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Abstract—Due to the nature of directly interacting with user
inputs, PHP applications are susceptible to taint-style vulner-
abilities. To detect such vulnerabilities, Static Code Analysis
Tools (SCATs) are widely used for their broad code coverage
and scalability. Modeling language features (i.e., to represent
and simulate the behavior of program codes) is the keystone
of SCATs’ vulnerability detection capabilities. Meanwhile, being
an actively maintained language, the PHP community introduces
several new language features almost every year, rendering
many unmodeled features. Though efforts have been made
to reduce the number of unmodeled features, e.g., proposing
new modeling methods, the impact of the introduction of new
PHP features on SCAT during the language evolution is not
well-conscious and systematically assessed. To fill the gap, this
paper performs a systematic study of new language features
and their impact on the ability of SCATs to detect taint-style
vulnerabilities in PHP codes. To be specific, we identify 25 widely-
used new language features that potentially compromise SCATs’
vulnerability detection capabilities. Besides, we assess the impact
of these new features on five open-source SCATs and show that
the vulnerability detection ability is significantly compromised,
with each SCAT affected by 10 features on average. To mitigate
the impact, we conduct a theoretical analysis to diagnose the
underlying reasons and propose several effective adaptation
strategies. Finally, we provide key insights and implications for
various stakeholders in static code analysis, emphasizing the need
for them to recognize and proactively address the potential effects
of language evolution.

Index Terms—PHP Language Feature, Static Code Analysis,
Web Security, Vulnerability Detection

I. INTRODUCTION

PHP is the dominant server-side programming language in
Web development, with a market share of 77.4% [1], powering
millions of websites worldwide. Given that PHP applications
directly interact with user requests, they are susceptible to
taint-style vulnerabilities—a class of vulnerabilities manifest-
ing when user-supplied data are used for critical operations
(e.g., command execution) without adequate sanitization [2],
[3]. Taint-style vulnerabilities include command injection,
SQL injection, path traversal, and other widespread types of
high-risk vulnerabilities [4], [5] that pose serious risks to web
applications, ranging from unauthorized data access to data to
potential compromise of the entire system. To detect taint-style
vulnerabilities, static code analysis is widely used to secure the
PHP code [6]–[8]. Unlike dynamic analysis, which requires
code execution, static code analysis examines the entire source
code at a static level, ensuring comprehensive code coverage
and efficient handling of large codebases.

To develop a practical Static Code Analysis Tool (SCAT),
modeling language features (i.e., understanding and simulating
the semantics of programming codes) is crucial [9]–[11].
Meanwhile, as an actively maintained language, PHP has been
updated every year and introduces several new features in each
new version with the aim to enhance the language capability
or optimize the programming experience (e.g., the built-in
iterable type in PHP 7.1). In particular, from 2016 to 2022,
the PHP community released seven new versions, introducing
more than 70 new features. Unfortunately, the existing SCATs
might not model these new language features, thus undermin-
ing their effectiveness. For example, in 2021, five CVEs are
discovered in Symfony (the most popular PHP application
framework [12], [13]). When analyzing these vulnerabilities
using PHPJoern (a popular open-source SCAT for PHP), it
fails to detect two out of the five CVEs [14], [15]. This
oversight is attributed to the PHPJoern’s lack of support for a
specific language feature introduced in PHP 7.1, namely Keys
in list(), which is present in the vulnerable code [16], [17].
Moreover, this feature prevents the exposure of vulnerabilities
not only in Symfony but also in the downstream projects of
Symfony, such as Laravel [18], Drupal [19], Joomla [20],
etc, dramatically increasing the security risk to end-users. In
conclusion, the new language features introduced during the
PHP evolution may have severe impacts on the ability of
SCATs in vulnerability detection.

However, the impact of new language features on the ability
of SCATs to detect taint-style vulnerabilities has not yet been
well-conscious and quantitatively assessed. Existing works
primarily concentrate on two aspects. First, they investigate
methods to precisely model challenging features in SCATs,
aiming to improve their accuracy and effectiveness [9], [10].
Second, researchers identify the most frequently used PHP fea-
tures to guide prioritization in static analysis modeling [21]–
[23]. However, these works overlook the real impact of PHP
feature evolution on SCATs. Besides, they mainly focus on
old PHP features (i.e., features before PHP 7.0). Consequently,
the impact of newer language features on SCATs’ capabilities
remains inadequately understood and quantitatively assessed.
This lack of comprehensive analysis of recent PHP features
potentially limits the effectiveness of current static analysis
approaches in addressing modern PHP codebases.

To fill the gap, this paper performs a systematic study of new
language features and their impact on the ability of SCATs to
detect taint-style vulnerabilities in PHP codes. Specifically, our
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study makes the following contributions by addressing three
research questions:
• RQ1 Landscape: What are the new language features that

potentially affect vulnerability detection, and how prevalent
are they in real-world PHP projects? We identify 25 new
language features by thoroughly examining the official docu-
mentation of PHP 7.1∼8.0. In addition, we show that these
new language features are widely used in real-world PHP
projects, present in 72.43% of the top 1,000 PHP projects.
This result justifies the necessity of further research on the
impact of the new features.
• RQ2 Impact: How new language features impact the

ability of SCATs to detect taint-style vulnerabilities? We
evaluate five open-source SCATs using a self-constructed test
suite. Our test suit can effectively isolate the influence of
new language features from other factors that may affect
vulnerability detection. As a result, we can precisely identify
how new features affect each SCAT’s performance through
the test suite. Our findings reveal that the ability of all tested
SCATs is significantly compromised by the new features, with
an average of 10 unsupported features per SCAT. These results
underscore the critical importance of actively adapting SCATs
to accommodate new language features, as failure to do so
may result in overlooking severe vulnerabilities.
• RQ3 Adaptation: Why do SCATs fail and how to adapt

them to new language features? We first conduct a theoret-
ical analysis of SCATs to locate the internal steps that fail
due to new language features. Based on this analysis, we
propose solutions and apply them to enhance an open-source
SCAT, PHPJoern. The enhanced tool is then evaluated using
our test suite. Results indicate that the enhanced PHPJoern
successfully detects vulnerabilities in codes incorporating new
language features, thus validating the effectiveness of the
proposed solutions. This approach provides valuable insights
and a practical reference for developers seeking to adapt their
SCATs to new language features.

