
TrustedDomain Compromise Attack in App-in-app Ecosystems
Zhibo Zhang
Fudan University
Shanghai, China

zhibozhang19@fudan.edu.cn

Zhangyue Zhang
Fudan University
Shanghai, China

23210240095@m.fudan.edu.cn

Keke Lian
Fudan University
Shanghai, China

kklian20@fudan.edu.cn

Guangliang Yang
Fudan University
Shanghai, China

yanggl@fudan.edu.cn

Lei Zhang
Fudan University
Shanghai, China
zxl@fudan.edu.cn

Yuan Zhang
Fudan University
Shanghai, China

yuanxzhang@fudan.edu.cn

Min Yang
Fudan University
Shanghai, China

m_yang@fudan.edu.cn

ABSTRACT
Emerging app-in-app ecosystems (e.g., WeChat) provide a light-
weight and efficient WebView-based runtime for mini-apps, which
frequently load rich web content from remote servers and access
sensitive resources via APIs provided by the super-apps (a.k.a. the
app-in-app frameworks). Inspired by the content security policy
(CSP), super-apps enforce a domain-based allowlist to preventmini-
apps from loading untrusted and malicious web content.

In this paper, we observe that the domain-based allowlist mech-
anism is unreliable in app-in-app ecosystems because it assumes all
web pages under the allowlist domain are trusted. To demonstrate
such weakness, we propose a novel attack called TrustedDomain
Compromise (TDC) Attack, along with two interesting attack vec-
tors, through which attackers can manipulate unsafe domains or
URLs to bypass the allowlist check and launch phishing attack
or abuse runtime APIs. Thereafter, we conduct the first empirical
study on the TDCAttack in the real-world app-in-app ecosystems.
Specifically, we investigate the underlying reasons for the failure
of the allowlist mechanism and propose an automated analysis
framework for identifying TDCAttacks in real-world mini-apps.
Our experiment shows that popular app-in-app ecosystems includ-
ingWeChat, Alipay, and Baidu are all vulnerable to the TDCAttack.
Further, we have identified 26 exploitable real-world mini-apps.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
App-in-app; Code Injection Attack; Allowlist; Security Analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SaTS ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0258-7/23/11…$15.00
https://doi.org/10.1145/3605762.3624430

ACM Reference Format:
Zhibo Zhang, Zhangyue Zhang, Keke Lian, Guangliang Yang, Lei Zhang,
Yuan Zhang, and Min Yang. 2023. TrustedDomain Compromise Attack in
App-in-app Ecosystems. In Proceedings of the 2023 ACMWorkshop on Secure
and Trustworthy Superapps (SaTS ’23), November 26, 2023, Copenhagen, Den-
mark. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3605762.
3624430

1 INTRODUCTION
Recently, the app-in-app paradigm has gained significant popular-
ity. With its array of diverse mini-apps, it provides users access to
distinct features and functionalities without necessitating them to
exit the super-app. These mini-apps dynamically load remote web
content into a WebView-based mini-app runtime [5], possessing
the capability to access sensitive super-app user data and system re-
sources via the dedicated APIs provided by the super-apps. There-
fore, for the purpose of ensuring the security of the app-in-app
ecosystem, it is crucial to guarantee that the web content loaded
by the mini-app should be benign and trusted.

Inspired by the practical and effective web security policy, i.e.,
Content Security Policy (CSP) [3], the app-in-app ecosystem em-
ploys a domain-oriented allowlist mechanism against the loading
and injection of potentially harmful web content in mini-apps. To
enable the allowlist protection in a mini-app, its developers define
the allowlist of the web domains whose content is treated as se-
cure. In runtime, this allowlist is respected and enforced by the
corresponding super-app. In particular, when a mini-app accesses
a URL, the super-app intercepts the request of the URL and only
permits if it matches the allowlist. In this way, even if a remote at-
tacker targets on a mini-app through web and mobile attacks, e.g.,
content-injection or phishing deeplink [32], allowlist can prevent
malicious content from being loaded into the mini-app.

As discussed above, the allowlist security protection plays a vi-
tal role in safeguarding the security of mini-apps. However, it is
built on the unreliable assumption that all web pages under each
domain (denoted as domain assets) listed in the allowlist should be
benign and safe, which is increasingly proving to be insufficiently
reliable within today’s app-in-app ecosystem. In particular, mini-
app developers typically construct the domain allowlist based on

51

https://doi.org/10.1145/3605762.3624430
https://doi.org/10.1145/3605762.3624430
https://doi.org/10.1145/3605762.3624430

SaTS ’23, November 26, 2023, Copenhagen, Denmark Zhibo Zhang et al.

the URLs their mini-apps commonly access. The quantity and se-
curity of these domain assets are often inadequately ensured.

