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Abstract

As highlighted in authoritative standards (e.g., ISO21448), traffic law
compliance is a fundamental prerequisite for the commercialization
of autonomous driving systems (ADS). Hence, manufacturers are
in severe need of techniques to detect harsh driving situations in
which the target ADS would violate traffic laws. To achieve this
goal, existing works commonly resort to searching-based simula-
tion testing, which continuously adjusts the scenario configurations
(e.g., add new vehicles) of initial simulation scenarios and hunts for
critical scenarios. Specifically, they apply pre-defined heuristics on
each mutated scenario to approximate the likelihood of triggering
ADS traffic violations, and accordingly perform searching sched-
uling. However, with those comparably more critical scenarios in
hand, they fail to offer deterministic guidance on which and how
scenario configurations should be further mutated to reliably trig-
ger the target ADS misbehaviors. Hence, they inevitably suffer from
meaningless efforts to traverse the huge scenario search space.

In this work, we propose VioHawk, a novel simulation-based
fuzzer that hunts for scenarios that imply ADS traffic violations.
Our key idea is that, traffic law regulations can be formally modeled
as hazardous/non-hazardous driving areas on the map at each times-
tamp during ADS simulation testing (e.g., when the traffic light is
red, the intersection is marked as hazardous areas). Following this
idea, VioHawk works by inducing the autonomous vehicle to drive
into the law-specified hazardous areas with deterministic mutation
operations. We evaluated the effectiveness of VioHawk in testing
industry-grade ADS (i.e., Apollo). We constructed a benchmark
dataset that contains 42 ADS violation scenarios against real-world
traffic laws. Compared to existing tools, VioHawk can reproduce
3.1X~13.3X more violations within the same time budget, and save
1.6X~8.9X the reproduction time for those identified violations.
Finally, with the help of VioHawk, we identified 9+8 previously
unknown violations of real-world traffic laws on Apollo 7.0/8.0.
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1 Introduction

Autonomous driving systems (ADS, see §2.1) represent a ground-
breaking evolution in the realm of transportation, promising height-
ened mobility and convenience. Nowadays, manufacturers [7] are
fervently investing in the development of autonomous vehicles (AV)
and are eager to deploy them on public roads. However, safety has
obviously become a major obstacle to the widespread deployment
of ADSs, considering the fact that AV-involved traffic accidents
or violations continue to occur [4]. To tackle these safety issues,
manufacturers [7] urgently require advanced testing methodologies
to detect possible ADS misbehaviors in various driving situations.

In this state of confusion, virtual simulation testing, due to its
flexibility and low cost for curating driving environments with any
desired characteristics (e.g., weather conditions, traffic patterns,
etc.), has been embraced as a fundamental approach to testing
ADSs. Built on top of ADS simulation platform [24, 46] (see §2.2),
we observe that existing works [23, 27, 28, 33, 42, 45, 57, 59] mostly
put emphasis on detecting general ADS accidents (e.g., collision and
out-of-road). However, in contrast, less light has been shed on veri-
fying the traffic law compliance of ADS driving behaviors, which is
highlighted in international/regional standards (e.g., ISO 21448 [8])
as an essential safety prerequisite for the commercialization of ADS.

In practice, traffic laws usually encompass a wide range of rules
governing diverse driving intentions (e.g., turning, parking, etc.)
and could vary depending on specific driving conditions (e.g., lo-
cations, traffic flows, etc.). Compared to the detection of general
ADS accidents, this complex nature of traffic laws poses greater
challenges in curating scenarios in which the target ADS would
likely break given laws under law-specified driving conditions.

