential

dataflow relation between different threads. Our observation

is that cross-thread dataflows are connected by shared objects

between threads. Based on this, our key insight is that these

shared objects are usually persistent throughout the program’s

runtime lifecycle, and those that have cross-thread data inter-

action are always accessed through specific APIs for read and

write operations. Therefore, by identifying those persistent

objects as potential shared objects and whether these objects

are read and written across different threads, the potential

inter-thread data flow relationships can be uncovered.

For example, in Figure 2, the EventHandler object passed

by the user through addEventHandler at line 16 can flow

into different background thread methods at lines 22 and 53

through persistent database layer via DB operations. Similarly,

the queue object created at line 24 can flow into the back-

ground thread method at line 52 through the persistent global

static variable qMap at Line 20. Based on these relationships,

JAEX identifies those shared objects and constructs the cross-

thread DFG as shown in Figure 4.

Specifically, JAEX identifies four kinds of cross-thread

dataflow mechanisms and uses them as patterns to identify

shared objects and related access operations, and connect

cross-thread dataflows:

(i) Global Variable Access. JAEX identifies three kinds of

global variables and their access operations:

• Static variables. JAEX directly identifies Java methods

that can access and modify them, extracting those meth-

ods for further analysis.

• Fields of background thread. JAEX identifies all thread

classes within the app, then checks if these thread

classes are instantiated and used as persistent back-

ground threads (e.g., by calling the thread’s entry method

in an infinite loop). Last, JAEX identifies and extracts

the methods that operate on the fields of these persistent

background thread objects.

• Singleton variables of Java Web framework. JAEX mod-

els the common-used Java Web development frameworks

to help identify related singleton variables (such as Java

Beans in a Spring IoC container), and then identifies the

methods that directly operate on them.

(ii) Database Operation. JAEX models the APIs of main-

stream database access (e.g., JDBC) and ORM frameworks

(e.g., MyBatis, Hibernate, and etc.), In our practice, we found

that there are generally two ways to access the database:

• Fixed API, accessing the database through fixed APIs

1

2

3

4

5

6

<!−− ItemMapper.xml −−>
<mapper namespace = "com.dao.ItemDao">

 <select id = "selectItem" paramType = "int">

 select * from item where id=#{id}

 </select>

</mapper namespace = "com.dao.ItemDao">

Figure 6: An Example of Mybatis’s Mapper

with SQL commands configured in codes. Take

exexute(sql) as an example. It uses JDBC’s execute

API and passes a SQL string directly into it.

• Mapping API, accessing the database with SQL state-

ments in configuration files. It will invoke specific

user APIs based on the configuration. A typical exam-

ple is MyBatis, which achieves this by configuring the

*Mapper.xml file like Figure 6.

JAEX models the semantics of these APIs to understand

their behaviors. Specifically, for fixed APIs, JAEX performs

data flow analysis to extract the SQL statements from the

API context and uses SQLParser [23, 24] to parse them. For

mapping APIs, JAEX parses the external configuration filesto

extract the APIs and their SQL statements. Moreover, in Java

Web apps, some SQL statements are generated dynamically

during the runtime. For these statements, JAEX will hook the

modeled APIs (e.g., Mybatis’s getBoundSql) to extract them

and analyze their semantics during the concolic execution

phase.

(iii) File Operation. JAEX performs detailed modeling of

JDK’s native file operation APIs and also models common

APIs from third-party libraries (i.e., 60 APIs in total). For

these APIs, JAEX uses fine-grained data flow analysis to

determine the filenames passed into them, thereby assess-

ing whether the files being operated on have the potential to

transmit data across threads. For example, for a file read opera-

tion like new File(fileName);, JAEX conducts backward

data flow analysis from this call site to identify the value of

fileName. If it later encounters a new File operation with

the same file name as the parameter, JAEX considers there to

be a potential data flow relationship between these two sites.

(iv) Asynchronous Communication: JAEX also models the

common asynchronous communication mechanisms in Java

Web apps, which can be categorized into two types:

• JDK-native and third-party asynchronous frameworks,

for example, JDK’s CompletableFuture APIs. For an-

other example, RxJava framework.

• Asynchronous mechanisms provided by web frame-

works, e.g., Spring’s ApplicationEvent

JAEX analyzes the invocation of these Asyn. APIs within

the app to infer the dataflows and treat those objects transfer

through these APIs as shared objects.

Vulnerability and Attack Sequence Identification. In this

part, we explain how JAEX detects potential vulnerabilities

and infers related attack request sequences in detail using the

pseudocode in Algorithm 1.

Algorithm 1: Vulnerability Path Searching

Input: Entries Set Se, Sinks Set Ss

Input: Pointer-based ICFG Ga, Cross-thread DFG Gb

Output: Vuln. Report Set Svrp

Output: Vuln. Execution Context Set Svctx

1 Svrp← /0,SvpInit ← /0;

2 for sink in Ss do

3 SvpInit ← getPathTo(sink);

4 for vPath in SvpInit do

5 vFullPath← fullPathSearch(vPath);

6 if vFullPath ̸= /0 then

7 Svrp← Svrp ∪ collectV PathReport(vFullPath);
8 Svctx ← Svctx∪ collectVPathCtx(vFullPath);

9 return Svp,Svctx;

10 function fullPathSearch(path):

11 f ullPath← /0;

12 unControlSymbs← getUncontrolSymb(path);

13 if unControlSymbs == /0 then

14 Svp← Svp ∪ path;

15 Svctx ← Svctx∪ collectVPathCtx(path);

16 while unControlSymbs ̸= /0 do

// we first handle thread symbols

17 unControlSymbs← prioritizeThreadSymb(unControlSymbs);

18 symb← getOne(unControlSymbs);

19 newPath← getPathForSymb(symb);

20 assertEmpty(newPath);

21 f ullPath← f ullPath∪newPath;

22 unControlSymbs← unControlSymbs− symb;

23 return f ullPath;

24 function getPathForSymb(symb):

25 symbSink← getSinkFor(symb,Ga,Gb);

26 path2Sink← getPathTo(Se,SymbSink);

27 f ullPath2Sink← fullPathSearch(path2Sink);

28 return f ullPath2Sink;

JAEX first performs a simple source-to-sink taint anal-

ysis to obtain the initial vulnerability paths, SvpInit (Lines

1-3). Then, JAEX iterates through each vPath and uses the

fullPathSearch function for more detailed analysis. Specif-

ically, fullPathSearch first checks if there are any variables

along the path from source to sink that cannot be directly con-

trolled by external inputs from the source (Line 12). If no such

variables exist, the path is considered a potential complete

vulnerability exploitation path (Lines 13-15). If such variables

do exist, JAEX records them as guidance symbols (which

will also guide the subsequent concolic execution process)

and searches the app for paths that can taint these guidance

symbols through external inputs (Lines 17-22). Note that

JAEX prioritizes handling thread-related guidance symbols

(Line 17), as they are often the most crucial element in vul-

nerabilities that require cross-thread triggering. The function

getPathForSymb (Line 24) is responsible for finding paths

that affect these guidance symbols by searching through the

global ICFG and Cross-thread DFG for statements that can

taint these symbols. It first finds statements that manipulate

these symbols, and these statements are then treated as sinks

for further analysis. If such paths are found, they are passed

back to fullPathSearch for more comprehensive path anal-

ysis (Lines 26-28).

During the path-searching process, JAEX records the fol-

lowing key information:

• Web entry invocation order. We first identify the web

entry Wd directly triggers the path. Then, we identify

if there is another web entry WO which could taint the

guidance symbols of Wd . Then, we label WO should be

invoked before Wd . Note that, we will iteratively find a

web entry for all guidance symbols.

• Web entry parameters. This means that which fields of

the parameters are used in the execution path, which

can be used for the lazy generation strategy of concolic

execution.

For example, in Figure 2, after identifying this vulnerabil-

ity with static analysis, JAEX can further infer its web en-

try invocation order, i.e., (addTaskDef, addWorkflowDef,

addEventHanlder, startWorkflow). Then, it infers the

needed parameters for them. Take startWorkflow as an ex-

ample. Since the field name of the parameter req is been

accessed in Line 31, JAEX would give it a concrete value

when generating initial variables for concolic execution.