In light of these, we propose TrustedDomain Compromise Attack,
i.e., TDCAttack, in the app-in-app ecosystem and identify two dis-
tinct attack vectors: (i) allowlist domain abusing e.g., subdomain
takeover; and (ii) insecure domain assets, e.g., XSS and open redi-
rection. We demonstrate that even when the super-app rigorously
enforces the allowlist validation, mini-apps still suffer from TD-
CAttack. Attackers, by manipulating unsafe domains or domain
assets, can achieve (i) phishing attacks by loading pages within
the (protected) mini-app context, and (ii) even executing malicious
code. More severely, attackers can further abuse the runtime APIs
provided by the super-app, i.e., gaining the unauthorized access to
sensitive super-app data and system resources.
Our work. In this paper, we conduct the first attempt and present
an empirical study of the security of allowlist deployments across
different super-apps. Through this study, we aim to explore the
following research questions:
RQ1: What and how many domains are included in the allowlist of

a given mini-app?
RQ2: Which vulnerabilities can be exploited to launch TDCAttack

in various super-apps?
RQ3: How does TDCAttack affect real-world mini-apps?

A significant challenge in solving RQ1 is that the allowlist con-
figurations of mini-apps are often hardly retrieved. This is mainly
because the allowlist is typically stored in the super-app server (i.e.,
mini-app developers need to submit their allowlist to the super-
app for make it effective). The allowlist content is a black box for
us. One important insight is that the allowlist content can be re-
flected by the mini-app’s source code. Therefore, we propose a
static analysis-based approach against mini-app code to automati-
cally learn the corresponding allowlist content. Moreover, we find
that during allowlist matching, wildcard is frequently used. Thus,
we extend the obtained allowlist using automated subdomain dis-
covery techniques [4]. As a result, we vet the security of 11838
mini-app in total, including 4,446 mini-apps from WeChat, 3,946
from Alipay, 3,446 from Baidu. We successfully extract 81,978 al-
lowed domains.

To solve RQ2, we find there exist semantic gaps between vul-
nerable domain assets and practical TDCAttack. Specifically, not
all web vulnerabilities can be exploited to launch TDCAttack. This
is because TDCAttack targets the front-end users of mini-apps and
attackers are confined to launch attacks by manipulating links that
users click on. Moreover, super-apps may implement customized
defenses, resulting in the efficacy of a vulnerability varying across
different super-apps. To solve this problem,we investigate the threat
models of allowlist mechanism in the high-profile super-apps, i.e.,
WeChat, Alipay, and Baidu. We carefully analyze the top web vul-
nerabilities listed by OWASP [2], and check the vulnerabilities that
may be exploited for TDCAttack. Overall, we finally identify four
types of exploitable vulnerabilities for TDCAttack. AlthoughWeChat
and Aliapy enforce their customized defense mechanisms, they are
still vulnerable to TDCAttacks. Based on these findings, we further
analyze the extracted domain assets and find that 140 mini-apps
are potentially vulnerable to TDCAttack.

Super-app

Mini-app

Runtime APIs

Super-app
Server

System Resource

User data

Bridge

Web Server

WebView

④ Allowlist
Match

③ Parse and
load url

① deeplink

⑦ Access

⑤ Interaction
⑥ Load Content

Check
Point

② Convey
web url

Code

Figure 1: Overview of allowlist mechanism.

To solve RQ3, we verify whether the identified vulnerable do-
main assets can be successfully loaded by the corresponding mini-
apps. Specifically, we conduct a static cross-context data-flow anal-
ysis from the mini-app’s entry points (i.e., onLoad lifecycle func-
tions in JS files) from the URL loading operations (i.e., src assign-
ment in HTML files) to analyze the process of external input pars-
ing. Based on the analysis result, we automaticallywrap the vulner-
able URLs in a template-based testing triggered by the ‘adb’ com-
mand. The testing results are monitored by hooking relevant We-
bView callbacks. Finally, we verify 26 exploitable TDCAttack, and
deliver case studies to demonstrate their security impacts, includ-
ing phishing, privacy leakage, and privilege escalation.
Contributions. We sumarize our contributions below.
• We conduct the first security analysis of the allowlist mech-

anismwithin the app-in-app ecosystem and propose a novel
security issue of TDCAttack.
• To assess its security hazards in the real world, we design

and implement an automated analysis framework for iden-
tifying vulnerable mini-apps susceptible to TDCAttack.
• Through an evaluation encompassing 11,838 mini-apps, we

successfully identify 26 exploitable mini-apps and confirm
various security consequences, including phishing, privacy
leakage, and privilege escalation.

2 UNDERSTANDING TDCATTACK
In this section, we first give an overview of the allowlist mecha-
nism in the app-in-app ecosystem. Then we present the details of
TDCAttack, with two discovered attack vectors.

2.1 Overview of allowlist mechanism
By reverse engineering the allowlist mechanism implementation
in three most popular super-apps, including WeChat, Alipay, and
Baidu, we generalize their workflows as illustrated in Figure 1.