https://doi.org/10.1145/3650212.3680325
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To address the above challenge, existing works [31, 32, 37, 51, 56]
(see §2.3) suggest using searching-based (or fuzzing-based) simu-
lation testing to test ADSs [3, 5, 6] against traffic laws. Generally,
given initial scenarios as inputs, they work by iteratively mutating
the scenario configurations (e.g., adding a new traffic actor), so
as to identify previously unknown violation scenarios by travers-
ing the whole scenario search space. Typically, to navigate the
searching process towards violation scenarios of target laws, they
enhance the searching scheduling mechanism with pre-defined fit-
ness functions. To be specific, given a mutated simulation scenario,
they would either utilize pre-execution AI-based prediction or post-
execution analysis to quantify its likelihood of triggering target
ADS violations. For example, if post-execution analysis finds that
the maximum runtime speed of ADS is 60 km/h in this scenario,
it is considered to have a 0.75 (=60/80) likelihood score to break
the speed limit of 80km/h. Subsequently, combined with advanced
searching algorithms (e.g., evolutionary algorithm), mutation re-
sources in next rounds of searching would be focused on those
scenarios with critical likelihood scores.
Key Observation. Here, we observe that, although the aforemen-
tioned methodologies [31, 32, 37, 51, 56] can help focus mutation
resources on comparably more critical scenarios during scenario
searching, they cannot provide deterministic guidance about ex-
actly which and how scenario configurations should be further
mutated to trigger target violations. The key reason is that, they
merely use discrete indicators (e.g., AV’s maximum speed) to score
the criticality of a mutated scenario, which significantly approxi-
mate the scenario semantics. Unlike conventional software testing
that has high throughput (e.g., hundreds of executions per sec-
ond [2]), ADS simulation testing could take tens of seconds [57]
to execute only one scenario. Consequently, as proved in §5, with
unfocused mutations applied on numerous scenario configurations,
existing works [37, 51] inevitably suffer from extensive exploration
of the vast scenario search space, consequently showing limited
effectiveness in exposing ADS traffic violations.
OurWork. In this work, we propose VioHawk, a novel simulation-
based ADS fuzzer, to address the limitations mentioned above. Our
key insight hints that, traffic laws, especially those that regulate
vehicle driving maneuvers (e.g., brake, throttle, turn, etc., scope
of considered laws clarified in §2.3), can be unambiguously for-
malized by classifying all physically reachable areas on the map
into hazardous and non-hazardous areas. For example, when
the traffic light is red, areas near the stop line are considered haz-
ardous. As such, violating a traffic law is equivalent to driving into
hazardous areas specified by the law. Owing to this insight, the key
advantages of VioHawk are twofold: ❶Reliable Quantification of
Scenario Criticality for Fuzzing Scheduling. At any instant of time
in a given simulation scenario, we can leverage Vehicle Dynamics
Model (VDM) to predict the drivable areas [49] of AV in near future
(i.e., areas that AV can potentially reach without violating vehicle
dynamics or colliding with obstacles). After calculating the intersec-
tion of AV drivable areas and law-specified hazardous areas, we can
faithfully quantify the possibility for ADS to break traffic laws in
this scenario (i.e., to drive into law-specified hazardous areas). This
criticality quantification mechanism can greatly ease the fuzzing

scheduling (i.e., favor scenarios with high criticality). ❷ Determin-
istic Guidance on Scenario Mutation Operations. Considering the
above, an appealing solution to trigger ADS traffic violations is
to mutate the scenario configurations (e.g., add new traffic actors
or obstacles, adjust driving maneuvers of surrounding vehicles)
to induce the target AV to drive into those hazardous areas. For
example, if the law-specified hazardous area is located in the left
front of the target AV, we obstruct the drivable areas to the right
and front as extensively as possible.

Although the aforementioned idea sounds straightforward, as
thoroughly discussed in §3, we overcome non-trivial technical chal-
lenges to ensure the usability and effectiveness of VioHawk.
EvaluationResults.We conducted extensive experiments to demon-
strate the effectiveness of VioHawk. Here, we chose Apollo 7.0 [3]
(i.e., the stable version of an industry-grade high-level ADS) as our
evaluation target. Since there are no publicly available datasets of
simulation scenarios (i.e., scenario configuration files that are com-
patible with the ADS simulation platforms [24, 46]) that describe
ADS traffic violations, we tried our best to construct such a dataset
from scratch. Specifically, based on the videos [51] and textual re-
ports [55] of ADS traffic violations published by existing works, we
successfully reproduced 42 simulation scenarios in which Apollo
7.0 would break specific U.S./Chinese traffic laws.

In the evaluation, we devoted extensive efforts to thoroughly
compare VioHawk with six related works in the SE/Security com-
munity that hunt for ADS traffic violations or general ADS acci-
dents, namely Lawbreaker [51], ABLE [56], SAMOTA [31], Aut-
oFuzz [57], DriveFuzz [37] and AV-Fuzzer [42]. To achieve a fair
comparison, these tools are fed with the same initial simulation
scenarios to identify possible violation scenarios through scenario
mutation (i.e., 3 hours allowed to mutate each initial scenario).
Finally, the results show that VioHawk successfully reproduced
40/42 violation scenarios (95.2%), while the baseline tools only re-
produced no more than 13/42 violation scenarios (31.0%). Moreover,
for the violations successfully reproduced by both VioHawk and
baseline tools, VioHawk could save 1.6X~8.9X the reproduction
time.

Additionally, to further demonstrate the utility of VioHawk, we
considered another 10 Chinese and U.S. traffic laws and identified
9/10 previously unknown traffic violations of Apollo 7.0, and 8/10
violations of Apollo 8.0. Through careful case studies, we confirmed
the code-level root causes of identified violations, which can bring
insights about how to mitigate these safety-critical issues.
Contributions. In summary, we make the following contributions:

● We introduce a formal methodology that unambiguously de-
scribes traffic law regulation via hazardous driving areas.
● We propose VioHawk, a simulation-based ADS fuzzer that hunts
for ADS traffic violations by inducing AV to drive into law-
specified hazardous areas.
● We conducted extensive experiments to demonstrate the effec-
tiveness of VioHawk when applied to industry-grade ADS.
● We open-source our benchmark dataset, as well as the prototype
of VioHawk, to facilitate follow-up research (i.e., available at
https://github.com/emocat/VioHawk).

https://github.com/emocat/VioHawk
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Figure 1: Architecture of ADS Simulation Platform.