3.4 Phase 3: Vulnerability Path Validation via

Concolic Execution

In this phase, JAEX conducts vulnerability verification via

concolic execution, which is guided by the vulnerability paths

and web entry invocation sequence identified in the previous

phase. Specifically, JAEX employs a step-forward concolic

execution strategy, which is specifically designed to trigger

vulnerabilities involving cross-thread dataflows. During the

execution, JAEX accurately tracks the execution positions

of variables to extract the constraints required for satisfying

specific path branches and to detect dependencies between

objects, preparing for subsequent exploit generation. We now

describe our design in four key aspects.

(i) Concolic Variable. To accurately track user input dur-

ing execution (e.g., where a certain variable is from and

what operations it has met), JAEX defines a concolic vari-

able as a quadruple: (Type, Value, Source, Symbolic

Expression). Type represents the variable’s data type.

Value is the variable’s concrete value during runtime. Source

indicates the origin of the variable, such as the method and the

parameter it comes from (see Appendix B for the formal defi-

nition). Symbolic Expression includes the path constraints

of the variable encountered along the runtime execution.

JAEX supports eight primitive types of Java (e.g., int, etc.),

String, Arrays, Collections, Maps, and Object types. Specifi-

cally, We categorize object types into two groups. The first is

Plain Old Java Objects (POJOs), which are commonly used to

hold and pass user inputs, such as the EventHandler in Line

4 of Figure 2. POJOs typically only contain fields that are

simple primitive types or other POJOs, making them relatively

simple for JAEX to handle. JAEX recursively generates con-

colic variables for their fields. The second group includes

more complex objects that have many non-primitive fields and

are hard to model generally, such as HttpServletRequest,

which maps to HTTP requests in J2EE Servlet. For these

objects, JAEX models their fields and APIs specifically to

support concolic execution. In practice, modeling the objects

in the mainstream web frameworks listed in Table 1 has been

sufficient to handle all the scenarios we encountered.

Take the parameter eh of the addEventHandler method

at Line 16 in Figure 2 as an example. JAEX first gen-

erates an empty EventHandler object with its concolic

variable: (Type: EventHandler, Value: eh, Source:

addEventHandler/0, Expression: eh). Based on static

analysis, JAEX detects that the name field of this object is in-

volved in the expected path (Figure 2, Line 24). Consequently,

JAEX generates a concolic variable for the name field

as well: (Type: String, Value: "dummy", Source:

addEventHandler/0.name, Expression: "dummy").

This step ensures that all relevant fields are properly tracked

during the concolic execution process.

(ii) Concolic Operation. JAEX defines a set of rules to handle

various situations encountered by concolic variables during

execution, especially related to the external resources like

databases that are commonly ignored by prior works for im-

plementing more comprehensive concolic execution.

Firstly, during execution, a concolic variable may in-

teract with other concolic variables or concrete values.

In this situation, JAEX first converts all variables into

concolic variables. Take the statement String qName

= wfd.name + ":" + tDef.name; at Line 40 in Fig-

ure 2 as example, JAEX first converts the ":" into a

concolic variable (Type: String, Value: ":", Source:

EventTaskExec.execute#Line46, Expression: ":").

Secondly, JAEX calculates the result based on the operations

involved in the specific statement. We categorize these

operations into the following four types:

• Regular Operators: This refers to common operators in

programming languages like +, -, !. JAEX hooks all

of these JVM opcodes and handles the concolic variables

flow through them based on their semantics.

• Common Operation APIs: This refers to methods like

StringBuilder.append in JDK and APIs of popular

third-party libraries, such as StringUtil.concat in

Hutool.

• External Resource-related APIs: These APIs manipulate

external resources like databases or files. JAEX mod-

els APIs encountered in practice and maintains a global

state for each type of external resource. JAEX then re-

turns the correct concolic variables based on the runtime

state, API call context, and semantics. For example, in

database operations, JAEX simulates a database (e.g.,

MySQL) composed of Java objects, reflecting the state

changes during CRUD operations. JAEX instruments

the key statements in the related APIs to capture the ex-

pected SQL expression and the anticipated return values,

allowing it to understand the API’s complete semantics.

By combining the passed parameters and the semantics,

it returns specific concolic variables from the simulated

database.

• Unmodeled Operations: For operations that have not

been modeled, such as methods from third-party libraries

introduced by developers, JAEX directly executes these

methods, encapsulates the return values and transforms

them to concolic variables.

(iii) Step-forward Execution Strategy. JAEX employs a step-

forward execution strategy for concolic execution. It follows

the web entry invocation sequence inferred from our static

analysis, constructs the necessary method parameters, and in-

vokes the corresponding methods. Each web entry’s execution

is guided by guidance symbols, which are concolic variables

identified during static analysis that must be influenced by

the current web entry to satisfy certain path constraints in

the execution path triggered by another web entry. During

each entry’s execution, JAEX adopts the depth-first explo-

ration strategy before reaching the sinks or points that can

influence the guidance symbols. For conditional branches en-

countered during exploration, JAEX categorizes them into

two types: mandatory and non-mandatory. The former is iden-

tified during the static analysis phase through control flow

graph analysis, if these branches cannot be satisfied, JAEX

immediately terminates the execution of the current entry. For

the latter, JAEX skips unsolvable branches and prioritizes

the execution of solvable ones. Once all required guidance

symbols for the current path are influenced, JAEX marks the

task for that entry as completed and moves on to the next

entry for testing.

However, this step-forward process may encounter two

types of obstacles: (i) guidance concolic variables influenced

by earlier steps do not satisfy certain constraints on the cur-

rent path, and (ii) new uncontrollable symbols are discovered

during execution. Specifically, for (i), JAEX identifies the

origin entry of unsatisfied guidance symbols based on their

identifier. It then resolves the issue by using the constraint

solver and re-executing the corresponding entry. For sym-

bols in (ii), JAEX’s concolic execution engine feeds them

back to the static analysis module to assist in path search-

ing. If no suitable path is found, JAEX considers the current

vulnerability to be a false positive.

(iv) Constraints and Object Dependency Analysis. During

execution, JAEX may find that some conditional statements

should involve concolic variables. In these cases, JAEX uses

a constraint solver to determine the required values for them.

For instance, in the motivating example (Figure 2, Line 22),

the variable e is obtained through a database API, making

it a concolic variable. Based on the static analysis results,

we know that e is the same as eh from Line 17. Therefore,

JAEX can solve for the value of eh and determine that its

active field should be set to true during input construction.

In addition, JAEX collects data dependency relationships

between objects along intra- and inter-thread execution paths.

For instance, the ObQueue object at Line 41 is associated

with the ObQueue object at Line 20 through the global qMap

variable via the key of the map. The key for the ObQueue

object created at Line 24 is derived from the name field of the

external input e, while the key read at Line 41 is generated

from the concatenation of the name fields of wfd and tDef.

Thus, JAEX identifies a dependency between the external

input eh and the external inputs wfd and tDef.

JAEX records these constraints and dependencies related

to external inputs for use in the next phase of Cross-thread

Object Manipulation Graph construction.

3.5 Phase 4: COMG-aided Concrete Exploit

Generation

In this phase, JAEX first builds a Cross-thread Manipulation

Graph (COMG) to guide exploit generation. Next, JAEX

retrieves appropriate exploit templates from our Exploits

Templates Database based on the current vulnerability type.

Guided by the COMG, it generates payloads that satisfy the

necessary constraints. Finally, JAEX produces the correct

HTTP exploits. We now describe the three core components.

Exploits Templates Database. The Exploits Template is

defined as follows:

[EscapeString1]exploit[EscapeString2]

Here, EscapeString1 and EscapeString2 are used to escape

the exploit into the required format, typically consisting of

syntax symbols such as }, //, depending on the context.

We collected more than 150 real-world exploits and com-

piled 37 exploit templates for 7 types of vulnerabilities, which

we have made available in an anonymous git repository* for

review. The database maintains one exploit template for dif-

ferent exploitation methods of the same vulnerability type,

allowing variations by replacing predefined parts to produce

different exploit results.