When the user clicks on a deeplink specifying the super-app pro-
tocol and a mini-app ID, the super-apps loads the mini-app from
its server into the WebView-based runtime. Furthermore, the web
URL can be conveyed to the mini-app in a key-value pair query
string, which will be parsed and loaded by the mini-app. Before

52

TrustedDomain Compromise Attack in App-in-app Ecosystems SaTS ’23, November 26, 2023, Copenhagen, Denmark

successfully loading the web content, the super-app performs a se-
curity check on the URL based on the domain allowlist configured
by the mini-app developer. Only URLs that match the allowlist are
permitted to load. Once loaded, the web content can invoke run-
time APIs provided by the super-app, which can access the user
data (e.g., saved user token, phone number) and system resources.

Furthermore, we categorize the allowlist mechanism into the
following two types based on the location of the allowlist security
checks:
• App-Side Check: This check is performed on the client-side

by super-app before a mini-app loading a web URL. Super-
app intercepts such loading request, and match target URL
with corresponding allowlist configuration. This configura-
tion is distributed dynamically from the super-app server.
• Server-Side Check: This check is performed on the super-

app server-side. In this way, the super-app sends the URL
to be loaded as a request parameter to its server and then
determines whether to allow loading based on the response.

2.2 Threat Model
In this section, we describe the threat model adopted in TDCAt-
tack. Specifically, the mini-apps are benign and can receive and
load external URLs. We consider the remote web attackers as the
TDC attackers. They aim to abuse critical functionalities or steal
sensitive data in themini-apps by exploiting vulnerabilities in their
trusted domain assets.The attackers have the capability to conduct
domain allowlist extraction and domain assets vulnerability scan-
ning on the target mini-app within their local environment. Then
they craft malicious URLs with attack payloads and send them to
the victim user. When the victim user clicks the URLs, they can
evade the allowlist checks and the embedded malicious code can
be successfully executed inside the target mini-app’s runtime.

2.3 TDCAttacks
The effectiveness of the allowlist mechanism depends on the secu-
rity and reliability of domain assets included in the allowlist. How-
ever, the security of these assets is determined by the website de-
velopers, beyond the control of mini-app developers. TDCAttack
exploits the design flaw created when mini-app developers incor-
rectly place their security trust in website developers. By inves-
tigating the top OWASP web vulnerabilities [2], we identified 4
types of vulnerabilities, as shown in Table 1, that can be used for
TDCAttack from two attack vectors as follows:
Atatck Vector #1: The allowlisted domains can be abused by
attackers. This vector consists of CWE-79 and CWE-601:
• Subdomain takeover: An attacker can gain control over a

subdomain that was previously associated with a legitimate
service but is no longer in use or properly configured. This
can happen if the subdomain’s DNS (Domain Name System)
record points to a service that has been deactivated, expired,
or moved, leaving it vulnerable to takeover by attackers.
• Expired domain:When a domain’s registration expires and

its owner doesn’t renew it, attackers can preempt the ex-
pired domain and host malicious content. If the mini-app’s

allowlist isn’t updated promptly, URLs under the attacker-
controlled domain can bypass the allowlist security check.

Attack Vector #2: Exploitable vulnerabilities in allowlisted
web pages. This vector consists of CWE-16 and CWE-672:
• XSS: If an allowlisted URL contains an XSS vulnerability, at-

tackers can inject malicious scripts into the web page.When
this compromised web page is loaded into the mini-app’s
WebView, the injected malicious code is executed, allowing
the attacker to utilize the mini-app’s identity to invoke run-
time APIs provided by the super-app.
• Open redirect: If an allowlisted URL has an open redirec-

tion vulnerability, attackers can exploit it to craft malicious
links that redirect users to their controlled web pages. This
attack can succeed because the allowlist checks solely focus
on preventing untrusted web resources from being loaded
into the WebView and do not affect the web page routing
within the WebView.