2 Background

2.1 Autonomous Driving System (ADS)

Architecture of High-level ADS. As illustrated in Figure 1(A),
high-level ADSs (e.g., Baidu Apollo [3]) typically employ a multi-
module architecture, consisting of the following four main func-
tional modules. ❶ Perception receives sensor data (e.g., camera,
LiDAR, etc) and senses the environment through the recognition of
surrounding obstacles and the identification of traffic signals (e.g.,
the status of traffic lights); ❷ Prediction anticipates the future tra-
jectories of the surrounding obstacles; ❸ Planning is responsible
for decision-making regarding desired driving behaviors of EGO
(i.e., target AV). It utilizes information from road maps and traffic
conditions (e.g., surrounding vehicles and traffic signals) to gener-
ate a trajectory that is both safe and compliant with traffic laws. ❹
Control generates vehicle control commands (e.g., throttle, brake,
and steering) to direct EGO in adhering to the planned trajectory.

2.2 ADS Simulation Testing

Architecture of ADS Simulation Platform.As shown in Figure 1,
the architecture of the ADS simulation platform involves three key
components. ❶ Scenario Executor is responsible for loading the
simulation scenario, which describes environmental conditions
(e.g., map roads, weather conditions, and, etc) as well as dynamic
traffic conditions (e.g., maneuvers of EGO and NPC vehicles), into
the driving simulator. ❷ Driving Simulator simulates the driving
scenario to test the target ADS. Upon finishing the test,❸Violation

Detector assesses whether a violation (e.g., collision, violation of
traffic laws, etc ) occurs by verifying the execution results (e.g., the
trajectories of EGO and NPC vehicles) with pre-defined oracles.

2.3 ADS Traffic Violations

Target Scope of Traffic Laws. Traffic laws enforce a set of regu-
lations to govern the behaviors and interactions of different road
participants (e.g., vehicles and pedestrians). In this work, we pri-
marily focus on the traffic laws that constrain driving maneuvers
of vehicles (e.g., parking, braking, turning, overtaking, etc.), while
other laws including those that govern the driving signals (e.g., the
turn signal) are currently considered out of scope.
Example of ADS Traffic Violation. Referring to the traffic laws
of New York [11], EGO should not change lanes across double yellow

lines. However, in the scenario depicted in Figure 2(A), EGO equipped
with Apollo 7.0 makes an illegal overtaking decision on the road
with double yellow lines, thus violating this law. As illustrated in
Figure 2(B), this violation arises from an implementation deficiency
that when assessing the road conditions of lane changes, Apollo
only considers single solid lines as the prohibiting condition, while
overlooking double yellow lines.
Existing Works. LawBreaker [51] and ABLE [56], the two most
relevant state-of-the-art works, leverage simulation-based fuzzing
to detect ADS violations of various real-world traffic laws. Law-
Breaker [51] proposes a rich domain-specific language (DSL) to
encode real-world traffic laws. The DSL helps implement the vi-
olation oracles to observe the occurrence of target violations. It
also helps quantify the likelihood of EGO violating traffic laws as
a criticality score and randomly mutate seeds with high scores.
Built on top of the DSL of LawBreaker [51], ABLE [56] enhances
an existing model called GFlowNet [20] to generate diverse testing
scenarios that can trigger violations of traffic laws. It first defines
rewards based on how close a scenario is to violating a traffic law,
using the robustness semantics of signal temporal logic. Then, it
uses active learning to dynamically update the rewards, focusing on
uncovered violations and favoring the exploration of new scenario
spaces. However, these two works all lack deterministic guidance
for mutations, making it hard to generate violation scenarios with
carefully constructed NPCs (e.g., see Figure 2, to deploy NPC-A in
specific positions to strategically induce EGO to change lanes).