COMG Construction. The COMG is built based on the

constraints and dependency information retrieved from the

concolic execution phase. JAEX combines this information

with a pre-modeled mapping between HTTP requests and

Java object exploits for the specific web framework, and fi-

nally obtains this data structure that represents the core el-

ements needed to generate concrete exploits. As illustrated

in Figure 3, the COMG provides the following five types

of information. 1 HTTP Description. Maps HTTP requests

to web entry parameters or runtime objects. JAEX obtains

this mapping based on the web framework modeled in Ta-

ble 4. 2 Invocation Order. Specifies the sequence in which

HTTP requests are sent. 3 Field Dependencies. Defines de-

pendencies between specific fields across different requests.

*https://anonymous.4open.science/r/SEC25_EXPDB-25C0/

4 Constraints of Payloads. Outlines the constraints that re-

quest fields must satisfy. 5 Sink Position. Identifies the loca-

tions where attack payloads can be injected.

Real World Exploit Adaptation. Using the COMG, JAEX

converts the exploit objects obtained from concolic execu-

tion into concrete HTTP requests. We introduce this pro-

cess using Request III in Figure 3 as an example. First,

based on the HTTP description, JAEX determines that a

POST request to /eventhandle is needed, containing JSON-

formatted data. The JSON structure must match that of the

EventHandler object eh. According to the field dependen-

cies and constraint information, eh.active is set to true,

and eh.name is a concatenation of tDef.name from Re-

quest I, ":", and wfDef.name from Request II. Next, the

condition field is set to the attack payload. In this case,

it is a sink for an expression injection vulnerability, JAEX

selects exploit candidates from the Exploit Database, e.g.,

Runtime.getRuntime().exec("xxx");. Finally, once all

payloads for the requests is constructed, JAEX organizes

them in the correct sequence, generating an exploit like the

one shown in Figure 1

4 Evaluation

We evaluated JAEX with the following research questions:

• RQ1: How does JAEX perform in vulnerability detec-

tion and exploitation on benchmarks compared to state-

of-the-art tools?

• RQ2: How effective is JAEX in detecting and exploiting

0-day vulnerabilities in real-world apps?

• RQ3: What is the performance overhead of JAEX during

the analysis process?

Implementation. The static analysis of JAEX is built on top

of tai-e [25], which is an object-, field-, array- and context-

sensitive static analysis framework. Excluding the code of

tai-e itself and third-party packages, we implemented over

20,000 lines of new code. JAEX’s concolic execution module

drew inspiration from JPF [26] and Phosphor [27]. It contains

more than 8,000 lines of code, using Java Agent, the ASM

bytecode editing framework, Java dynamic proxy technology,

and Java reflection. Before concolic execution, JAEX sets up

the minimum runtime environment or context for each vulner-

ability. Specifically, JAEX maintains two kinds of context:

(i) Internal Context. This refers to the call context needed to

execute the web entry methods. (ii) External Context. This

refers to the resources that must be obtained from external

sources via specific APIs during the execution of the vulnera-

bility paths. For (i), we referred to the approaches mentioned

in previous works [18]. For (ii), JAEX hooks these APIs and

concolized their return values.

Environment Setup. All experiments were conducted on a

Linux ESXi virtual machine instance equipped with a 64-

core Intel(R) Xeon(R) Gold 5218 CPU at 2.30 GHz and 128

GB of RAM. The instance is running Ubuntu 18.04.5 LTS

with jdk-17.0.10 installed. To verify the effectiveness of the

exploits generated by JAEX, we manually verify them by

setting up all the apps under test using Docker 24.0.2 and

Docker Compose 1.29.2.

Datasets. To assess the capabilities of JAEX, we constructed

the following two datasets:

(i) Benchmark. Our benchmark primarily comprises histori-

cal vulnerabilities from real-world scenarios. We collected

these vulnerabilities through the following steps.

• Step 1: We collected Java Web apps used in prior stud-

ies [19, 28] and popular Java Web apps from renowned

open-source organizations on GitHub, such as Apache,

using keywords like ‘Java CMS’ and ‘Java Web’.

• Step 2: We searched for historical vulnerabilities in these

apps within prominent vulnerability databases, such as

the National Vulnerability Database (NVD). As a result,

we obtained 92 vulnerabilities with publicly available

proofs of concept (PoCs), which affect 16 apps.

(ii) Real-world Apps. We collected 25 popular Java Web apps,

whose stars exceed 500, for evaluating JAEX’s capabilities

on 0-day vulnerability mining. These apps are actively main-

tained by their developers, as they are updated frequently, and

all apps are tested in their latest versions.

Baselines. We used the following baselines for comparison:

• Witcher [19]. A grey-box fuzzing tool that supports Java

Web apps. However, based on our practice, Witcher’s

built-in crawler was unable to effectively crawl the web

entries of those apps in the benchmark. Therefore, to

make the comparison fairer, we extracted all Web entries

through static analysis for Witcher.

• Joern [20]. An open-source white-box code analysis plat-

form that supports Java. We configured the Web entries

and sinks using the Scala environment and interfaces pro-

vided by Joern, and leveraged its built-in taint analysis

module to perform vulnerability detection.

• JAEX-NOCT. Besides, we also implemented a JAEX

without the cross-thread analysis module called JAEX-

NOCT as another baseline tool for ablation study.

4.1 RQ1: Comparation with Baselines

Overall Results. In this section, we compare JAEX with

the baselines. Table 2 shows the overall results. In this table,

we present the number of detected vulnerabilities (Detected)

and successfully exploited vulnerabilities (Exploited) for Jo-

ern, Witcher, JAEX-NOCT, and JAEX. Note that we mark

the columns of Exploited of Witcher and Joern as ‘N/A’ be-

cause neither of them has the capability to generate concrete

exploits.

Overall, both JAEX-NOCT and JAEX significantly out-

Table 2: Comparison of the number of vulnerability detection and exploits generated by JAEX and the state-of-the-art tools

across the 92 vulnerabilities among 16 popular Java Web apps and the well-known Java vulnerability testbed WebGoat. Note that

the numbers in parentheses indicate true positives (TP) on ground truth.

Known Vuln.♣
(Gound Truth)

Joern Witcher JAEX-NOCT JAEX

Application Version¶ Detected Exploited ♠ Detected Exploited ♠ Detected Exploited Detected Exploited

Total CT♢ Total CT Total CT Total CT Total CT Total CT Total CT Total CT Total CT

Real-world apps

ActiveMQ 5.1x.x 3 3 4 (1) 1 (1) N/A N/A 0 0 N/A N/A 6 (1) 1 (1) 0 0 15 (2) 10 (2) 2 2

Archiva 2.2.x 2 1 22 (2) 1 (1) N/A N/A 0 0 N/A N/A 12 (2) 1 (1) 1 0 12 (2) 1 (1) 2 1

CrushFTP 10.x 2 0 8 (0) 0 N/A N/A 0 0 N/A N/A 20 (2) 0 2 0 35 (2) 15 (0) 2 0

DolphinSecheduler 2.x, 3.x 8 5 29 (3) 0 N/A N/A 0 0 N/A N/A 35 (3) 0 3 0 58 (8) 23 (5) 8 5

Elastic Search 1.x 4 3 11 (0) 0 N/A N/A 0 0 N/A N/A 44 (4) 3 (3) 1 0 51 (4) 10 (3) 4 3

Halo 1.x 6 2 21 (4) 0 N/A N/A 0 0 N/A N/A 11 (4) 0 4 0 17 (6) 6 (2) 6 2

Hadoop 3.0.0 1 1 12 (0) 0 N/A N/A 0 0 N/A N/A 4 (0) 0 0 0 7 (1) 3 (1) 1 1

JeecgBoot 3.2.x 5 0 89 (3) 0 N/A N/A 0 0 N/A N/A 47 (5) 0 5 0 63 (5) 16 (0) 5 0

Apache Kylin 3.x 8 5 27 (2) 0 N/A N/A 0 0 N/A N/A 13 (3) 0 3 0 23 (8) 10 (5) 8 5

MCMS 5.1.x, 5.2.x 27 2 52 (12) 0 N/A N/A 2 (2) 0 N/A N/A 86 (26) 1 (1) 25 0 94 (27) 9 (2) 27 2

MeterSphere 1.x, 2.x, 3.x 9 1 63 (8) 0 N/A N/A 0 0 N/A N/A 52 (9) 1 (1) 8 0 69 (9) 16 (1) 8 0