Finally, we summarize the experimental insights and broad
implications for various stakeholders in this field. For SCAT
developers, our study prompts them to implement measures
that mitigate the potential negative impacts of new language
features. For SCAT users, the findings emphasize the impor-
tance of considering whether a particular SCAT supports the
language features present in the code under analysis when
selecting a tool. For researchers, our study highlights the
potential effects of language evolution, encouraging further
investigation into this area. For the security community, it
motivates the need for shared static analysis libraries, which
significantly facilitate adaptation to new language features.

II. LANDSCAPE (RQ1)

This section defines the scope of new PHP language features
studied in this paper and validates their significance through an
analysis of their adoption rates in real-world PHP projects. In
particular, we set to address the following two sub-questions:
• RQ1.1: What new language features may affect taint-style

vulnerability detection in recent PHP releases?

• RQ1.2: How often are they used in real-world PHP projects?

A. Targeted Feature Selection (RQ 1.1)

Criteria. SCATs rely on converting source code into an
intermediate representation, such as an Abstract Syntax Tree
(AST), to facilitate vulnerability detection. This process is fun-
damental to a SCAT’s ability to comprehend and analyze code
effectively. Consequently, this study focuses on new language
features that potentially impede a SCAT’s code comprehension
capabilities. Specifically, we identify two categories of such
features: those introducing new tokens and those introducing
new syntax. Tokens are basic units of a programming lan-
guage, including keywords and symbols, while syntax refers
to the rules that govern how these tokens can be combined
to form valid code. New tokens or syntax can challenge
SCATs’ parsing mechanisms, potentially affecting their ability
to accurately analyze code for vulnerabilities.
Method. The identification of such language features involves
a two-step process. We first determine whether a new feature
introduces a new token by generating AST for code snippets
incorporating the features and examining the resulting AST
nodes. We verify through documentation whether these node
types are specifically introduced to accommodate the feature
post its inception. The presence of such nodes indicates the
introduction of a new token. If no new token is identified, we
then proceed to assess whether a new feature introduces a new
syntax. This is done by attempting to compile feature-present
code snippets using a PHP compiler that predates the feature’s
introduction. A syntax error during this compilation process
signifies the presence of new syntax.
Results. Our analysis covers all core features of PHP 7.1,
7.2, 7.3, 7.4, and 8.0. The non-core features are developed by
third parties, and newer released features (i.e., features from
PHP 8.1 or 8.2) may have yet to gain widespread adoption, so
we don’t take them in this study. The AST generation tool is
PHP-AST [24]. Consequently, we analyze a total of 60 new
language features, and 25 out of them are identified as the
targeted features for our study. The brief of targeted features
is displayed in Table VIII (in Appendix).

B. Feature Usage Analysis (RQ 1.2)

To investigate the usage frequency of features, we first
propose a method to detect the targeted features within PHP
code. Then, we apply the detection method on 816 popular
PHP projects and report our findings.
Feature Detection Method. To detect specific language fea-
tures in code, there are three primary approaches: string-based
matching, machine learning-based matching and AST-based
matching. String-based matching identifies distinctive string
patterns associated with a feature but often fails to capture all
possible variations, resulting in low recall. Machine learning-
based matching requires an extensive labeled dataset to learn
code patterns [25], which is challenging to construct and
maintain. In contrast, AST-based matching abstracts the code
into a tree structure and detects new features on the structural
representation [26]. It can identify novel syntactic constructs
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Fig. 1: Signature of Multi catch exception handling .

1 try {
2 $bar = foo();
3 } catch(ExceptionType1 | ExceptionType2 $e){
4 echo ("Something wrong")
5 }

Listing 1: Multi catch exception handling example.

that may not be easily recognized by string patterns or existing
machine learning models because it elides implementation de-
tails and captures the underlying code structure. Consequently,
the AST-based method is selected for feature detection.

The implementation of the AST-based method requires the
summarization of AST signatures, which are unique AST
structures associated with specific language features. For fea-
tures that introduce a new token, we use their introduced kind
of AST nodes as their signature, as described in RQ1.1 (see
§II-A). For features that introduce a new syntax, we first locate
the kind of AST node representing the code structure where
the new feature can be applied. Then, we investigate which
child-parent connections among AST nodes represent the new
syntax. Finally, we consider both nodes and their connections
as the signature. The summarized signatures are present in
Table VIII (in Appendix).

To detect a feature based on the summarized signature,
we first traverse an AST to locate the AST node of the
signature by comparing AST kind and flag. If the signature
comprises the AST structure, we then examine the ancestors,
descendants, or code lines of the node to check whether
they satisfy the AST structure. We take feature Multi catch
exception handling as an example to illustrate the process.
This feature enables the handling of multiple exception types
in a single catch block. A code example using this feature
is shown in Listing 1, and its AST is displayed in Figure 1
(we omit the AST of try block because it isn’t our focus)
where structure in yellow shadow is the signature of this
feature. When detecting the feature, we first locate the AST
node with kind value AST CATCH. Then, we search for the
AST NAME LIST node within the children of the identified
key node. Finally, we examine if the AST NAME LIST node
has multiple AST NAME nodes as children. If it is, the feature
is present. Otherwise, the feature is absent.

TABLE I: Size and Scale of Collected PHP Projects in Year.