Some works [31, 32, 37], although proposed with the capability
to detect ADS traffic violations, can currently handle only sim-
ple traffic laws (i.e., speed limits [37] and traffic lights [31, 32]).
DriveFuzz [37] assesses EGO’s driving quality by recording the ob-
served dangerous driving behaviors (e.g., hard acceleration) during
scenario execution, and preferentially applies random mutation op-
erators on scenarios with lower driving quality. Both MORLOT [32]
and SAMOTA [31] utilize the many-objective searching strategy for
generating scenarios that break predefined safety requirements (e.g.,
to comply with traffic lights). Specifically, to improve the effective-
ness and efficiency of scenario searching, SAMOTA [31] enhances
existing many-object searching algorithms with surrogate-assisted
optimization, and MORLOT [32] combines multi-objective search-
ing with Reinforcement Learning. Similar to LawBreaker [51] and
ABLE [56], without deterministic guidance on the selection of mu-
tation operators, these three works [31, 32, 37] also suffer from ex-
tensive but valueless exploration of the vast scenario search space.
Besides, other works [23, 27, 28, 30, 33, 40, 41, 43, 48, 52, 53, 57]
focus primarily on the detection of general ADS accidents (e.g.,
collision and out-of-road), and cannot handle complex traffic laws.
There is another line of work, AVChecker [55], that uses static
analysis to detect violations in ADS code. But its transferability is
limited due to the required source code modeling.

3 Overview

3.1 Overall Idea

Key Idea. In this work, we are motivated to explore a more ef-
fective solution for quantifying the scenario criticality, the results
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Figure 2: Example of Traffic Violation in Apollo 7.0.

of which can not only provide deterministic guidance on the sce-
nario mutation, but also ease the fuzzing scheduling. Here, our
key insight is that, we can formalize the traffic law regulations as
hazardous areas on the map, and a traffic violation equals driving
into hazardous areas. Following this idea, the criticality can be
faithfully quantified by measuring the proximity between EGO and
the law-specified hazardous areas. Also, the scenario mutation
has a clear guidance, that is to induce EGO towards the hazardous
areas. In the following subsection (§3.2), we thoroughly discuss the
challenges of implementing this idea, as well as our solutions.

3.2 Challenges and Key Techniques

Challenge-I: How to model complex and diverse traffic laws

with hazardous areas? The complexity and diversity of traffic
laws pose great challenges for our area-based formalization. Traf-
fic laws encompass restrictions on different driving maneuvers,
interactions between road participants, etc. The area-based formal-
ization should express these restrictions correctly. Furthermore,
traffic laws could vary across regions and change over time. It is
not feasible to manually customize the formalization methodology
for each traffic law in a one-by-one fashion.
Key Technique-I: Decomposition-based solution for Traffic

Law Formalization. Although traffic law regulations are complex
and diverse, our key observation hints that, each traffic law (scope
clarified in §2.3) can be decomposed into two parts, including the
governed “driving intention" and the declared “driving condition".
❶ Driving intention delineates the basic driving maneuvers under
regulation at specific road structures (e.g., crossing an intersection),
based on which we can determine the superset (e.g., all regions
near the intersection) of law-specified hazardous areas. ❷ Driving
condition enforces the detailed constraints that EGO should satisfy
(e.g., do not drive through the stop line) when performing the basic
driving maneuvers. It can be expressed by fine-grained restricted
areas (i.e., areas where traffic violations could occur, e.g., areas
in front of the stop line). Notably, these restricted areas become
hazardous areas in specific states (e.g., the traffic light is red). ❸ By
calculating the intersection between the areas modeled by Driving
Intention and the hazardous areas modeled by Driving Condition,
we can finally obtain law-specified hazardous areas.

Following the above decomposition scheme, we can thus design
independent formalization operators, respectively, for describing
each possible “driving intention" and “driving condition". With
these basic operators in hand, given a previously unknown traffic

Figure 3: Workflow of VioHawk.

law, we can achieve the area-based formalization by combining
pre-defined operators, rather than constructing it from scratch.
Challenge-II: How to utilize law-specified hazardous areas

to guide simulation-based fuzzing? As briefly introduced in
§3.1, given the law-specified hazardous areas on the map, we seek
to induce EGO to drive into the hazardous areas by mutating the
scenario configurations (e.g., add new NPC vehicles, adjust driving
maneuvers of NPC vehicles, etc.). However, the induction is tech-
nically a non-trivial task. It is mainly because ADS is a complex
non-deterministic system, containing multiple probabilistic-based
AI models and decision algorithms. Theoretically, without actually
executing the mutated simulation scenario, it is hard to predict
what kind of mutation operations can help achieve the induction.
Key Technique-II: Criticality-based Seed Scheduling and

Criticality-guidedMutation.To boost the effectiveness of fuzzing,
we first introduce a scenario scheduling mechanism to focus the
mutation resources on the most critical ones. Specifically, given a
mutated scenario, we employ a classical kinetic model to compute
EGO’s drivable areas (i.e., areas that are reachable merely according
to the vehicle dynamics) at each timestamp during runtime. After
that, we can faithfully quantify the scenario criticality, by calcu-
lating the intersection degree between EGO’s drivable areas and
law-specified hazardous areas. The criticality scores can practically
ease the fuzzing scheduling.