NRM3‡ 3.x.x 5 1 16 (2) 0 N/A N/A 0 0 N/A N/A 68 (4) 1 (1) 3 0 98 (4) 31 (1) 3 0

RocketMQ 4.5.x, 5.1.x 2 1 7 (0) 0 N/A N/A 0 0 N/A N/A 15 (2) 2 (1) 1 0 17 (2) 4 (1) 2 1

Ruoyi 4.x 6 1 84 (4) 0 N/A N/A 0 0 N/A N/A 13 (5) 0 5 0 18 (6) 5 (1) 6 1

Jeesite 1.x 3 2 29 (3) 2 (2) N/A N/A 0 0 N/A N/A 14 (3) 2 (2) 1 0 19 (3) 7 (2) 3 2

Vivo Moonbox 1.0.0 1 1 4 (0) 0 N/A N/A 0 0 N/A N/A 6 (0) 0 0 0 7 (1) 1 (1) 0 0

Total 92 30 478 (44) 4 (4) N/A N/A 2 (2) 0 N/A N/A 427 (73) 12 (11) 62 0 603 (90) 160 (28) 87 25

Synthetic Java Web Application Vulnerability Testbed

WebGoat v2023.8 12† 0 16 (12) 0 N/A N/A 11 0 N/A N/A 17 (12) 0 12 0 17 (12) 0 12 0

Total 12 0 16 (12) 0 N/A N/A 11 0 N/A N/A 17 (12) 0 12 0 17 (12) 0 12 0

¶ Since the vulnerabilities in the dataset span multiple different historical versions, we have consolidated multiple versions of the same application into a single row in the table, listing only the corresponding major version.
♣ We have compiled the information regarding these vulnerabilities into an anonymous repository, available at https://anonymous.4open.science/r/SEC25_EXPDB-25C0/.
♠ Since neither Joern nor Wither can generate exploits, we performed manual analysis on their detected vulnerabilities to determine their exploitability and marked their columns of Exploited as ‘N/A’.
† WebGoat contains over 40 vulnerabilities, including issues like access control and weak passwords. In this paper, similar to previous work, we focus only on the 12 Injection-style vulnerabilities included in the testbed.
‡ NRM3 stands for Nexus Repository Manager 3, and here we are using its open-source version.
♢ CT stands for Cross-thread (Vulnerabilities).

performed Witcher and Joern. In the real-world vulnerability

benchmark, JAEX-NOCT detected 427 potential vulnerabil-

ities with 73 true positives and generated exploits for 62 of

them. In comparison, JAEX detected 603 potential vulnerabil-

ities with 90 true positives and generated 87 exploits. Witcher

and Joern only detected two and 44 out of the 92 vulnerabili-

ties, respectively, and were unable to generate any exploits for

them. In WebGoat, the performance of Witcher is much better

and it detected 11 out of 12 vulnerabilities. This is because

most of the vulnerabilities in WebGoat are quite simple and

can be triggered directly without the need for inputs to meet

complex constraints.

False Positive Analysis. Joern has large false positive rates

(90.8%) based on our manual verification, while JAEX does

not. Both JAEX and JAEX-NOCT detected all the vulnera-

bilities that Joern found. Although they have relatively high

false positive rates with static analysis (85.07% and 82.90%,

respectively), their use of concolic execution for validation

ensures that the final results have 0 false positives. Witcher,

as a fuzzing tool, also produces 0 false positives. However,

as shown above, JAEX detected (and exploited) 43X more

vulnerabilities than Witcher.

False Negative Analysis. As illustrated in Table 2, both

Witcher and Joern have significantly high false negative rates,

being 97.8% (90/92) and 51.2%(48/92), respectively. Dur-

ing Witcher’s execution, we captured the test cases generated

via traffic sniffing and conducted a manual analysis. This

analysis revealed the following reasons for Witcher’s poor

performance on the current dataset: Firstly, Witcher treats

all HTTP parameters as a whole and applies AFL’s random

byte-level mutation strategy, which is unable to produce valid

test cases. Secondly, real-world Web apps often contain re-

quests with numerous parameters that have varying types and

semantics. This complexity further reduces Witcher’s chances

of mutating test cases that can trigger vulnerabilities. For Jo-

ern, the majority of the false negatives (26/48) come from

the vulnerabilities that need cross-thread dataflows involved.

However, it still detected 4 cross-thread vulnerabilities since

their sinks can be directly affected by the input of the current

entry.

JAEX-NOCT detected 73 vulnerabilities but only gener-

ated exploits for 62 of them. Upon manual inspection, we

confirmed that all the missed cases are cross-thread vulnera-

bilities. Specifically, the 19 vulnerabilities that JAEX-NOCT

failed to detect are because the parameters at the sinks re-

quired to be tainted by cross-thread dataflows.

JAEX achieved a vulnerability detection rate of 97.8%

(90/92) during static analysis and generated exploits for 87

of the detected vulnerabilities. Although it performed the

best among the four tools, it still missed 2 vulnerabilities in

the static analysis stage and 3 vulnerabilities in the concolic

execution stage. We summarize the reasons as follows:

• Inadequate language feature support. Some language

features could not be fully supported by static analysis.

For example, the JMX mechanism in ActiveMQ causes

Table 3: JAEX’s Performance on Real-world apps. We only present those exploited apps.

Application¶
App. Overview Vulnerability Discovery Runtime Overhead

Stars LoCs
Detected

(True Positive)
Exploited Cross-thread Status

Graph†

Construction

Vuln. Path

Searching

Concolic

Exectuion

[A1]C****t 19.2k 10.2k 13 (2) 2 2 Confirmed 8min20s 25min56s 23min06s

[A2]C****r 14.3k 85.3k 17 (3) 3 3 Confirmed 10min21s 36min20s 41min02s

[A3]S****r 9.8k 9.9k 18 (3) 3 1 Confirmed 3min57s 12min17s 32min31s

[A4]D***y 3.1k 92.7k 36 (13) 13 1 Confirmed 12min24s 29min20s 1h02min43s

[A5]J***m 1.6k 310.4k 4 (1) 1 0 Reported 30min54s 24min11s 7min47s

[A6]J***m 1.4k 55.3k 56 (5) 5 3 Confirmed 10mins07s 41min22s 2h22min12s

[A7]A***o 0.7k 191.8k 12 (1) 1 1 Confirmed 21min23s 51min22s 27min38s

[A8]A***t 4.7k 40.3k 21 (4) 4 0 Reported 9min15s 19min25s 34min48s

[A9]D***o 3.5k 57.2k 10 (2) 2 1 Reported 9min47s 20min46s 19min20s

[A10]Q***s 0.6k 117.6k 7 (1) 1 1 Reported 18min34s 14min22s 17min02s

Total - - - 35 12 - - -

¶ We have reported all the vulnerabilities and received confirmations from the vendors. For ethical consideration, we choose to withhold

the names of these real-world apps until the developers agree to public them.
† The Graph means Pointer-based ICFG and Cross-thread CFG

the flow interruption, which made JAEX miss it.

• Lack of domain knowledge. One vulnerability in NRM3

can not be exploited since it needs the knowledge of

how to exploit OrientDb. This could be fixed by arming

JAEX with specific knowledge about OrientDb.

• Unsupported constraints. Some constraints are overly

complex. For example, in the case of Vivo Moonbox,

there are numerous complex string operations such

as concatenation and slicing, which lead to constraint-

solving failures.

Contribution of Cross-thread Analysis. We now describe

how such cross-thread analysis benefits vulnerability detec-

tion and exploitation in Java Web apps two-fold.

Firstly, based on the comparison results between JAEX

and baselines, JAEX benefits from the presence of the Cross-

thread DFG, enabling more comprehensive static analysis and

detecting more potential vulnerabilities.

Secondly, through cross-thread analysis, JAEX can derive

guidance symbols to direct concolic execution, thereby gener-

ating more comprehensive exploits. Let’s take Elastic Search

in the benchmark as an example: although JAEX-NOCT can

detect all cross-thread vulnerabilities, it fails to generate con-

crete exploits for them since there are certain path constraints

that need to be addressed by triggering cross-thread dataflows.