Last Release # of Proj. # of PHP Files # of PHP Code Lines

2017 25 4,106 361k
2018 22 5,162 433k
2019 31 3,864 437k
2020 43 17,298 2,190k
2021 62 11,492 1,568k
2022 181 34,883 4,875k
2023 452 310,002 41,289k

Total 816 386,807 51,253k

TABLE II: Usage of New Features among Real-world Projects.

Language Features % of
Proj.

# of
Proj.

# of
Files

Void function 57.23% 467 51,214
Nullable type 49.75% 406 22,796
Class constant visibility 44.61% 364 14,085
Typed properties 31.25% 255 12,579
Symmetric array destructuring 30.51% 249 3,580
Arbitrary expression support
for new and instanceof 28.55% 233 1,772

Union type 24.51% 200 3,133
mixed type 21.08% 172 3,158
iterable pseudo-type 18.75% 153 2,170
object type 17.89% 146 1,419
Arrow functions 17.65% 144 2,110
Constructor property promotion 13.97% 114 5,031
Static return type 13.11% 107 759
Non-capturing catch 11.40% 93 864
match expression 10.66% 87 462
Named argument 10.17% 83 1,066
Nullsafe operator 9.44% 77 632
::class on objects 8.95% 73 456
Multi catch exception handling 8.82% 72 368
throw expression 7.48% 61 191
Unpacking inside arrays 6.00% 49 182
Support for keys in list() 0.74% 6 9
Class constant dereferencability 0.12% 1 1
All Features 72.43% 591 56,471

Feature Usage Investigation. We first collect a number of
real-world PHP projects. To be specific, we download the top
1,000 PHP projects from GitHub star ranking list [27]. For
each project, we retrieve its latest released (tagged) version
and record the corresponding release time. Then, we verify
these projects and remove some of them if they ❶ have no
released version; or ❷ have no PHP files (that are suffixed with
.php/.phar/.php5); or ❸ are released earlier than the release
time of PHP 7.1 (1st December 2016). Finally, our dataset
contains 816 projects. We organize these projects by release
year and provide their size and scale information in Table I.
Next, we employ our proposed method to detect new language
features among the collected projects. The process involves
transforming PHP code into ASTs using PHP-AST(90), and
searching the feature signatures based on these ASTs.

The results are presented in Table II, which show that 23
features are detected in 72.43% projects. Notably, 13 features
are found to be used by at least 100 projects, underscoring
their widespread acceptance. Void function emerges as partic-
ularly popular, utilized in 57.23% of the examined projects.
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Table 3
M1 M3
Nullable type Symmetric array destructing
Attribute Catching multiple exception types
Arrow function Non-capturing catch
Union type Array spread operator
Named argument Fetching a class by \texttt{\$object::class}
Nullsafe operator Keys in \texttt{list()}
Match expression Throw expression
M2 Class constant dereferencability

Iterable pseudo-type \texttt{new/instanceof} with arbitrary expressions

Object type Void return type
Constructor property promotion Static return type for class methods
Mixed type Class constant visibility
Null coalescing assignment operato Typed property in classes

List reference assignment

Fig2
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Fig. 2: Cumulative probability distribution of projects in terms
of new feature usage.
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Fig. 3: Trend of new language feature adoption by year.

Nonetheless, two features, namely Array Destructuring sup-
ports Reference Assignments and Null coalescing assignment
operator , are not detected in any project. This could be due
to the infrequent use of references in PHP and the availability
of alternative methods for achieving similar outcomes.

Figure 2 illustrates the cumulative probability distribution of
projects using new PHP language features, providing insights
into the feature usage across projects. The x-axis represents
the number of new features used in a project, while the y-axis
shows the cumulative percentage of projects. The data reveal
that more than half of projects, specifically 50.74%, use at least
three new features. Notably, 14.95% of projects employ ten
or more new features and 7.48% implement fifteen or more.
These statistics indicate that a significant portion of projects
actively integrates new features, with some demonstrating
extensive usage of these features.

Figure 3 illustrates the adoption trend of new PHP features,
which shows the percentage of projects using at least one new
feature within each year. It reveals a clear upward trend in
the adoption of new features, with the percentage rising from
8.00% in 2017 to 85.40% in 2023. The overall increasing trend
suggests that more recent PHP projects are increasingly likely
to incorporate new language features. This can be attributed
to the fact that new features are often more efficient and
performant than older features, and the more recent projects
are often developed using the latest version of PHP, which
allows for the utilization of new features.

Conclusion: Our analysis identifies 25 new language
features that potentially impact SCATs’ ability to detect
taint-style vulnerabilities. These features demonstrate sig-
nificant adoption among real-world PHP projects, with
a considerable number of projects incorporating multiple
new features simultaneously. Furthermore, our temporal
analysis reveals a clear upward trend in the adoption of
these features, with more recent projects showing a higher
likelihood of incorporating new language features.

III. IMPACT (RQ2)

In this section, we quantitatively assess to what extent the
new language features compromise the ability of SCATs to
detect taint-style vulnerabilities. Specifically, we propose an
assessment method (i.e., constructing a test suite) to test the
ability of five open-source SCATs and report our findings.

A. Assessment Method

To determine whether a feature would affect the ability of
SCATs, we can directly examine their source code. However,
it is labor-intensive and time-consuming. To address the limi-
tation, we propose an automated approach: carefully crafting
test cases that incorporate both a new language feature and a
taint-style vulnerability, and testing a SCAT on the cases to
evaluate the tool’s effectiveness in detecting the vulnerability
with the presence of new language feature.
Challenge. Constructing such a test suite is a nontrivial and
challenging task. The reason is that the SCAT analysis process
is complex and can be influenced by many factors, making it
difficult to isolate the specific impact of new language features
on vulnerability detection capabilities. For example, a SCAT’s
failure to detect a taint-style vulnerability may stem from
its inadequate modeling of sensitive functions rather than the
presence of a new language feature.
Idea. To isolate the influence of other factors, we follow
the principle of controlled experiments. Specifically, there are
two groups in the experiment, and they are identical except
that one receives a treatment while the other does not. The
group that receives the treatment in an experiment is called
the experimental group, while the group that does not receive
the treatment is called the control group. The control group
provides a baseline that lets us see if the treatment has an
effect. In our case, the treatment is the new feature. The exper-
iment group case is a vulnerable code snippet with the feature
present, while the control group case strictly follows the same
semantics but without the feature. Our initial hypothesis is that
if a feature affects a SCAT’s ability to detect vulnerabilities,
the SCAT is supposed to successfully detect a vulnerability in
the control group but fails in the experimental group.