2.4 Related Work
Mini-app Studies. Recent studies reveal the model of mini-app
ecosystems, and their various advantages in different aspects of
social life, including health, education, government, and market-
ing [8, 9, 11, 16, 19, 22, 23, 25, 35]. Additionally, some studies pro-
vide program analysis technique by leveraging as dynamic analy-
sis [12, 17], and static analysis [15, 24]. In the domain of research
on attacks and defense in app-in-app ecosystems, a few pioneer-
ing studies [18, 29, 31, 32, 34] have delved into the defense mech-
anisms and vulnerabilities of these ecosystems. Specifically, Lu et
al. [18] and Zhang et al. [31] investigate the permission inconsis-
tency problem, and Zhang et al. [32] proposed the novel identity
confusion flaws in protecting runtime APIs. Zhang et al. [34] and
Yang et al. [29] measure the security prevalence of information
leakage. As a comparison, our paper focuses on the prevalent in-
jection vulnerabilities and their root causes to the allowlist mech-
anism, which has not been extensively studied before.
Content Security. There exists several techniques that support
dynamic content loading and execution in platforms such as browsers,
cross-platform apps, and hybrid apps. Numerous studies [13, 14, 20,
26–28, 30] discussed the threats and attacks against code integrity.
Richards et al. [20], Weichselbaum et al. [26], and Yue et al. [30] tar-
get the web applications running in web browsers. Jin et al. [14],
Xiao et al. [27], and Jin et al. [13] target the cross-platform apps and
hybrid apps, who can steal sensitive information or abusing sys-
tem resources. While TDCAttacks belong to this class of security
threats, our paper presents different contributions from existing
research because the defense model in app-in-app ecosystems is
different from the previous work, and bringing new challenges and
threats. Our paper present the first study on the root cause of TD-
CAttacks and their prevalence. Our proposed analysis framework
can suits for various app-in-app ecosystems despite their different
allowlist implementation.

3 TDCATTACK: AN EMPIRICAL STUDY
In this section, we present the first framework for analyzing the
security of real-world mini-app allowlist deployments. Figure 2

53

SaTS ’23, November 26, 2023, Copenhagen, Denmark Zhibo Zhang et al.

serial number name CWE Security introduction Security outcome
1 Cross-site scripting 79 malicious scripts are injected into trusted websites. code injection
2 Open redirect 601 websites allows a user to control a redirect to another URL. malicious page load
3 Subdomain takeover 16 registering an existing domain name to control the domain. control domain
4 Expired domain 672 the owner has not renewed by the expiration date. control domain

Table 1: 4 types of vulnerabilities that could be exploited for TDCAttack

Mini-app
source code

Allowlist extractor Assets appraisal Verification

Subdomain
takeover

XSS

Open
redirect

Expired
domain

Entry
collecting

Payload
generation

Triggering

PoC report

Subdomain finder

Static analysis

Figure 2: Overview of the methodology.

shows the overview of our methodology, comprising the follow-
ing three steps:

3.1 Step I: Allowlist Extractor
In this step, we design an algorithm to identify domains that are
configured in the allowlist of a given mini-app. The high-level idea
is that we can extract the loaded URLs from the mini-app’s source
code and then employ them as the seeds for expansion via subdo-
main discovery techniques. The insight here is that the domains
of URL accessed during the normal operation of a mini-app are
included within the allowlist. We observe that in many cases the
domain allowlist checks enforced in the mini-apps are coarse. For
instance, the function “endswith()” is frequently utilized for string
comparison. Thus, the subdomain assets of these URLs can also
pass the allowlist checks.

Specifically, we perform static data-flow analysis on the source
code of a given mini-app, which can be obtained leveraging Min-
iCrawler [33]. As illustrated in algorithm 1, we begin by identify-
ing all URL loading statements (i.e., loadpoints) in the mini-app,
based on their invocation patterns learned from developer docu-
mentation (Line 4-5).Thenwe backwardly trace the source value of
loaded URLs and save them in a domain list denoted as 𝑆𝑑𝑜𝑚 (Line
6-8). This analysis is implemented on TaintMini [24]. Furthermore,
due to the domain matching operation is often broad, e.g., using
the endswith() API, we extend the 𝑆𝑑𝑜𝑚 to 𝐸𝑑𝑜𝑚 (Line 12-15) us-
ing OneForAll [4], a popular open-sourced subdomain finder tool.
Through this process, we can ultimately derive a comprehensive
and accurate representation of the domains that might be included
in the allowlist.

3.2 Step II: Assets Appraisal
In the second step, we identify unsafe domains and domain assets
that suffer from the aforementioned two attack vectors. Specifi-
cally, for the domains identified in step I, we perform security

Algorithm 1: Infer allowlist from mini-app source code
Input: mini-app source code 𝑠
Output: Inferred allowlist domains 𝐸𝑑𝑜𝑚

1 Initialize 𝑆𝑑𝑜𝑚 , 𝐸𝑑𝑜𝑚 as empty sets;
2 // Use static data-flow analysis to trace the URLs loaded in

the web-view component;
3 for each WebView in 𝑠 do
4 loadpoints← collect(WebView);
5 for each loadpoint in loadpoints do
6 url← backtrace(loadpoint);
7 𝑆𝑑𝑜𝑚 ← 𝑆𝑑𝑜𝑚 ∪ {𝑒𝑥𝑡𝑟𝑎𝑐𝑡 − 𝑑𝑜𝑚𝑎𝑖𝑛(𝑢𝑟𝑙)};
8 end
9 end