JAEX can identify these constraints, find proper paths, and

guide concolic execution to execute them.

4.2 RQ2: Exploiting Real-world apps

In this section, we evaluated JAEX on 25 popular Java Web

apps, the results are summarized in Table 3. Overall, JAEX

ultimately discovered 35 zero-day vulnerabilities across 10

of them. Among these, 12 require the exploitation of cross-

thread dataflow to be triggered. To further demonstrate how

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

/** Web Entry for Request I **/

void setBusinessConfig(Request req) {

 if (req.action == 'ADD') {

 ItemConfig conf = req.getItemConfig();

 DB.setBusinessConfig(req.domain, config);

 }

}

/** Web Entry for Request II **/

void viewBusinessItem(Request req) {

 if (req.action == 'VIEW') {

 ItemConfig config = DB.getBusinessConfig(req.name);

 List baseLines = prepareCustomBaseLines(req.name, config);

 String pattern = config.getPattern();

 String repacePattern = "${" + req.name + "," + config.title + ",AVG}"

 calculate(pattern, repacePattern, baseLines);

 }

}

void calculate(String pattern, String repPattern, List infos) {

 pattern = pattern.replace(repPattern, infos.toString);

 JexlExpression e = jexl.createExpression(pattern);

 Number result = (Number) e.evaluate(null);

}

Request I

POST /config?action=ADD&domain=dog

itemConfig.title=poc&itemConfig.pattern=${dog,poc,AVG}.toString().class.forName('ja

va.lang.Runtime').getRuntime().exec('touch /tmp/poc.txt')

Request II

GET /show?name=dog

(a) Vulnerability Code in Case Study 1

(b) Exploit Requests in Case Study 1

Req I to II

(conf)

11

22

33

33

Figure 7: The vulnerable code and exploit of Case #1.

JAEX detects and exploits real-world vulnerabilities, we now

conduct case studies using one typical real-world example.

Case #1: Cross-thread CI Exploiting Figure 7 illustrates a

Code Injection (CI) vulnerability that needs to trigger cross-

thread dataflows to exploit(blue dash between Line 5 and

11). The pattern field of itemConfig set by Request I, will

flow into the sink at Lines 20-21 of the calculate method

invoked by Request II and exploit the vulnerability, leading

to code injection and ultimately remote command execution

(RCE). Note that, Traditional taint-based static analysis tools

cannot detect this vulnerability because they only mark the

parameter req of the entry method as tainted, and the fields

within req do not directly flow to the sink at Lines 20-21.

Similarly, Witcher fails to trigger the vulnerability because it

cannot construct this two-step request sequence. Furthermore,

even if the correct request sequence is constructed, exploiting

this vulnerability remains challenging due to the multiple

constraints and dependencies between fields that need to be

satisfied. First, specific fields in Request I and Request II need

to satisfy the constraints at Lines 3 (1) and 10 (2), respec-

tively. Second, the domain field in Request I must match the

name field in Request II to correctly trigger the cross-thread

dataflows. Finally, the pattern field of the ItermConfig ob-

ject set by Request I must contain a specific string format

composed of the name field from Request II and the title

field of the itemConfig object (3) at the beginning (Line 14)

of the attack payload, ensuring that the final exploit is valid.

JAEX is able to detect this vulnerability through cross-thread

analysis and successfully exploit it by using concolic execu-

tion to solve the necessary field constraints and dependencies.

4.3 RQ3: Runtime Overhead

In this section, we evaluated the runtime overhead of JAEX on

the 10 vulnerable apps. The results are shown in Table 3. First,

the time required for graph construction generally correlates

with the number of web entries that should be analyzed. An

example is A1 and A3. Since A1 has more web entries than

A3, it consumes more time on graph construction. Second, the

time spent on vulnerability searching is related to the number

of potential vulnerabilities. For instance, A5, despite being the

largest in code size, has relatively few sink points, leading to a

shorter time in searching vulnerabilities. Last, the time spent

on vulnerability validation and exploit generation is related to

the number of cross-thread vulnerabilities. An example is A2,

which consumes more time than A1 in concolic execution.

5 Discussions and Limitations

Extension to Micro-service Scenarios. A typical scenario

prone to cross-thread vulnerabilities is Java Web apps under

a microservices architecture, where an app is decomposed

into multiple independent web services that communicate

with each other through mechanisms like RPC or HTTP re-

quests. JAEX can be easily extended to support vulnerability

discovery in this kind of apps. An intuitive approach is to

enhance static analysis by modeling common micro-service

communication mechanisms in Java Web apps and deploying

agents on different microservices as well as a centralized exe-

cution engine to orchestrate concolic execution across these

microservice modules.

Enhancement of Vulnerability Detection and Validation.

To support the detection of vulnerabilities that require trigger-

ing cross-thread dataflows for exploitation, which typically

involve complex data flow relationships, constraints, and field

dependencies, we enhanced both the static analysis and con-

colic execution capabilities to enable more accurate and com-

prehensive analysis. First, we enhanced Z3 constraint solving

to support more comparison types (such as Java Collections,

Maps, etc.) and comparison operations. Second, we support

more precise type inference. Taking the commonly used gener-

ics mechanism in Java as an example, we perform data flow

analysis to track whether generic variables are involved in

CAST statements, thereby completing type inference. Third,

we comprehensively model those data structures within the

Java Collectoin framework(e.g., ArrayList and HashMap),

which can help JAEX to conduct fine-grained dataflow analy-

sis with Collection-item and Map-key Sensitive.

Modeling of Mainstream Frameworks and Libraries. In

this paper, JAEX performs extensive modeling to support the

analysis of Java Web apps, shown in Table 4 (in Appendix A).

This is primarily because Java Web app development is typi-

cally based on existing frameworks and third-party libraries,

which are often quite complex. Since we only focus on the de-

veloper’s code within the apps, modeling these APIs helps us

save significant analysis time. Additionally, these knowledge

could be reused and support large-scale analysis of Java Web

apps, as these mainstream frameworks and libraries are widely

used in them. For example, Spring occupies over 80% [29] of

the market share in Java Web application development.

Dynamic Java Features. Dynamic Java features, e.g., re-

flection and dynamic proxy, are traditionally challenging for

vulnerability detection works [20] including JAEX. At the

same time, these features are not commonly encountered in

typical injection vulnerability detection scenarios. Our anal-

ysis shows that only two out of 92 real-world benchmark

vulnerabilities involved these features. JAEX does miss the

one related to the JMX mechanism, a complex reflection-

based feature. We will leave more comprehensive support for

these dynamic features as our future work.

Constraint Solving. JAEX adopts Z3 solver, thus also in-

heriting Z3’s limitations, e.g., handling complex constraints

like complex string operations, regular expressions, and hash

value comparisons. Based on our analysis, the majority of

path conditions in Java Web applications are relatively simple,

such as variable non-null checks and string equality compar-

isons. Specifically, we selected MCMS, the application with

the highest number of vulnerabilities among the benchmark

apps, and conducted a manual analysis of its analyzed path

conditions. Our results show that 60.24% (97/161) of the

analyzed path conditions are simple ones without the afore-

mentioned string operations. Note that most of those complex

constraints in MCMS do not reside in the dataflow between

vulnerability sources and sinks, thus leading to minimal im-

pacts on JAEX. JAEX’s small false negatives also manifest

this.

Modeling of Vulnerability Pattern with Specific Domain

Knowledge. The vulnerability supported by JAEX depends

on the collected domain knowledge, e.g., the modeling of sink

functions. As an analogy, prior works [20] suffer from the

same problem since they also need to model vulnerabilities

using manually-curated queries. We will leave the further

generalization of JAEX to support more features of these

vulnerability patterns as future work.