However, factors influencing SCATs’ ability may exist in
both experimental and control groups, making a SCAT fail to
detect a vulnerability even in the control group and invalidating
our initial hypothesis. To address this issue, we implement
a strategy of code diversification, which involves creating
multiple code snippets using different syntactic structures
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Algorithm 1: Impact Assessment
Input : A SCAT t, targeted feature set {f}
Output: The unsupported features of t.

1 unsupported feature ← [] // to save the result
2 for f in {f} do
3 test pairs ← GetTestPairs(f)
4 for (ctrl case, exp case) in test pairs do
5 ctrl res ← Test(t, ctrl case) // without feature
6 exp res ← Test(t, exp case) // with feature
7 if ctrl res is detected and exp res isnot

detected then
8 unsupported feature.append(f )
9 break

10 end
11 end
12 end
13 return unsupported feature

or sensitive functions for each feature. By creating diverse
control-experimental test pairs for each feature, we enhance
the probability of identifying at least one pair where the SCAT
successfully detects the vulnerability in the control group.
Consequently, we refine our hypothesis: if a feature affects
a SCAT’s ability, there is at least one pair where the SCAT
successfully detects a vulnerability in the control group case
but fails in the experimental group case.

New Approach. Following the above ideas, our test suite aims
to evaluate the impact of 25 targeted new features on a SCAT’s
ability to detect taint-style vulnerabilities. The suite comprises
multiple test pairs for each feature, with each pair consisting
of two semantically equivalent pieces of vulnerable PHP code.
One code piece is written with a targeted feature, annotated as
an “experimental case”, while the other, lacking the feature,
is annotated as a “control case”.

The testing procedure is presented in Algorithm 1. Firstly,
we retrieve all test pairs related to a given feature. Then,
we subject a SCAT to cases in each pair and record their
vulnerability detection results (lines 4-6). Finally, we compare
the results of each pair to conclude (lines 7-9). According to
our hypothesis, if there is a pair where the SCAT successfully
detects a vulnerability in its control group case but fails in the
experimental group case, we consider the feature affects the
SCAT’s ability to detect vulnerability and mark the feature as
“unsupported feature”.

The other three possible results of a test pair indicate neither
definitively “support” nor the “unsupport” of a new feature.
To be specific, the results include: (1) The tool identifies
vulnerabilities in the experimental group but fails in the control
group. This indicates potential mistakes with our test cases,
and we have eliminated them; (2) The tool fails to detect
vulnerabilities in both cases. It indicates that certain factors
existing in both control and experimental cases prevent the
SCAT from detecting vulnerabilities, so we cannot draw any

1 $user_data=$_GET['UserData']; // get data
2 $tainted=fn()=>$user_data; // assign
3 echo $tainted(); //apply

1 $user_data=$_GET['UserData']; // get data
2 $tainted=function(){ // assign
3 return $user_data; 
4 }
5 echo $tainted(); // apply

(a) Test case in the experimental group.

1 $user_data=$_GET['UserData']; // get data
2 $tainted=fn()=>$user_data; // assign
3 echo $tainted(); //apply

1 $user_data=$_GET['UserData']; // get data
2 $tainted=function(){ // assign
3 return $user_data; 
4 }
5 echo $tainted(); // apply

(b) Test case in the control group.

Listing 2: A test pair of Arrow functions .

conclusion about the new feature; (3) The tool successfully
identifies vulnerabilities in both cases. However, this does not
necessarily imply that the SCAT supports the new feature,
as it may bypass the analysis of the new feature to detect
the vulnerability. For example, Void function adds a data type
keyword, which allows the SCAT to overlook the data type and
directly analyze and identify the tainted flow of a vulnerability.
Implementation. To implement our idea, we first design a
code template for both experimental and control group cases.
The template consists of three essential components necessary
to trigger a taint-style vulnerability: user data retrieval, data as-
signment, and sensitive function employment. To illustrate, we
present a test pair that applies the template for feature Arrow
functions in Listing 2. In the experimental case (Listing 2a),
user data are obtained through $ GET method, subsequently
assigned to the variable $tainted through Arrow functions
(fn()=>), and finally applied to the sensitive function echo.
The control group case (Listing 2b) maintains an identical
structure, with the key difference lying in the data assignment
process where the new feature is substituted with equivalent
code that performs the same function.

Secondly, we determine the code structures and sensitive
functions to diversify the test pairs for each feature and
enhance the comprehensiveness of our assessment. In terms
of the three components in a test case, we only use $ GET
for user data retrieval because we assume that this PHP fun-
damental function to access user requests should be supported
by most SCATs and it is not necessary to diverse. For data as-
signment, it involves the implementation of the new feature so
we diverse this part by encompassing various implementation
methods. For example, features with multiple implementation
possibilities, such as Arbitrary expression support for new and
instanceof which can use either new or instanceof, are
represented by separate test pairs for each implementation
method. This approach results in a total of 38 implementations
for the 25 features. For sensitive function employment, we
design to include a broad spectrum of common sensitive
functions. In particular, we select 29 functions associated with
7 prevalent taint-style vulnerabilities for our test cases. We
list the detailed information of the 38 implementations in
Appendix and 29 sensitive functions in Table III.

Based on our design, we manually compose for ❶ 1 user
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TABLE III: Sensitive Functions.

Vulnerability # of Funcs. Funcs.