10 // Use a sub-domain finder to expand the URLs in 𝑆𝑑𝑜𝑚 ;
11 for each domain in 𝑆𝑑𝑜𝑚 do
12 subdomains← subdomain-finder(domain) ;
13 𝐸𝑑𝑜𝑚 ← 𝐸𝑑𝑜𝑚 ∪ subdomains;
14 end
15 return 𝐸𝑑𝑜𝑚

analysis with the help of several popular web vulnerability detec-
tion tools, including Xray [7] for detecting websites vulnerable
to XSS and open redirect, Aquatone [1] for identifying domains
vulnerable to subdomain takeovers, and whois [6] for detecting
expired domains. As previously mentioned, super-apps may im-
plement customized defenses against web vulnerabilities such as
XSS. To understand the potential attack vectors within a specific
app-in-app ecosystem, we perform penetration testing within our
custom-built mini-apps for WeChat, Alipay, and Baidu. In detail,
we manually configure a vulnerable website and try to load the
URL in the mini-app. If the payload is successfully loaded and the
embedded JavaScript code is executed, we classify the super-app
as susceptible to a specific attack.

3.3 Step III: Security Impact Verification
In the third step, we use template-based dynamic testing to verify
whether a mini-app can be impacted by vulnerable domain assets.
Specifically, we first identify an exploitable path in target mini-
apps through a cross-context static analysis from the mini-app’s
lifecycle function (e.g., onLoad) to the URL loading points, to an-
alyze the process of external input parsing (typically key-value
pairs). Then we extract the processed keys and combine the ex-
ploits created in the last step to generate the attack payloads in a
form like scheme://host/path?appId=[appID]&page=[page]?[key]

54

scheme://host/path?appId=[appID]&page=[page]?[key]=[exploits]

TrustedDomain Compromise Attack in App-in-app Ecosystems SaTS ’23, November 26, 2023, Copenhagen, Denmark

Step Consuming time
Allowlist Extractor 3 min per mini-app
Assets Appraisal 2.5 min per domain
Verification 32 s per mini-app

Table 2: Efficiency of our security analysis framework

Step Result TP(%) FP(%)
Allowlist Extractor 81978 domains 97.8 2.2
Assets Appraisal 1526 vulnerable urls 91.7 8.3
Verification 26 vulnerable mini-apps 100 0
Table 3: Effectiveness of our security analysis framework

=[exploits]. We use the Android Debug Bridge (adb) to launch the
target mini-apps carrying the generated payload. Besides, we im-
plement a feedback monitor by instrumenting relevant WebView
callbacks, which enables us to determine whether the attack pay-
loads are successfully executed or not.

4 EVALUATION
In this section, we present the overall analysis results, including
efficiency and effectiveness of our analysis framework, and verified
security impacts on popular super-app platforms.

4.1 Efficiency & Effectiveness
Table 2 shows the efficiency of each step. We performed our eval-
uation on a laptop with an Intel(R) Core(TM) i7-9750H CPU @
2.60GHz processor and 24G bytes RAM, Windows 11 Operating
System. During the experiment, the tool can log the consuming
time for each step.

Table 3 lists the results of each step in our security analysis,
including the true positive rate, and false positive rate. Specifi-
cally, we analyzed 11,838 mini-apps in total, including 4,446 mini-
apps from WeChat, 3,946 from Alipay, and 3,446 from Baidu. As a
result, we successfully extracted 60,761 domains from mini-apps’
source code and extended them to 81,978 domains. In the security-
oriented experiments, we found problematic allowlisted domain
assets in 140 mini-apps, including expired domain names in 7 mini-
apps, XSS vulnerability in 135 mini-apps, and open redirect vulner-
ability in 3 mini-apps. We randomly selected 10 mini-apps from
each super-app platform (30 in total) and manually verified their
detection results. We found that the true positive rate in each step
is high, including 97.8% in the first step, 91.7% in the second step,
and 100% in the third step. For the false positives, we further ana-
lyzed their root causes and the details are presented below.

In Step I (allowlist extractor), false positives primarily arise due
to version updates. Specifically, our mini-app dataset includes ver-
sions prior to December 2022, and their allowlist configurations
may have been altered in subsequent releases. For instance, a mini-
app might modify its third-party advertiser, rendering certain do-
mains obsolete in newer versions. In step II (assets appraisal), the
false positives are caused by the limited trigger condition under the
mini-app context and the inaccuracy of the adopted vulnerability

Vulnerability name Platform
WeChat Alipay Baidu

Cross-site scripting √ ★ √
Open redirect × √ √

Subdomain takeover √ √ √
Expired domain √ √ √

Table 4: Effectiveness of 4 attacks on mainstream super-
apps. Symbol ”√” means the super-app is vulnerable, ”×”
means the super-app has customized protection, ”★ means
the iOS version of super-app is vulnerable.

detection tool. For instance, XSS vulnerabilities can be exploited by
crafting payload in HTTP query, header, and body in web attacks.
However, the attack vectors in mini-apps are limited and the XSS
payload can only be embedded in HTTP query strings. This type
of false positive can be filtered easily. Besides, the adopted web
vulnerability detection tool can introduce false positives too.