6 Related Work

Java Vulnerability Detection and Exploiting. There are

many works in the field of Java Vulnerability Detection. How-

ever, most of these efforts focus on Java Object Injection (JOI)

and Algorithmic Complexity (AC) DoS vulnerability. For JOI

detection [12, 13, 15, 30, 31], the most representative work is

JDD [15], which proposed a bottom-up approach to address

the path explosion issues and a dataflow-aided approach to ob-

tain the correct structure of injection objects. However, JDD

cannot perform end-to-end vulnerability detection in web app

scenarios, as it assumes that the attacker has direct access to

dangerous deserialization methods, without considering how

to trigger the vulnerability through web entry requests. In the

context of AC DoS detection, two recent representative works

are Acquirer [18] and HotFuzz [32]. The Acquirer supports

analysis on web apps, but its approach is highly coupled with

AC DoS detection, making it difficult to generalize to broader

web app scenarios. Additionally, it cannot handle vulnerabili-

ties that require cross-thread data flow interactions. HotFuzz,

on the other hand, targets Java libraries, making it unsuitable

for detecting vulnerabilities in Java Web apps. As for general

Java Web vulnerability detection, the most relevant work is

Witcher [19]. However, due to its lack of knowledge about

constructing valid inputs for web apps, it often has a low code

coverage in real-world scenarios. Additionally, there are some

works [8, 28, 33] aimed at optimizing static analysis for Java

Web apps. Compared to these works, JAEX is fully adapted

to the characteristics of Java Web apps, making it more gener-

alizable in this context. Besides, JAEX provides support for

detecting cross-thread vulnerabilities, addressing a significant

gap in traditional Java vulnerability detection in this area.

Vulnerability Detection and Exploiting in Other Web Lan-

guages. PHP and Node.js are the most studied web-related

development languages in vulnerability detection. For PHP

vulnerability detection [34–40], TChecker [39] is the state-

of-art static analysis tool, which enhances PHP Joern [41]

by fully supporting PHP’s dynamic features ignored by prior

works, thereby generating a more complete Code Property

Graph to enable more comprehensive analysis. JAEX, on the

other hand, models common cross-thread dataflows in Java

Web apps, enabling the detection of more complex vulnerabil-

ities. SYMPHP [40] extends the symbolic execution engine

S2E and applies it to the PHP interpreter, achieving more

comprehensive concolic execution for PHP Web apps. Atro-

pos [2] improves code coverage during fuzzing by instrument-

ing super-global variables to capture runtime input constraints

and generate high-quality test cases. However, unlike PHP

apps, which have unified user input handling interfaces, Java

Web apps involve more diverse input methods and more com-

plex input formats, making it difficult to dynamically detect

input requirements simply by instrumenting certain interfaces.

Instead, we choose to model mainstream web development

frameworks to obtain the correct format of input payloads.

As for Node.js vulnerability detection [5–7, 34, 42–51], one

of the most popular topics is the prototype pollution vulner-

abilities [7, 42, 43]. Among these, the most related work is

UoPF [6], it uses those undefined properties along the execu-

tion path to guide concolic execution to chain multiple proto-

type pollution vulnerability fragments, so-called gadgets, to

reach sinks. Its high-level idea is similar to JAEX, which uses

shared objects between threads to guide concolic execution.

However, UoPF focuses on offline detection within Node.js

template engines, while JAEX targets onilne Java Web apps.

Additionally, JAEX’s concolic execution engine supports a

wider variety of types, making it more generalizable in Java

Web app scenarios.

Dataflow Modeling in Android. There are many works

[8–11,52–54] have modeled dataflows similar to cross-thread

dataflows in Android to enable more comprehensive analy-

sis. For instance, Blueseal [9] models specific Inter-Process

Communication (IPC) mechanisms in the Android frame-

work, which connect the dataflows between user-called meth-

ods and corresponding framework-invoked methods, thereby

supporting cross-app permission analysis. Similarly, many

works [10, 52–54] conduct Inter-Component Communica-

tion (ICC) mechanisms modeling, such as Intent, in Android

to ensure the consistency of dataflows during static analy-

sis. Among these works, Amandroid [54] is one of the most

representative. It is the first to consider the statefulness of

ICC dataflows and connects these dataflows by analyzing

the sequential order of method invocations. Similarly, JAEX

also analyzes the invocation order of different web entries

(methods) to trigger cross-thread dataflows correctly. Addi-

tionally, JAEX further analyzes data dependencies between

these dataflows to enhance vulnerability detection and ex-

ploitation.

7 Conclusion

In this paper, we presented JAEX, the first automatic frame-

work tailored for detecting vulnerabilities and automatically

generating exploits in Java Web apps with the help of cross-

thread dataflow analysis and concolic execution. Our evalu-

ation shows that JAEX successfully detects and exploits 35

zero-day vulnerabilities in 10 popular open-source Java Web

apps, which demonstrates its effectiveness.

Acknowledgement

We would like to thank anonymous shepherd and reviewers

for their helpful comments and feedback. This work was

supported in part by the National Natural Science Foundation

of China (62102093, U2436207, 62172105, 62202106,

62302101, 62172104, 62102091, 62472096, 62402114,

62402116). Min Yang is the corresponding author and a

faculty of Shanghai Institute of Intelligent Electronics &

Systems, and Engineering Research Center of Cyber Security

Auditing and Monitoring, Ministry of Education, China. Yuan

Zhang was supported in part by the Shanghai Pilot Program

for Basic Research - FuDan University 21TQ1400100

(21TQ012). Yinzhi Cao was supported in part by National

Science Foundation (NSF) under grants CNS-21-54404 and

CNS-20-46361 and a Defense Advanced Research Projects

Agency (DARPA) Young Faculty Award (YFA) under Grant

Agreement D22AP00137-00. The views and conclusions

contained herein are those of the authors and should not be

interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of NSF or

DARPA.

Ethics Consideration

Our research was conducted in local environments and

avoided interacting with real-world systems. For all discov-

ered vulnerabilities, we engaged in responsible disclosure,

reporting all detected vulnerabilities to vendors and aiding in

their remediation.

Open Science

To foster transparency and facilitate further research, we have

made our software tool, datasets, and evaluation baselines

publicly available at https://zenodo.org/records/14723855.

References

[1] Belgian defense ministry confirms cyberattack through

log4j exploitation. https://www.zdnet.com/article/belgia

n-defense-ministry-confirms-cyberattack-through-log

4j-exploitation/.

[2] E. Güler, S. Schumilo, M. Schloegel, N. Bars, P. Görz,

X. Xu, C. Kaygusuz, and T. Holz, “Atropos: Effective

fuzzing of web applications for server-side vulnerabili-

ties,” in USENIX Security Symposium, 2024.

[3] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakr-

ishnan, “{NAVEX}: Precise and scalable exploit gener-

ation for dynamic web applications,” in 27th USENIX

Security Symposium (USENIX Security 18), 2018, pp.

377–392.

[4] S. Neef, L. Kleissner, and J.-P. Seifert, “What all

the phuzz is about: A coverage-guided fuzzer for

finding vulnerabilities in php web applications,” in

Proceedings of the 19th ACM Asia Conference on

Computer and Communications Security, ser. ASIA

CCS ’24. New York, NY, USA: Association for

Computing Machinery, 2024, p. 1523–1538. [Online].

Available: https://doi.org/10.1145/3634737.3661137

[5] S. Li, M. Kang, J. Hou, and Y. Cao, “Mining node. js

vulnerabilities via object dependence graph and query,”

in 31st USENIX Security Symposium (USENIX Security

22), 2022, pp. 143–160.

[6] Z. Liu, K. An, and Y. Cao, “Undefined-oriented pro-

gramming: Detecting and chaining prototype pollution

gadgets in node. js template engines for malicious con-

sequences,” in 2024 IEEE Symposium on Security and

Privacy (SP). IEEE Computer Society, 2024, pp. 121–

121.

[7] M. Kang, Y. Xu, S. Li, R. Gjomemo, J. Hou, V. N.

Venkatakrishnan, and Y. Cao, “Scaling javascript ab-

stract interpretation to detect and exploit node.js taint-

style vulnerability,” in 2023 IEEE Symposium on Secu-

rity and Privacy (SP), 2023, pp. 1059–1076.

[8] A. Antoniadis, N. Filippakis, P. Krishnan, R. Ramesh,

N. Allen, and Y. Smaragdakis, “Static analysis of java

enterprise applications: frameworks and caches, the ele-

phants in the room,” in Proceedings of the 41st ACM

SIGPLAN Conference on Programming Language De-

sign and Implementation, 2020, pp. 794–807.