Directory traversal 5 fopen, dir, dirname, opendir, scandir

Command injection 7 exec, passthru, system, proc open,
pcntl exec, shell exec, popen

Cross site scripting 3 echo, print, print r

SQL injection 6
query, pg query, mysql query,
mysqli query, pg send query,
mysqli real query

Code injection 1 eval

Arbitrary file inclusion 4 include, include once, require,
require once

Arbitrary file reading 3 readfile, file, file get contents

TABLE IV: Results of Impact Assessment.

Features Progp. RIPS PHPJ. WAP phpS.

Named argument × × × × ×
Nullsafe operator × × × × -
Support for keys in list() - × × × ×
Class constant dereferencability × - × × ×
Arrow functions × - × × ×
Null coalescing
assignment operators × - × × ×
Constructor property promotion × - × - -
Symmetric array destructuring - × × - -
match expression × - × - -
Class constant visibility - - × × -
Typed properties - - × × -
throw expression × - × - -
Nullable type - - × × -
Array Destructuring supports
Reference Assignments - - × × -

Union type - - × × -
Unpacking inside arrays - - × - -
Static return type - - × - -
Non-capturing catch - - × - -
Multi catch exception handling - - × - -
Arbitrary expression support
for new and instanceof - - × - -

Void function - - - × -
::class on objects - - - × -
iterable pseudo-type - - - - -
object type - - - - -
mixed type - - - - -

# of Unsupported Features 8/25 4/25 20/25 13/25 5/25
# of Unsupported

7 Widely-Adopted Features 0/7 1/7 6/7 5/7 0/7

×: the feature is not supported by the SCAT.
The top 7 widely-adopted features are in bold.

data retrieval code snippet; ❷ 38 feature-present data as-
signment snippets and corresponding 38 feature-absent equal-
semantics snippets; ❸ 29 sensitive function employment snip-
pets. Next, we automatically assemble the user data retrieval
snippet, a data assignment snippet pair, and a sensitive function
employment snippet in turn to generate test pairs. In the end,
we generate 1102 (1 × 38 × 29) test pairs for the test suite.

B. Assessment Results and Analysis

We test the impact of new features on five SCATs using our
test suite and set to answer the following questions:
• RQ2.1: What is the overall impact of the new features on

the SCATs?

• RQ2.2: How about the impact of the seven most widely
adopted features on the SCATs?

• RQ2.3: How are the unsupported features distributed across
PHP versions?

• RQ2.4: What features have the most impact?
• RQ2.5: Is newer released SCAT less impacted by new

language features?
SCAT Selection. We use keywords like “PHP code analysis”
to search for related papers and open-source tools. We then
examine their title, abstracts, or documents to assess whether
they aim to develop or release a code analysis tool. For related
papers, we iteratively evaluate relevance of the citations and
references of them, repeating this process until no new relevant
works are identified. As a result, we get 17 PHP code analysis
tools as the initial list.

We select SCATs that are ❶ designed for detecting taint-
style vulnerabilities in PHP. For example, LChecker [28] and
PHPstan [29] are excluded as they are intended for tricky bugs,
not vulnerabilities. ❷ employing the static analysis technique.
The detection tools rely on deep learning techniques like
DeepTective [30] are omitted; ❸ open-source and recently
released (i.e., after 2015). Finally, the latest version and release
time of selected SCATs are:

1) Progpilot (v1.0.2, January 2023 [31]);
2) RIPS [10], [11] (v0.55, June 2017 [32]);
3) PHPJoern [33] (April 2017 [34]);
4) WAP [35], [36] (v2.1, November 2015 [37]);
5) phpSAFE [38] (April 2015 [39]).
Note that the open-source version of PHPJoern lacks the

implementation of vulnerability detection. Hence, we imple-
ment the detection function by ourselves as described in their
paper [33]. Our experiments, as reported in §IV, demonstrate
the correctness of our implementation. The running environ-
ment of Progpilot, RIPS, phpSAFE, and PHPJoern is PHP 8.0,
and that of WAP is JDK 1.8.
RQ2.1. The results are displayed in Table IV. It shows that
the selected SCATs’ ability to detect taint-style vulnerabilities
is significantly impacted by the new features. Every SCAT
has new features that it does not support, with 10 unsup-
ported features on average for each. In addition, the extent
to which SCATs are affected differs. RIPS exhibits minimal
susceptibility to targeted language features, affected by only
four, whereas phpSAFE and Progpilot follow, being affected
by five and eight features, respectively. In contrast, WAP and
PHPJoern are the most vulnerable, impacted by 13 and 20
features, respectively.
RQ2.2. We further count the results of the most popular seven
features (based on Table II). As shown in the last line of
Table IV, the capability of the five SCATs to handle the top
7 new features differs greatly. Progpilot and phpSAFE are not
impacted by the top 7 features, while WAP and PHPJoern have
6 and 5 unsupported features, respectively. In addition, SCAT’s
support for these 7 popular new features is generally better and
receives less impact than the other 18 features. This may be
partly because developers carefully handle popular features.
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TABLE V: Distribution of Unsupported Features in PHP
Release Versions.

Release Progp. RIPS PHPJ. WAP phpS. Total∗

7.1 0 2 5 4 1 6
7.2 0 0 0 0 0 0
7.3 0 0 1 1 0 1
7.4 2 0 4 3 2 4
8.0 6 2 10 5 2 11

* It means the total number of distinct unsupported features among
all SCATs in the PHP release version.

Another reason may be that these popular features have less
impact on flow analysis, thus less impacts.
RQ2.3. We count the distribution of versions for unsupported
features. As shown in Table V, almost every release intro-
duces new features that impact SCAT’s vulnerability detection
capabilities. This corroborates the prevalence of introducing
unsupported features during language evolution.
RQ2.4. We further analyze the semantics of the unsupported
features. We find that the features that have a greater impact
on control flow or data flow have a greater impact on SCAT.
Take the two features that affect all five SCATs as an example.
Named argument introduces a new way of passing parameters,
and Nullsafe operator introduces a new operator variable
assignment. Both of them are related to data flow, which is
important for taint-style vulnerability detection.
RQ2.5. In Table IV, we arranged the SCATs by release time
from newest to oldest, which shows that the more recently
released software does not exhibit significantly improved com-
patibility with the features. Therefore, we can infer that even
the latest SCAT tools may not pay enough attention to recently
introduced new features.