As for scenario mutation, although it is infeasible to determin-
istically force EGO to drive into the hazardous areas, we can im-
plicitly and gradually approach this goal by compressing EGO’s
non-hazardous drivable areas. In such a manner, EGO would prob-
ably have no choice but to drive into the hazardous areas. To be
specific, we segment the non-hazardous drivable areas of EGO into
8 sub-partitions, each of which is in a unique direction of EGO. Fi-
nally, we design customized mutation operations for compressing
the non-hazardous drivable areas in different directions of EGO.

3.3 Workflow of VioHawk

Building upon the aforementioned key techniques, Figure 3 illus-
trates the general workflow of VioHawk. VioHawk comprises two
essential components, namely Area-based Traffic Law Formalization
(see §4.1) and Criticality-guided Fuzzing (see §4.2, §4.3 and §4.4).
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Table 1: The Modeled Driving Intention.

Intention Type Modeled Areas

Cross Intersection
(Go Straight/Turn Left/Turn Right) {I𝑖 ∈ MAPI ⋃︀ distance(I𝑖 , PE) < 50}

Cross Crosswalk {C𝑖 ∈ MAPC ⋃︀ distance(C𝑖 , PE) < 50}

Lane Change
(Left/Right) {L𝑖 ∈ MAPL ⋃︀ distance(L𝑖 , PE) < 50}

Lane Follow {L𝑖 ∈ MAPL ⋃︀ distance(L𝑖 , PE) < 50}

Parking U

4 Approach

4.1 Area-Based Traffic Law Formalization

Symbol Definition. We first define necessary symbols to ease
the clarification of our formalization methodology. As briefly in-
troduced in §3.2, given a traffic law, the law-specified hazardous
areas A𝐻 are calculated by intersecting the areas A𝐼 modeled from
the governed driving intention and the areas A𝐶 modeled from the
desired driving condition (i.e., including the restricted areas RA
and the corresponding hazardous states HS). To illustrate how we
model different driving intentions and driving conditions, we define
symbols including MAP (“map”), I (“intersection”), R (“road”), U
(“all road areas”), L (“lane”), C (“crosswalk”), and T (“traffic light”),
DY (“double yellow lines”), and SL (“stop line”) for describing road
structures and traffic facilities; For describing traffic actors, we
use E (“EGO vehicle”), N (“NPC vehicle”), and PED (“pedestrian”).
Lastly, P and H refer to the position and heading of a traffic actor.
Driving Intention Modeling (examples shown in Table 1).

Driving intention delineates the basic driving maneuvers under reg-
ulation at specific road structures. Hence, we can use the map areas
of these road structures (i.e., A𝐼 ) to model the driving intention in a
semantically equivalent manner. To be specific, we follow four steps
to finally determine A𝐼 : ❶ We first manually extract the type of
road structures (marked asX) described in the text of the traffic law.
For example, from “EGO passing the stop line at the intersection”, we
can determine that the road type is “intersection”. ❷ Then, we use
map processing tools (e.g., OSMIUM [12] for OpenStreetMap [19])
to extract all relevant map areas of our target road structure from
the given high-definition(HD) map, i.e., (MAPX=[X1,X2,...,X𝑛]). ❸
Next, based on the initial states of EGO (i.e., position and orientation)
in the simulation scenario 𝑠 , we filter those areas that are far away
(e.g., 50 meters) from the initial position PE of EGO vehicle (i.e.,
these areas can hardly be reached in a limited time of simulation
running). Finally, the remaining areas inMAPX are grouped and
marked as A𝐼 .

A𝐼 (𝑠) = {X𝑖 ∈MAPX ⋃︀ distance(X𝑖 ,PE) < 50}
Notably, there exist some traffic laws (e.g., “Parking”) that do not

specify the road structures regarding the driving intention. In this
condition, all map road areas will be extracted as A𝐼 (𝑠) by default
(as shown in Figure 4(C)). In the current version of VioHawk, as
shown in Table 1, we have modeled 5 kinds of driving intentions,
which are quite common in different traffic laws.
Driving Condition Modeling (examples shown in Table 2 and

Table 3). As mentioned in §3.2, we further decompose the driving
condition into its restricted areas RA and a series of hazardous
states {HS1,HS2, . . . ,HS𝑛} (i.e., state conditions that the restricted

Table 2: The Modeled Driving Condition (Restricted Areas).

Type Name Modeled Areas

Areas near

Traffic Facilities

In Front
of Stop Line FrontArea(SL𝑖 , 5)

On Double
Yellow Lines Area(DY𝑖 )

On Crosswalk Area(C𝑖 )

At Intersection Area(I𝑖 )

Near Crosswalk
(20 feet) NearArea(C𝑖 , 20)

Near Traffic Light
(30 feet) NearArea(T𝑖 , 30)

Near Stop Sign
(30 feet) NearArea(S𝑖 , 30)

Areas

near NPCs

In Front of NPC FrontArea(N𝑖 , 5)

Next to NPC LeftArea(N𝑖 , 5) ∪ RightArea(N𝑖 , 5)

Table 3: The Modeled Driving Condition (Hazardous States).