[9] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora,

B. Dhandapani, E. J. Lehner, S. Y. Ko, and L. Ziarek,

“Information flows as a permission mechanism,” in Pro-

ceedings of the 29th ACM/IEEE international confer-

ence on Automated software engineering, 2014, pp. 515–

526.

[10] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham,

N. Nguyen, and M. C. Rinard, “Information flow anal-

ysis of android applications in droidsafe.” in NDSS,

vol. 15, no. 201, 2015, p. 110.

[11] S. Calzavara, I. Grishchenko, and M. Maffei, “Horn-

droid: Practical and sound static analysis of android

applications by smt solving,” in 2016 IEEE European

Symposium on Security and Privacy (EuroS&P). IEEE,

2016, pp. 47–62.

[12] S. Rasheed and J. Dietrich, “A hybrid analysis to detect

java serialisation vulnerabilities,” in Proceedings of the

35th IEEE/ACM International Conference on Automated

Software Engineering, 2020, pp. 1209–1213.

https://zenodo.org/records/14723855
https://www.zdnet.com/article/belgian-defense-ministry-confirms-cyberattack-through-log4j-exploitation/
https://www.zdnet.com/article/belgian-defense-ministry-confirms-cyberattack-through-log4j-exploitation/
https://www.zdnet.com/article/belgian-defense-ministry-confirms-cyberattack-through-log4j-exploitation/
https://doi.org/10.1145/3634737.3661137

[13] S. Cao, B. He, X. Sun, Y. Ouyang, C. Zhang, X. Wu,

T. Su, L. Bo, B. Li, C. Ma et al., “Oddfuzz: Discovering

java deserialization vulnerabilities via structure-aware

directed greybox fuzzing,” in 2023 IEEE Symposium on

Security and Privacy (SP). IEEE, 2023, pp. 2726–2743.

[14] P. Srivastava, F. Toffalini, K. Vorobyov, F. Gauthier,

A. Bianchi, and M. Payer, “Crystallizer: A hybrid path

analysis framework to aid in uncovering deserialization

vulnerabilities,” in Proceedings of the 31st ACM Joint

European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering, 2023,

pp. 1586–1597.

[15] B. Chen, L. Zhang, X. Huang, Y. Cao, K. Lian, Y. Zhang,

and M. Yang, “Efficient detection of java deserialization

gadget chains via bottom-up gadget search and dataflow-

aided payload construction,” in 2024 IEEE Symposium

on Security and Privacy (SP). IEEE Computer Society,

2024, pp. 150–150.

[16] P. Awadhutkar, G. R. Santhanam, B. Holland, and

S. Kothari, “Discover: detecting algorithmic complexity

vulnerabilities,” in Proceedings of the 2019 27th ACM

Joint Meeting on European Software Engineering Con-

ference and Symposium on the Foundations of Software

Engineering, 2019, pp. 1129–1133.

[17] Y. Liu, M. Zhang, and W. Meng, “Revealer: Detecting

and exploiting regular expression denial-of-service vul-

nerabilities,” in 2021 IEEE Symposium on Security and

Privacy (SP), 2021, pp. 1468–1484.

[18] Y. Liu and W. Meng, “Acquirer: A hybrid approach to de-

tecting algorithmic complexity vulnerabilities,” in Pro-

ceedings of the 2022 ACM SIGSAC Conference on Com-

puter and Communications Security, 2022, pp. 2071–

2084.

[19] E. Trickel, F. Pagani, C. Zhu, L. Dresel, G. Vigna,

C. Kruegel, R. Wang, T. Bao, Y. Shoshitaishvili, and

A. Doupé, “Toss a fault to your witcher: Applying grey-

box coverage-guided mutational fuzzing to detect sql

and command injection vulnerabilities,” in 2023 IEEE

symposium on security and privacy (SP). IEEE, 2023,

pp. 2658–2675.

[20] Joern. https://github.com/joernio/joern.

[21] Z. Guo, T. Tan, S. Liu, X. Liu, W. Lai, Y. Yang, Y. Li,

L. Chen, W. Dong, and Y. Zhou, “Mitigating false posi-

tive static analysis warnings: Progress, challenges, and

opportunities,” IEEE Transactions on Software Engi-

neering, 2023.

[22] Expression language injection. https://owasp.org/www-

community/vulnerabilities/Expression_Language_Inje

ction.

[23] Jsqlparser. https://github.com/JSQLParser/JSqlParser.

[24] Alibaba-druid. https://github.com/alibaba/druid.

[25] T. Tan and Y. Li, “Tai-e: A developer-friendly static anal-

ysis framework for java by harnessing the good designs

of classics,” in Proceedings of the 32nd ACM SIGSOFT

International Symposium on Software Testing and Anal-

ysis, ser. ISSTA 2023. Association for Computing

Machinery, 2023, p. 1093–1105.

[26] Java pathfinder. https://github.com/javapathfinder/jpf-

core.

[27] J. Bell and G. Kaiser, “Phosphor: Illuminating dynamic

data flow in commodity jvms,” ACM Sigplan Notices,

vol. 49, no. 10, pp. 83–101, 2014.

[28] M. Chen, T. Tu, H. Zhang, Q. Wen, and W. Wang, “Jas-

mine: A static analysis framework for spring core tech-

nologies,” in Proceedings of the 37th IEEE/ACM Inter-

national Conference on Automated Software Engineer-

ing, 2022, pp. 1–13.

[29] (2020, Feb.) Spring dominates the Java

ecosystem with 60% using it for their

main applications. [Online]. Available:

https://snyk.io/blog/spring-dominates-the-java-ecosy

stem-with-60-using-it-for-their-main-applications/

[30] S. Cao, X. Sun, X. Wu, L. Bo, B. Li, R. Wu, W. Liu,

B. He, Y. Ouyang, and J. Li, “Improving java deserial-

ization gadget chain mining via overriding-guided ob-

ject generation,” in 2023 IEEE/ACM 45th International

Conference on Software Engineering (ICSE). IEEE,

2023, pp. 397–409.

[31] I. Haken, “Automated discovery of deserialization gad-

get chains,” Proceedings of the Black Hat USA, vol. 48,

2018.

[32] W. Blair, A. Mambretti, S. Arshad, M. Weissbacher,

W. Robertson, E. Kirda, and M. Egele, “Hotfuzz:

Discovering algorithmic denial-of-service vulnerabil-

ities through guided micro-fuzzing,” arXiv preprint

arXiv:2002.03416, 2020.

[33] J. Wang, Y. Wu, G. Zhou, Y. Yu, Z. Guo, and Y. Xiong,

“Scaling static taint analysis to industrial soa applica-

tions: A case study at alibaba,” in Proceedings of the

28th ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations

of Software Engineering, 2020, pp. 1477–1486.

[34] J. Dahse and T. Holz, “Simulation of built-in php fea-

tures for precise static code analysis.” in NDSS, vol. 14,

2014, pp. 23–26.

https://github.com/joernio/joern
https://owasp.org/www-community/vulnerabilities/Expression_Language_Injection
https://owasp.org/www-community/vulnerabilities/Expression_Language_Injection
https://owasp.org/www-community/vulnerabilities/Expression_Language_Injection
https://github.com/JSQLParser/JSqlParser
https://github.com/alibaba/druid
https://github.com/javapathfinder/jpf-core
https://github.com/javapathfinder/jpf-core
https://snyk.io/blog/spring-dominates-the-java-ecosystem-with-60-using-it-for-their-main-applications/
https://snyk.io/blog/spring-dominates-the-java-ecosystem-with-60-using-it-for-their-main-applications/

[35] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Ya-

maguchi, “Efficient and flexible discovery of php appli-

cation vulnerabilities,” in 2017 IEEE european sympo-

sium on security and privacy (EuroS&P). IEEE, 2017,

pp. 334–349.

[36] J. Huang, Y. Li, J. Zhang, and R. Dai, “Uchecker: Auto-

matically detecting php-based unrestricted file upload

vulnerabilities,” in 2019 49th Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks

(DSN). IEEE, 2019, pp. 581–592.

[37] P. Li and W. Meng, “Lchecker: Detecting loose compari-

son bugs in php,” in Proceedings of the Web Conference

2021, 2021, pp. 2721–2732.