Conclusion: SCATs’ vulnerability detection ability is
heavily affected by the introduction of new features, es-
pecially by the features related to data or control flow.
Moreover, almost every PHP version introduces unsup-
ported features. This challenge persists over time, showing
no signs of abatement.

IV. ADAPTATION (RQ3)
In this section, we analyze the root cause of SCATs not

supporting new features and explore the adaptation strategies.
In particular, we set out to answer the following sub-questions:
• RQ3.1: Why do SCATs fail to detect vulnerabilities? What

are the internal steps that lead to the failures?
• RQ3.2: What strategies could be taken to adapt SCATs to

the new features?
• RQ3.3: How do the proposed strategies work in practice?

A. Theoretical Analysis (RQ 3.1)

SCAT Breakdown. The typical process of analyzing vulnera-
bilities by a SCAT is shown in Figure 4. We introduce its four
main components in the following.

1) Code Parsing: SCAT first parses source code into Inter-
mediate Representation (IR), a crucial step that creates a more

Code Parsing

Vulnerability

Discovery

Control Flow

Analysis

Data Flow

Analysis

PHP Codes

Vulnerabilities

SCAT

IR

Fig. 4: Typical SCAT Analysis Procedure.

manageable and analyzable form of the code to aid further flow
analysis. Most SCATs adopt the AST as their IR format, as it
accurately captures the abstract syntactic composition of the
source code, preserving its logical structure while abstracting
away syntactic details.

2) Control Flow Analysis: SCAT performs control flow
analysis to model the execution path of programs. On the
one hand, SCAT analyzes the control structures inside of
a function, such as loop statements, to model the intra-
procedural control flow. On the other hand, SCAT analyzes
the function call statements and call targets to model the inter-
procedural control flow.

3) Data Flow Analysis: SCAT further performs data flow
analysis along the control flow path to comprehensively eval-
uate program behavior. It traces data usage by examining
assignments, function calls, and other data-manipulating oper-
ations. This process enables SCAT to track how variables are
defined and utilized throughout program execution.

4) Vulnerabilities Discovery: SCAT leverages the results
of control flow and data flow analyses to detect taint-style
vulnerabilities. In particular, it employs specialized algorithms
to identify anomalous data flows that may indicate security
weaknesses. These algorithms trace the propagation of un-
trusted user input (tainted data) through the analyzed flows.
SCAT flags a potential vulnerability when it discovers a path
allowing tainted data to reach a sensitive operation or function
without proper validation or sanitization.

Diagnosis of Failures. The introduction of new features
generates three distinct issues involving three of the above
components, elaborated below:

1) Incomplete Code Parsing: The introduction of new
language features in code typically involves either new to-
kens or new syntax, which can significantly impact the code
parsing process of static analysis tools. When new tokens are
introduced, the parser may fail to recognize these previously
undefined lexemes, potentially misclassifying them or gener-
ating errors during tokenization. Similarly, the incorporation
of new syntax can challenge the parser’s ability to construct a
valid parse tree, as these syntactic structures may not conform
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TABLE VI: Results of Diagnosis.

Failed Step Causes Involved Language Features

Code Parsing New token or syntax All features

Control Flow
Analysis

New function definition Arrow functions

New function utilization

Arrow functions , Nullsafe oper-
ator , Arbitrary expression sup-
port for new and instanceof ,
Class constant dereferencability

Data Flow
Analysis

New data definition
Symmetric array destructuring ,
Support for keys in list() ,
Constructor property promotion

New data utilization
Unpacking inside arrays , match
expression , Constructor property
promotion , Nullsafe operator

to the existing grammar rules. Consequently, the IR generated
by the parser becomes incomplete or inaccurate.

2) Missing Control Flow: Some new features introduce new
methods of function definition and invocation. For example,
feature Arrow functions introduces an alternative method
of defining an anonymous function. Consequently, existing
SCATs may fail to correctly identify the new execution paths,
resulting in incomplete or inaccurate control flow graphs.

3) Missing Data Flow: Some new features introduce new
methods of data definition and utilization. Symmetric array
destructuring introduces a new method for using data in
list(). Consequently, existing SCATs, which typically rely
on predefined data flow models, may fail to capture these nu-
anced data interactions introduced by new language features.
This limitation can lead to incomplete or inaccurate data flow
graphs, potentially causing the tools to overlook critical data
propagation paths.

In the end, based on the preceding analysis, we present the
diagnosis of each language feature in Table VI. It indicates
that all features introduce either new tokens or syntax, thus
affecting the code-parsing phase. Furthermore, four features
affect control flow analysis as they introducing new methods
of function definition or utilization. Moreover, seven features
are found to impact data flow analysis through the introduction
of new data definitions or utilization mechanisms.

B. Adaptation Strategy (RQ 3.2)

To mitigate the aforementioned issues, we develop the
following adaptation strategies:
Enhancing Code Parsing. To fix a parser, it typically in-
volves: adding new IR elements, such as AST nodes, for newly
introduced tokens; adjusting the parsing logic to recognize and
process the new syntax; and conducting comprehensive testing
to ensure the correct handling of new features. However, this
process is time-intensive and prone to errors. As an alternative,
we can utilize and maintain an up-to-date version of an
existing code parser. This approach allows us to circumvent
the substantial costs of developing a parser while ensuring the
accuracy of the generated IR.
Improving Control/Data Flow Analysis. We first extend
the SCAT to recognize the new elements introduced by new
features to the IR, such as the new types of AST nodes, as

the flow analysis relies on the IR structure. Next, the control
flow analysis algorithms are updated. It involves a systematic
examination of how the new language feature affects program
execution and updating the control flow generation process
accordingly. Likewise, the data flow analysis is adjusted by
comprehending how the new features affect data propagation,
including newly introduced methods of data definition, utiliza-
tion, etc. Throughout this entire process, new edges and nodes
may be incorporated to accurately represent the control or data
flow of the new features.