Type Name State Conditions

States of

Traffic Actors

EGO’s speed is zero ∀𝑡′ ∈ (︀𝑡 − Δ𝑡, 𝑡⌋︀ 𝑣E(𝑡
′
) = 0

EGO’s heading changes ∃𝑡′ ∈ (︀𝑡 − Δ𝑡, 𝑡⌋︀ (HE(𝑡) − HE(𝑡
′
) > 𝜃

EGO’s position is
behind the stop line PE .isbehind(SL𝑖 )

NPC’s speed is zero ∀𝑡′ ∈ (︀𝑡 − Δ𝑡, 𝑡⌋︀ 𝑣N𝑖
(𝑡′) = 0

NPC’s position is
behind the crosswalk PN𝑖 .isbehind(C𝑖 )

Pedestrian’s position
is on the crosswalk PPED𝑖 ∈ Area(C𝑖 )

States of

Interaction

1 EGO and NPC
are in adjacent lanes

∃L𝑖 ∈ {L𝑖 ∈ MAP𝐿 ⋃︀ L𝑖 .isAdjacent(PE)}
PN𝑖 ∈ Area(L𝑖 )

NPC enters
intersection before EGO

PN𝑖 (𝑡) ∈ Area(I𝑖 ) ∧ PE(𝑡) ∈ Area(I𝑖 ) &
∃𝑡′ ∈ (︀𝑡 − Δ𝑡, 𝑡⌋︀PN𝑖 ∈ Area(I𝑖 ) ∧ PE ∉ Area(I𝑖 )

States of

Traffic Lights

Traffic light is red Signal(T𝑖 ) == RED

Traffic light is yellow Signal(T𝑖 ) == Yellow

1
States of Interaction refers to the interaction states between EGO and other traffic actors.

areas become hazardous areas). Theoretically, the driving condition
can be formalized as a tuple:(RA, {HS1,HS2, . . . ,HS𝑛}). However,
given that restricted areas and hazardous states (e.g. EGO’s speed)
may continuously change during the scenario execution, we should
further enhance this formalization into a time-sensitive one. To
sum up, in a simulation scenario 𝑠 , hazardous areas A𝐶 modeled
from the driving condition at time 𝑡 can be expressed as:

A𝐶(𝑠, 𝑡) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

RA(𝑠, 𝑡) ∀HS𝑖(𝑡) == True
∅, otherwise

The restricted areas can be divided into the following two cat-
egories (as shown in Table 2). ❶ Areas near Traffic Facilities

comprise road areas near or in the locations of traffic facilities (e.g.,
stopping is not allowed in areas near stop signs); ❷Areas near

NPCs refer to the dangerous sides relative to NPCs (e.g., when
avoiding an NPC in the adjacent lane, the restricted area is the
region in front of it).

For the hazardous states, we can model them into three cate-
gories (as illustrated in Table 3). ❶ States of Traffic Actors refer
to the state (e.g., speed, heading, and position) of traffic actors (e.g.,
EGO, NPCs, and pedestrians) within the scenario. ❷ States of In-

teraction describe the interaction behaviors (e.g., their relative
positions) between EGO and other traffic actors. ❸ States of Traffic

Lights refer to different statuses of traffic lights.
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Figure 4: Hazardous Areas of Different Traffic Laws.

Notably, in particular driving situations, driving conditions should
be modeled as multiple separate areas. For instance, for the traf-
fic law specifying “turning vehicles should avoid vehicles going
straight”, the restricted areas should be those in front of the NPC
vehicles. As such, if there exist multiple NPC vehicles in a driv-
ing scenario, the driving condition should be modeled as multiple
separate areas (i.e., one area for each NPC vehicle):

{A𝐶1(𝑠, 𝑡),A𝐶2(𝑠, 𝑡), . . . ,A𝐶𝑛
(𝑠, 𝑡)}

Law-specified Hazardous Area. In a simulation scenario 𝑠 , based
on the formalization results of the driving intention and the driving
condition (i.e., A𝐼 (s) and A𝐶(𝑠, 𝑡)), the law-specified hazardous ar-
eas at timestamp 𝑡 can finally be defined as the intersection between
A𝐼 (s) and A𝐶(𝑠, 𝑡):

A𝐻 (𝑠, 𝑡) = ⋃
𝑖∈{1,...,𝑛}

(A𝐼 (𝑠) ∩A𝐶𝑖
(𝑠, 𝑡))