[38] B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black

widow: Blackbox data-driven web scanning,” in 2021

IEEE Symposium on Security and Privacy (SP). IEEE,

2021, pp. 1125–1142.

[39] C. Luo, P. Li, and W. Meng, “Tchecker: Precise static

inter-procedural analysis for detecting taint-style vul-

nerabilities in php applications,” in Proceedings of the

2022 ACM SIGSAC Conference on Computer and Com-

munications Security, 2022, pp. 2175–2188.

[40] P. Li, W. Meng, M. Zhang, C. Wang, and C. Luo, “Holis-

tic concolic execution for dynamic web applications via

symbolic interpreter analysis,” in Proceedings of the

45th IEEE Symposium on Security and Privacy (Oak-

land). San Francisco, CA, USA, 2024.

[41] phpjoern. https://github.com/malteskoruppa/phpjoern.

[42] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting node.

js prototype pollution vulnerabilities via object lookup

analysis,” in Proceedings of the 29th ACM Joint Meet-

ing on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering,

2021, pp. 268–279.

[43] M. Shcherbakov, M. Balliu, and C.-A. Staicu, “Silent

spring: Prototype pollution leads to remote code execu-

tion in node. js,” in 32nd USENIX Security Symposium

(USENIX Security 23), 2023, pp. 5521–5538.

[44] J. F. Santos, P. Maksimović, T. Grohens, J. Dolby, and

P. Gardner, “Symbolic execution for javascript,” in Pro-

ceedings of the 20th International Symposium on Prin-

ciples and Practice of Declarative Programming, 2018,

pp. 1–14.

[45] B. Loring, D. Mitchell, and J. Kinder, “Sound regular

expression semantics for dynamic symbolic execution

of javascript,” in Proceedings of the 40th ACM SIG-

PLAN Conference on Programming Language Design

and Implementation, 2019, pp. 425–438.

[46] S. Park, D. Kim, S. Jana, and S. Son, “{FUGIO}: Au-

tomatic exploit generation for {PHP} object injection

vulnerabilities,” in 31st USENIX Security Symposium

(USENIX Security 22), 2022, pp. 197–214.

[47] Y. Zhao, Y. Zhang, and M. Yang, “Remote code exe-

cution from {SSTI} in the sandbox: Automatically de-

tecting and exploiting template escape bugs,” in 32nd

USENIX Security Symposium (USENIX Security 23),

2023, pp. 3691–3708.

[48] Z. Li and F. Xie, “In-situ concolic testing of javascript,”

in 2023 IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER). IEEE,

2023, pp. 236–247.

[49] M. H. M. Bhuiyan, A. S. Parthasarathy, N. Vasi-

lakis, M. Pradel, and C.-A. Staicu, “Secbench. js: An

executable security benchmark suite for server-side

javascript,” in 2023 IEEE/ACM 45th International Con-

ference on Software Engineering (ICSE). IEEE, 2023,

pp. 1059–1070.

[50] B. Loring, D. Mitchell, and J. Kinder, “Expose: prac-

tical symbolic execution of standalone javascript,” in

Proceedings of the 24th ACM SIGSOFT International

SPIN Symposium on Model Checking of Software, 2017,

pp. 196–199.

[51] J. Fragoso Santos, P. Maksimović, G. Sampaio, and

P. Gardner, “Javert 2.0: Compositional symbolic exe-

cution for javascript,” Proceedings of the ACM on Pro-

gramming Languages, vol. 3, no. POPL, pp. 1–31, 2019.

[52] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,

J. Klein, and Y. Le Traon, “Effective {Inter-Component}
communication mapping in android: An essential step

towards holistic security analysis,” in 22nd USENIX

Security Symposium (USENIX Security 13), 2013, pp.

543–558.

[53] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon,

S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and P. Mc-

Daniel, “Iccta: Detecting inter-component privacy leaks

in android apps,” in 2015 IEEE/ACM 37th IEEE Inter-

national Conference on Software Engineering, vol. 1.

IEEE, 2015, pp. 280–291.

[54] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A pre-

cise and general inter-component data flow analysis

framework for security vetting of android apps,” ACM

Transactions on Privacy and Security (TOPS), vol. 21,

no. 3, pp. 1–32, 2018.

https://github.com/malteskoruppa/phpjoern

Appendies

A JAEX’s modeling specifically for Java Web

applications

Table 4 presents the typical examples of JAEX’s modeling

for mainstream frameworks and third-party libraries used in

Java Web development. It mainly consists of two parts: static

analysis entry points and APIs that can trigger cross-thread

dataflows.

B Source Element in Concolic Variable

To accurately track concolic variables during concolic exe-

cution, JAEX uses the Source field to identify the specific

origin of the variable. Specifically, we represent this field

using a tuple:

(Source Type, Allocation)

Here, Source Type refers to the type of origin, which we

currently classify into the following categories:

• WEB_ENTRY: This refers to the parameters of a Web En-

try Method, such as the addTaskDef method at line 4

in Figure 2, which is a Web Entry Method annotated

with @POST in Spring. The parameter tDef falls into this

category.

• INPUT_GLOBAL: This refers to framework-level global

variables related to user input. For example, the

HttpServletRequest object used to store client HTTP

request information in Servlet applications belongs to

this category.

• EXTERNAL: This refers to those variables from external

resources (e.g., database). As mentioned in §3.4, JAEX

models the APIs of external resources and returns ap-

propriate concolic variables based on semantics. These

variables are marked with this type. Additionally, this

is only a broad category label. In practice, JAEX fur-

ther distinguishes different external resource types by

marking them accordingly.

• HYBRID: This refers to variables generated during exe-

cution through concolic operations on any of the above

three types of variables.

As for Allocation, different Source Types have distinct

methods for marking Allocation. We will now describe

them in detail:

• WEB_ENTRY’s Allocation: This identification is done

using the methodSignature/paramIndex.[field],

where the field is optional.

• INPUT_GLOBAL’s Allocation: This identification is

done using methodSignature/KeyName, where the

method signature refers to the method used to retrieve

the parameter value, and KeyName refers to the parame-

ter’s key. For example, getParameter(‘a’) would be

recorded as getParameter/a.

• EXTERNAL’s Allocation: This identification is done

using className.methodName#LineNumber, which es-

sentially records the invocation context of APIs.

• HYBRID’s Allocation: This is directly represented by

the set of sources from which the variable originates,

[SOURCE1,...]

Table 4: Overall Summary of JAEX’s Modeling of different frameworks and libraries

Framework/Lib Category Entry Points
Cross-thread Dataflow APIs

Asyn. Communications Database Operation File Operation

Spring Web Framework
@Controller, etc.

XML Configuration

@Async, etc.

Spring Event
Spring Data JPA

FileCopyUtils APIs

FileSystemUtils APIs

Struts2 Web Framework
XWorks2 APIs

XML Configuraion
- - -

Servlet J2EE APIs

@WebServlet, etc.

Methods(e.g., doGet)

HttpServletRequest APIs

@WebServlet, etc. - -

JAX RS/WS J2EE APIs @POST, etc. AsyncHandler, etc. - -

MyBatis ORM Framework - -

SqlSession APIs

BaseMapper APIs

XML Configuration

-

Hibernate ORM Framework - - Session APIs -

JDBC J2SE APIs - - Statement APIs -

JDK Native Libs Methods(e.g., Thread.run) - - FileInputStream APIs, etc.

Third Party Libs -
RxJava

Message Queue Libs

Hutool-db

Apache commons-dbutils

Hutool-core

Google Guava I/O

Apache commons-fileupload

	Introduction
	Overview
	A Motivating Example
	Challenges and Solution Overview
	Threat Model

	Approach
	System Architecture
	Phase 1: Initialization for Vulnerability Detection
	Phase 2: Vulnerability Detection and Attack Request Sequence Identification
	Phase 3: Vulnerability Path Validation via Concolic Execution
	Phase 4: COMG-aided Concrete Exploit Generation

	Evaluation
	RQ1: Comparation with Baselines
	RQ2: Exploiting Real-world apps
	RQ3: Runtime Overhead

	Discussions and Limitations
	Related Work
	Conclusion
	JAEX's modeling specifically for Java Web applications
	Source Element in Concolic Variable