C. Adaptation Practice and Evaluation (RQ 3.3)

To further validate the effectiveness of our proposed adap-
tation strategies, we apply them to enhance PHPJoern as a
representative case study. This choice is motivated by PH-
PJoern’s popularity as an analysis platform for PHP [40]–
[42], and its exhibition of the highest number of unsupported
features during our impact assessment (see Table IV). Then,
we evaluate the enhanced PHPJoern from three aspects to
demonstrate the effectiveness of our proposed strategies.
PHPJoern Enhancement. Firstly, we upgrade the third-party
parser. PHPJoern uses PHP-AST, as its parser but its version
is outdated and deprecated. Hence, we upgrade it to the latest
version capable of handling features before PHP 8.0. Sec-
ondly, we extend PHPJoern to recognize the new AST nodes
and structures introduced by the new features. This involves
updating the AST node definitions in PHPJoern’s codebase,
potentially creating new classes or extending existing ones, and
implementing appropriate visitor methods for these new node
types to ensure proper traversal. Finally, the control flow and
data flow analyzers are updated. For control flow analysis, we
locate the function definitions and usage introduced by the new
features, analyze the involved function call relationships, and
then add the missing inter-process control flow edges. For data
flow analysis, we model the new data propagation methods,
i.e., data definition and utilization, and modify propagation
rules to account for novel data passing mechanisms introduced
by the new language features.
Evaluation. We implement the enhanced PHPJoern and eval-
uate it by comparing it with the original PHPJoern from
three distinct aspects: code parsing capability, proficiency in
control and data flow analysis, and the impact of new language
features on vulnerability detection.

1) Code Parsing Capability. We evaluate it by comparing
the number of successfully parsed PHP files. To be specific, we
select 10 applications with the most used features based on the
results of feature usage in §II-B (RQ1). Then, we subject their
PHP files to the original and enhanced PHPJoern respectively.
The tool would report an error for a file if it encounters a
code structure that can’t be handled. Therefore, we take the
file without reporting an error as a successful parsing file
and calculate the total number. As presented in Table VII,
the results indicate that the enhanced PHPJoern significantly
increases the parsing success rate, parsing more than 95%
files for 7 out of 10 applications. Upon closer inspection, we
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TABLE VII: Results of Comparison Between the Original and Enhanced PHPJoern.

Applications File Parsing Success
Rate (Original−→Enhanced)

Increased
Parsed Files

Increased
CPG Nodes

Increased
CPG Edges

EasyAdminBundle 60.22%−→100% 181 119,399 20,266
Laravel Framework 80.91%−→99.67% 290 419,592 76,715
ORM 59.66%−→100% 119 86,940 14,954
Symfony 69.70%−→97.73% 1,807 1,129,774 235,081
Spiral Framework 59.29%−→80.50% 370 127,480 21,228
API Platform Core 59.92%−→79.27% 197 143,228 24,968
PIM Community Dev 70.43%−→97.27% 3,449 1,642,119 283,064
Phpactor 62.41%−→99.97% 1,173 513,036 94,923
OroPlatform 77.28%−→99.99% 4,343 3,303,346 64,1256
TYPO3 69.04%−→88.04% 902 982,988 263,955

find that the failure of the parsing is primarily due to some
deprecated language features that are not supported.

2) Proficiency in Control and Data Flow Analysis. PHPJo-
ern generates Code Property Graphs (CPGs) based on the IR
after code parsing, which incorporates both data and control
flow. Therefore, our evaluation focuses on the completeness of
the generated CPG. To be specific, we compare the number
of CPG nodes and edges produced by the enhanced PHPJo-
ern against the original version. As presented in the final
two columns of Table VII, the enhanced PHPJoern greatly
increases the number of CPG nodes and edges, yielding at
least 10,000 increments to each project. These results indicate
a significant improvement in the completeness of the generated
CPGs, validating the effectiveness of the enhancements made
to PHPJoern.

3) Impact of New Language Features. To assess the impact,
we test the ability of the enhanced PHPJoern in detecting
vulnerabilities with the presence of new language features.
Specifically, we reuse the test suite constructed in §III-B
(RQ2) and follow the identical steps. The results reveal a
significant improvement: the enhanced PHPJoern gets zero
unsupported features, in stark contrast to the original version
which failed to support 20 features. This demonstrates the
efficacy of our proposed adaptation strategies in enabling
SCATs to accommodate new language features.

Conclusion: New language features affect source code
parsing and control/data flow analysis during vulnerability
detection. To mitigate the issue, we propose adaptation
strategies to upgrade code parsers and correct inaccura-
cies of control and data flow. We then implement these
strategies to enhance PHPJoern. Our evaluation results
indicate that the enhanced PHPJoern outperforms its orig-
inal version in terms of handling new features. This
demonstrates the effectiveness of our strategies, suggesting
their potential applicability in adapting SCATs to evolving
programming languages.

V. IMPLICATIONS

This section synthesizes the experimental findings and elu-
cidates their broad implications for key stakeholders in the
field, including SCAT developers, users, researchers, and the
broader security community. These insights aim to inform and

guide future developments and applications in the domain of
static code analysis and vulnerability detection.

• To SCAT Developers. Our research reveals that program-
ming language evolution can significantly affect the ability
of SCATs to detect vulnerabilities. Therefore, it is required
for SCAT developers to adapt their tools to new language
features in time. To reduce the adaptation cost, we sug-
gest the developers use an actively maintained third-party
parser instead of developing one themselves. This approach
allows for efficient updates to support new language features
without laborious custom development. Moreover, SCAT
developers should pay more attention to the features that
affect control or data flow analysis, as these features are
more likely to compromise tool functionality and potentially
lead to overlooked critical vulnerabilities.