Furthermore, we manually verified their attack consequences in
3 popular super-apps. Table 4 shows the impact of different types
of vulnerabilities across them. In detail, all of the super-apps are
vulnerable to TDCAttack. Although Alipay enforces the XSS pro-
tection inside its customized WebView kernel, its iOS version that
uses WKWebView is still vulnerable to our attack.

4.2 Case Study
Now, we illustrate one real-world case study to demonstrate how
a TDC attack is discovered and performed.
Case Study: Exploit Alipay mini-app through XSS vulnera-
bility. Take ‘mini-appA’, an online car quotation platform in Ali-
pay, to illustrate the process of TDCAttack and the security con-
sequences. First, the allowlist extractor successfully discovers 20
loaded URLs from its source code and expands them to 705 do-
mains. Then, we assess the security of these domains by feeding
them to OneForAll [4]. As a result, we find a subdomain ‘sub.benig-
n.com’ contains a webpage with XSS vulnerability. That is, ma-
licious code can be injected into the mini-appA’s runtime when
https://sub.benign.com?source=[XSS-payload] is loaded. Hence, an
attacker can craft a phishing link like this:

https://ds.alipay.com/?scheme=alipays://platformapi/startapp?appId=
↩→ [mini-appA]&page=pages/webview?h5_url=
↩→ https://sub.benign.com?source=[XSS-payload]

The above link can be easily distributed to victim users through
social media such as Twitter and SinaWeibo.When the victim user
clicks it, the “mini-appA“will start and load the h5_url (i.e., https://
sub.benign.com?source=[XSS-payload]), executingmalicious code
in the XSS-payload. Note that, as “mini-appA“ saves the user’s lo-
gin token in its storage, the malicious code can steal the saved user
token by leveraging the getStorage runtime API, leading to ac-
count takeover and information leakage.

55

scheme://host/path?appId=[appID]&page=[page]?[key]=[exploits]
scheme://host/path?appId=[appID]&page=[page]?[key]=[exploits]
scheme://host/path?appId=[appID]&page=[page]?[key]=[exploits]
scheme://host/path?appId=[appID]&page=[page]?[key]=[exploits]
https://sub.benign.com?source=[XSS-payload]
https://sub.benign.com?source=[XSS-payload]
https://sub.benign.com?source=[XSS-payload]

SaTS ’23, November 26, 2023, Copenhagen, Denmark Zhibo Zhang et al.

We verify the attack on Android and iOS respectively. We find
that although Alipay has implemented security checks in its cus-
tomizedWebView kernel formitigatingXSS attacks, they only func-
tion on the Android system, leaving iOS users exposed to TDCAt-
tack. Note that, this case is hardly detected through manual au-
diting. It is because the vulnerable URL under sub.benign.com is
only designed for PC users and is not supposed to be used and
loaded in “mini-appA“. However, security analysis framework can
successfully uncover it.

5 DISCUSSION
The goal of this study is to present the TDC attack surface on the
mini-apps allowlist mechanism, and we mainly consider popular
vulnerabilities listed in the top OWASP web vulnerabilities. Be-
yond these, there are many interesting and new domain vulnera-
bilities such as image-hosting domain [10] that can be used for ex-
ploiting the vulnerable domain assets and launching TDC attacks.
We leave covering these cases for future research.
Contermeasures. To prevent TDC attacks, we propose several
mitigation strategies based on our analysis. First, super-apps and
mini-apps should enforce a standard and atomic allowlist check
mechanism such as Content Security Policies [21]. They should
carefully choose the trusted domain assets following the strict def-
inition of scheme, host, paths, and even content types. Second, the
mitigation of TDC attacks can also benefit from real-time code in-
tegrity protection, as proposed in other cross-platform apps [27].

6 CONCLUSION
In this paper, we introduced the novel TrustedDomain Compro-
mise Attack observed in real-world app-in-app ecosystems. We
classified TDCAttack into two primary attack vectors, enabling at-
tackers to manipulate unsafe allowlisted domains and URLs to by-
pass security checks. Such attacks can lead to phishing or the abuse
of sensitive runtimeAPIs, including access to storage files of victim
mini-apps. Furthermore, we conduct the first empirical study of
TDCAttack in the real-world app-in-app ecosystems. By develop-
ing a security analysis framework, we measured the TDCAttacks
in mini-apps within three prominent super-apps. Our experiments
demonstrate that our framework effectively detects mini-apps sus-
ceptible to TDCAttack, maintaining a low rate of false positives.
Notably, we identified 26 exploitable real-world mini-apps. We are
confident that our contributions will significantly enhance the se-
curity design and implementation of app-in-app ecosystems.