Running Example. Figure 4 illustrates the set of polygonal areas
corresponding to driving intentions, driving conditions and the law-
specified hazardous areas. Notably, for calculating the intersection
between the polygons, we depended on an established third-party
library named Shapely [17], which offers a feature-rich geometry
interface for individual geometries and shows high performance
on operations with arrays of geometries.
Violation Oracle. Based on the formalization of law-specified haz-
ardous areasA𝐻 (𝑠, 𝑡), we can accordingly develop violation oracles
to sense the occurrence of traffic violations. Specifically, based on
these oracles, a violation is reported if the EGO vehicle drives into
the law-specified hazardous areas at any timestamp during the
simulation testing. With the bounding box of EGO marked as BE,
we implement the violation oracle 𝜌(𝑠) as follows:

𝜌(𝑠) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

True ∃𝑡 ∈ T,BE(𝑡) ∩A𝐻 (𝑠, 𝑡) ≠ ∅
False otherwise

4.2 Criticality-Guided Fuzzing Algorithm

Based on the formalization results of traffic laws (see §4.1), we
propose a novel criticality-guided fuzzing algorithm to identify
possible traffic violations. As listed in Algorithm 1, ❶ VioHawk
take as inputs a corpus 𝑆 of initial scenarios and a targeted traffic law
𝑅. ❷ In each iteration, VioHawk employs a refined seed scheduling
strategy (i.e., roulette wheel selection [29]) to select a scenario
from 𝑆 . Subsequently, a specialized mutation process is applied
to the selected scenario to generate more critical scenarios (see
§4.4). ❸ The mutated scenario is then executed and the simulation
results will be recorded. After verifying the simulation results with
the violation oracle, if EGO does violate traffic law 𝑅, VioHawk
will report this violation. ❹ Each scenario is then evaluated for its
criticality regarding proximity to violation (see §4.3) which assigns
a score to it. ❺ Finally, the evaluated scenario is re-queued, and the
fuzzing cycle continues until either the timeout is reached or an
external abort signal is triggered.

Algorithm 1 Fuzzing Algorithm
Input: Seed Corpus 𝑆 , Traffic Law 𝑅

Output: Violation Set𝑉
1: Initial run all seeds in the corpus
2: repeat
3: 𝑠 = chooseNext(S) ▷ Our Seed Scheduling Mechanism
4: 𝑠

′ = mutate(s) ▷ Our Mutation Mechanism
5: Execute 𝑠′ and obtain trace
6: if 𝑠

′ violates 𝑅 then

7: add 𝑠′ to𝑉
8: Φ(𝑠′) = computeScore(s’) ▷ Our Seed Scheduling Mechanism
9: add 𝑠′ to 𝑆
10: until timeout reached or abort-signal

Algorithm 2 Criticality Quantification Algorithm
Input: Scenario 𝑠
Output: Criticality Score Φ
1: function computeScore(𝑠) ▷ a given scenario that contain multiple frames
2: Φ = 0 ▷ criticality score of this scenario
3: T = devideIntoTimeFrame(s, 4)
4: for each time frame 𝑡 ∈ T do

5: AH = calcHazardousArea(𝑠, 𝑡 )
6: AD = calcDrivableArea(𝑠, 𝑡 )
7: AO = AH ∩ AD ▷ hazardous drivable areas
8: Φ𝑡 = AO⇑AD
9: if Φ𝑡 > Φ then

10: Φ = Φ𝑡

11: return Φ

4.3 Criticality-Based Seed Scheduling

Criticality Quantification. Generally, we try to quantify the crit-
icality (i.e., to calculate the criticality score) of a mutated scenario
based on its execution results on the ADS simulation platform. Here,
our key idea for criticality quantification (listed in Algorithm 2)
is to evaluate the likelihood that EGO drives into the law-specified
hazardous areas. Firstly, the scenario would be divided into sev-
eral time frames based on a pre-defined time interval (i.e., set to
4s). Then, for each selected time frame, we calculate its criticality
score by measuring the hazardous drivable areas at this frame, i.e.,
the proportion of the overlapped area (AO) between hazardous
areas and drivable areas to the total drivable areas (AD). Finally,
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Figure 5: Running Example of Criticality-guided Mutation.

the criticality score of this scenario is determined by identifying
the maximum criticality score across all frames.
Drivable Area Calculation. As shown in Figure 5, the drivable ar-
eas refer to the region of the road that the EGO can traverse without
violating vehicle dynamics or colliding with obstacles. To practi-
cally calculate the drivable area of EGO, we leverage the algorithm
from [49]. The algorithm focuses on motion planning in dynamic
traffic, which is challenging due to the unpredictability of other
participants, like overtaking on the left or right. Essentially, it is
designed to methodically compute the reachable set of all potential
movements for the subject vehicle and different areas (e.g., the red
and blue areas in Figure 5) represent a different sequence of high-
level decisions. To achieve this, the algorithm employs a simplified
vehicle model and a conservative approximation of the reachable set.
Hence, the computation of the reachable set is over-approximative,
ensuring that no feasible trajectory is missed.
Seed Scheduling Algorithm. For seed scheduling, our preference
is to prioritize those with higher criticality scores. However, a blind
selection of scenarios solely based on top ratings might stuck in a
local optimum, potentially overlooking some promising seeds. To
alleviate this concern, we employ a roulette wheel selection [29] in
seed scheduling by normalizing the criticality scores of all seeds
in the seed queue using the following formula to establish the
probability of each seed being selected: 𝑝(𝑖) = 𝑓 (𝑖)

∑𝑛
𝑗=1 𝑓 (𝑗)

. Here,

𝑓 (𝑖) denotes the criticality score of the i-th candidate seed, and 𝑛
represents the number of the seed queue.