• To SCAT Users. Our work shows that the unsupported
features would greatly affect the ability of SCATs to detect
vulnerabilities. To mitigate these risks, users should conduct
comprehensive compatibility assessments before deploying
SCATs, ensuring that the chosen tool aligns with the specific
language features present in their codebase. To facilitate this
process, we suggest SCAT users to reuse our test suite. In
particular, we have provided detailed instructions on coding
the automated scripts for various SCATs and release the
source code at 10.6084/ m9.f igshare.25584585, ensuring
a streamlined and efficient approach for different testing
scenarios. Moreover, our test suite is applicable to most PHP
features. To include a new PHP feature, it is just required
to prepare 2 new data assignment snippets (both feature-
present and -absent).

• To Researchers. This study highlights the need for re-
searchers to understand and address the challenges of SCATs
posed by the continuous evolution of programming lan-
guages. Our research primarily focuses on features that
explicitly introduce new tokens or syntax; however, it ac-
knowledges that the impact of language evolution extends
beyond this scope. The findings suggest a broader research
agenda for advancing static code analysis. Future inves-
tigations could explore additional language features, such
as examining how the introduction of new object-oriented
programming features affects SCAT performance.

• To Security Community. Our study demonstrates that new
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language features affect source code parsing and control/-
data flow analysis during vulnerability detection processes
in SCAT. Therefore, it motivates the development of a
shared library that abstracts control and data flow into an
intermediate form to mitigate the impact. The necessity for
such a library is further emphasized by its current absence
and the lack of awareness surrounding its potential benefits.
This gap is evidenced by the observation that the five SCATs
examined in this study employ four distinct code parsers.

VI. THREATS TO VALIDITY

Internal Threats. Due to the intricate nature of the SCAT
analysis process, SCAT’s effectiveness is susceptible to various
factors, which poses an internal threat to the validity of our
impact assessment results (RQ2). To mitigate the threats, we
employ diverse code structures, aiming to circumvent irrel-
evant factors and facilitate accurate impact assessment. Two
experienced PHP researchers collaborate to explore potential
code structures, including feature implementations and sink
functions, thereby enhancing variability. Despite the great care
taken by researchers, there is still the possibility of overlooking
certain cases, which cannot be completely avoided.
External Threats. The representativeness of the selected fea-
tures in our work may be a threat to external validity. To reduce
the threat, we adopt a multifaceted approach. Firstly, we select
features from five releases spanning five years, covering a
wide period. Secondly, we scrutinize all 70 features introduced
within the five releases. Thirdly, to ensure the accuracy of
selection for features that have potential impacts, in addition to
reading the documents, we parse many feature-present snippets
into ASTs to ascertain a full understanding of the changes
brought by a new feature. Furthermore, the impacts of selected
features involve three steps of the SCAT analysis procedure,
which is identical to the theoretical analysis in RQ3. This
indicates that our findings are representative and general to
the static vulnerability detectors of PHP.

VII. RELATED WORK

To address vulnerabilities in PHP codes, many efforts have
been put into developing practical SCATs. Our research does
not introduce new techniques for discovering vulnerabilities;
instead, it concentrates on the challenges faced by these tools.

On the one hand, PHP is a dynamically typed language,
making it challenging for both programmers and tools to
reason about programs, and researchers have conducted var-
ious investigations to explore which features deserve to be
modeled so that developers can focus on these features.
Hills et al. [21]–[23] undertake a series of investigations on
PHP language features, including frequently used features
and prevalent code patterns. They also point out that the
frequency has evolved with time and PHP programmers and
SCAT developers should be conscious of the evolution. On
the other hand, researchers recently found that coding style
can also affect the effectiveness of static analysis. Medeiros
and Neves [43] published the first work assessing the effect of
coding styles on the ability to detect vulnerabilities of SCATs

(i.e., RIPS, WAP, and phpSAFE). Their findings indicate that
a greater distance between the query source and the sink
would introduce more false negatives. Additionally, Kassar et
al. discovered that certain code patterns, with an average of
more than 21 patterns per PHP application, can significantly
hinder the effectiveness of SCATs in code analysis. Based
on these works, our study further emphasizes the need for
keeping pace with the programming language evolution by
proving that SCAT’s ability to detect taint-style vulnerability
is significantly compromised by introducing new features and
proposing valuable suggestions.

VIII. CONCLUSION

As PHP is a rapidly evolving language, existing SCATs
may fail to support new PHP features in time, which would
significantly undermine the ability of SCATs to detect taint-
style vulnerabilities. This paper conducts a systematic study of
new language features and their impact on the ability of SCATs
to detect taint-style vulnerabilities in PHP codes. Specifically,
we identify 25 new features that potentially compromise the
SCATs’ ability and prove their widely adoption in popular
PHP applications. Through the construction of a test suite
and evaluation of five open-source SCATs, we reveal that
these tools’ capabilities are significantly impaired by the
new features, with an average of 10 unsupported features
per SCAT. To mitigate the impact, we locate the root cause
and develop efficient adaptation strategies, suggesting that
developers should frequently model changes introduced by
new features, especially for features with new data/function
definitions or utilizations. Our study provides crucial insights
and implications for various stakeholders in static code analy-
sis, emphasizing the importance of recognizing and proactively
addressing the potential effects of language evolution.
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APPENDIX

Details of the targeted new features are presented in Ta-
ble VIII, including ❶ the basic information of each feature,
i.e., name, released version and a brief; ❷ the AST signatures
used in RQ1.2 (see §II-B), i.e., AST nodes and structures;
❸ the number of feature implementations used in RQ2 (see
§III-A) and we annotate how to implement in the footnotes.
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