ACKNOWLEDGMENTS
We would like to thank our shepherd Yue Zhang and the anony-
mous reviewers for their insightful comments that helped improve
the quality of the paper.This workwas supported in part by the Na-
tional Key Research and Development Program (2021YFB3101200),
National Natural Science Foundation of China (62172104, 62172105,
61972099, 62102093, 62102091). Yuan Zhang was supported in part
by the Shanghai Rising-Star Program under Grant 21QA1400700
and the Shanghai Pilot Program for Basic Research - FuDan Uni-
versity 21TQ1400100 (21TQ012). Min Yang is the corresponding

author, and a faculty of Shanghai Institute of Intelligent Electron-
ics & Systems and Engineering Research Center of Cyber Security
Auditing and Monitoring.

REFERENCES
[1] 2019. AQUATONE - A Tool for Domain Flyovers. Retrieved July 20, 2023 from

https://github.com/michenriksen/aquatone#installation
[2] 2021. OWASP Top 10 - 2021. Retrieved July 20, 2023 from https://owasp.org/

Top10/
[3] 2023. Content Security Policy (CSP). Retrieved August 9, 2023 from https://

developer.mozilla.org/en-US/docs/Web/HTTP/CSP
[4] 2023. OneForAll. Retrieved July 20, 2023 from https://github.com/shmilylty/

OneForAll
[5] 2023. WebView. Retrieved August 9, 2023 from https://developer.android.com/

reference/android/webkit/WebView
[6] 2023. whois | Kali Linux Tools. Retrieved July 20, 2023 from https://www.kali.

org/tools/whois/
[7] 2023. xray. Retrieved July 20, 2023 from https://github.com/chaitin/xray
[8] Xin Chen, Xi Zhou, Huan Li, Jinlan Li, and Hua Jiang. 2020. The value ofWeChat

as a source of information on the COVID-19 in China. Preprint]. Bull World
Health Organ 30 (2020).

[9] Ao Cheng, Gang Ren, Taeho Hong, Kichan Nam, and Chulmo Koo. 2019. An
exploratory analysis of travel-related WeChat mini program usage: affordance
theory perspective. In Information and Communication Technologies in Tourism
2019: Proceedings of the International Conference in Nicosia, Cyprus, January 30–
February 1, 2019. Springer, 333–343.

[10] Pei Chen Xiaojing Liao Guoyi Ye Geng Hong, MengyingWu andMin Yang. 2023.
Understanding and Detecting Abused Image Hosting Modules as Malicious Ser-
vices. In 2023 ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS ’23). ACM.

[11] Lei Hao, Fucheng Wan, Ning Ma, and Yicheng Wang. 2018. Analysis of the
development of WeChat mini program. In Journal of Physics: Conference Series,
Vol. 1087. IOP Publishing, 062040.

[12] Jiajun Hu, Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2023. 𝑤Test: WebView-
Oriented Testing for Android Applications. arXiv preprint arXiv:2306.03845
(2023).

[13] Xing Jin, Xunchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and Gau-
tamNagesh Peri. 2014. Code injection attacks on html5-basedmobile apps: Char-
acterization, detection and mitigation. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. 66–77.

[14] Zihao Jin, Shuo Chen, Yang Chen, Haixin Duan, Jianjun Chen, and Jianping Wu.
2023. A Security Study about Electron Applications and a ProgrammingMethod-
ology to Tame DOM Functionalities.. In NDSS.

[15] Wei Li, Borui Yang, Hangyu Ye, Liyao Xiang, Qingxiao Tao, Xinbing Wang, and
Chenghu Zhou. 2023. MiniTracker: Large-Scale Sensitive Information Tracking
in Mini Apps. IEEE Transactions on Dependable and Secure Computing (2023).

[16] Qinzhen Liang and Chengyang Chang. 2019. Construction of teaching model
based on WeChat Mini-Program. International Journal of Science 16, 1 (2019),
54–59.

[17] Yi Liu, Jinhui Xie, Jianbo Yang, Shiyu Guo, Yuetang Deng, Shuqing Li, Yechang
Wu, and Yepang Liu. 2020. Industry practice of javascript dynamic analysis on
wechat mini-programs. In Proceedings of the 35th IEEE/ACM International Con-
ference on Automated Software Engineering. 1189–1193.

[18] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFeng Wang,
and Xueqiang Wang. 2020. Demystifying resource management risks in emerg-
ing mobile app-in-app ecosystems. In Proceedings of the 2020 ACM SIGSAC con-
ference on computer and communications Security. 569–585.

[19] Qianhui Rao and Eunju Ko. 2021. Impulsive purchasing and luxury brand loyalty
in WeChat Mini Program. Asia Pacific Journal of Marketing and Logistics 33, 10
(2021), 2054–2071.

[20] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011. The eval
that men do: A large-scale study of the use of eval in javascript applications. In
ECOOP 2011–Object-Oriented Programming: 25th European Conference, Lancaster,
Uk, July 25-29, 2011 Proceedings 25. Springer, 52–78.

[21] Sid Stamm, Brandon Sterne, and Gervase Markham. 2010. Reining in the web
with content security policy. In Proceedings of the 19th international conference
on World wide web. 921–930.

[22] Yiling Sui, Tian Wang, and Xiaochun Wang. 2020. The impact of WeChat app-
based education and rehabilitation program on anxiety, depression, quality of
life, loss of follow-up and survival in non-small cell lung cancer patients who
underwent surgical resection. European Journal of Oncology Nursing 45 (2020),
101707.

[23] Zhenya Tang, Zhongyun Zhou, Feng Xu, and Merrill Warkentin. 2022. Apps
within apps: predicting governmentWeChatmini-program adoption from trust–
risk perspective and innovation diffusion theory. Information Technology & Peo-
ple 35, 3 (2022), 1170–1190.

56

https://github.com/michenriksen/aquatone#installation
https://owasp.org/Top10/
https://owasp.org/Top10/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://github.com/shmilylty/OneForAll
https://github.com/shmilylty/OneForAll
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://www.kali.org/tools/whois/
https://www.kali.org/tools/whois/
https://github.com/chaitin/xray

TrustedDomain Compromise Attack in App-in-app Ecosystems SaTS ’23, November 26, 2023, Copenhagen, Denmark

[24] ChaoWang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. TAINT-
MINI: Detecting Flow of Sensitive Data inMini-Programs with Static Taint Anal-
ysis. In Proceedings of the 45th International Conference on Software Engineering.

[25] Feilong Wang, Lily Dongxia Xiao, Kaifa Wang, Min Li, and Yanni Yang. 2017.
Evaluation of a WeChat-based dementia-specific training program for nurses in
primary care settings: A randomized controlled trial. Applied Nursing Research
38 (2017), 51–59.

[26] LukasWeichselbaum,Michele Spagnuolo, Sebastian Lekies, andArtur Janc. 2016.
Csp is dead, long live csp! on the insecurity of whitelists and the future of content
security policy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. 1376–1387.

[27] Feng Xiao, Zheng Yang, Joey Allen, Guangliang Yang, Grant Williams, and
Wenke Lee. 2022. Understanding and Mitigating Remote Code Execution Vul-
nerabilities in Cross-platform Ecosystem. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. 2975–2988.

[28] Yuqing Yang, Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. SoK: Decoding
the Super App Enigma: The Security Mechanisms, Threats, and Trade-offs in
OS-alike Apps. arXiv preprint arXiv:2306.07495 (2023).

[29] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. 2022. Cross miniapp request forgery:
Root causes, attacks, and vulnerability detection. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. 3079–3092.

[30] Chuan Yue and Haining Wang. 2009. Characterizing insecure JavaScript prac-
tices on the web. In Proceedings of the 18th international conference onWorld wide
web. 961–970.

[31] Jianyi Zhang, Leixin Yang, Yuyang Han, Zixiao Xiang, and Xiali Hei. 2023. A
Small Leak Will Sink Many Ships: Vulnerabilities Related to mini-programs Per-
missions. In 2023 IEEE 47th Annual Computers, Software, and Applications Con-
ference (COMPSAC). IEEE, 595–606.

[32] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xiaohan Zhang, Yanjun Chen,
Yuan Zhang, Guangliang Yang, and Min Yang. 2022. Identity confusion in
{WebView-based} mobile app-in-app ecosystems. In 31st USENIX Security Sym-
posium (USENIX Security 22). 1597–1613.

[33] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang
Lin. 2021. A measurement study of wechat mini-apps. Proceedings of the ACM
on Measurement and Analysis of Computing Systems 5, 2 (2021), 1–25.

[34] Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Don’t Leak Your Keys: Un-
derstanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs.
arXiv preprint arXiv:2306.08151 (2023).

[35] Kaina Zhou, Wen Wang, Wenqian Zhao, Lulu Li, Mengyue Zhang, Pingli Guo,
Can Zhou, Minjie Li, Jinghua An, Jin Li, et al. 2020. Benefits of a WeChat-based
multimodal nursing program on early rehabilitation in postoperative women
with breast cancer: a clinical randomized controlled trial. International journal
of nursing studies 106 (2020), 103565.

57

	Abstract
	1 Introduction
	2 Understanding TDCAttack
	2.1 Overview of allowlist mechanism
	2.2 Threat Model
	2.3 TDCAttacks
	2.4 Related Work

	3 TDCAttack: An empirical study
	3.1 Step I: Allowlist Extractor
	3.2 Step II: Assets Appraisal
	3.3 Step III: Security Impact Verification

	4 Evaluation
	4.1 Efficiency & Effectiveness
	4.2 Case Study

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