Algorithm 3 Scenario Mutation Algorithm
Input: Scenario 𝑠 , Time Frame 𝑡
Output: Mutated Scenario 𝑠′
1: functionMutate(𝑠 ,𝑡 ) ▷ 𝑡 is the time frame with the highest criticality score

across all frames of 𝑠
2: AS = 0, Pmax = 0
3: for each partition 𝑝 do

4: A′S = calcSafeDrivableArea(𝑠, 𝑡, 𝑝)
5: if A′S > AS then
6: Pmax = 𝑝
7: AS = A′S
8: 𝑠

′ = applyOperators(𝑠, Pmax)
9: return 𝑠

′

Figure 6: Partition of Surrounding Areas of EGO.

Table 4: The Mutation Operators for Different Partitions.

ID ADD
Adjust in-partition NPCs Adjust adjacent NPCs

DEC MB DEC MB ACC MF

L1 ! ! ! ! !

L2 ! ! !

L3 ! ! ! ! !

L4 ! ! ! ! !

L5 ! ! ! ! !

ADD: Add a new NPC; DEC: NPC decelerating; ACC: NPC accelerating;MB: Moving
the NPC backwards;MF: Moving the NPC forward.

4.4 Criticality-Guided Mutation

Mutation Strategy. Our strategy for scenario mutation is to com-
press the non-hazardous drivable areas (e.g., the blue areas shown in
Figure 5) of EGO, making it have no choice but to drive into the haz-
ardous ones (e.g., the red areas shown in Figure 5). To achieve this
goal, VioHawk features a greedy-like mutation algorithm (listed
in Algorithm 3). Specifically, given a simulation scenario under
mutation, VioHawk first determines its most critical time frame
(see §4.3) during the scenario execution. For example, the frame
𝑇0 of the initial scenario shown in Figure 5 is the most critical one
when mutating the initial scenario. Then, inspired by ISO-34502 [9]
(i.e., principles for scenario-based ADS testing), VioHawk divides
the EGO’s surrounding areas into 8 zones, labeled as L1-L8 (shown
in Figure 6). Following the division, VioHawk greedily selects the
partition with the largest non-hazardous drivable areas to apply
specialized mutation operations.
Mutation Operations. To effectively compress the non-hazardous
drivable areas within different partitions, as shown in Table 4 and
Figure 6, we propose five different mutation operators (detailed as
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follows). In particular, we do not apply any mutation strategies to
L6-L8 since there are no drivable areas behind EGO.

● ADD. VioHawk identifies the central point within the partition
and deploys a new NPC vehicle at this point. These newly added
NPCs would be set to LaneFollow mode using the APIs of the
simulation platform. They would drive along the lane at a pre-
defined speed, with basic capabilities of obstacle avoidance and
traffic law compliance (e.g., comply with traffic lights).
● ACC/DEC. For NPCs driving at LaneFollow mode, VioHawk
randomly adjusts its driving speed within a pre-defined reason-
able range (i.e., [ -5m/s, -1m/s ] or [ +1m/s, +5m/s ]).
● MF/MB. VioHawk modifies the initial positions of NPCs with
varying chances: a short move (0.5-2m) with a 50% chance, a
mediummove (2-5m) with a 25% chance, and a long move (5-10m)
with a 25% chance. These position changes are made consistent
with the road direction based on a curvilinear coordinate system.

Obviously, 3 of the above mutation operators (i.e., ADD/MF/MB)
can only be applied at the initial time frame𝑇0 rather than the most
critical time frame 𝑇𝑘 . Intuitively, this appears to be contradictory
to our greedy-like mutation strategy because these 𝑇0-applied op-
erators might produce unpredictable influences on drivable areas
at frame 𝑇𝑘 . Here, the rationale behind this design choice is that,
there probably exist situations where there are no NPCs in the
surrounding areas of EGO at 𝑇𝑘 . To ensure the scenario validity, we
cannot allow an NPC to suddenly appear at 𝑇𝑘 . Consequently, we
have no choice but to apply mutation operators at 𝑇0. However,
since all newly added NPC vehicles are set to LaneFollow mode
(i.e., stable driving maneuvers) and the time span of each scenario
(e.g., 30s) is quite limited in our problem domain, the positional
relationship between the NPC vehicle and EGO at𝑇0 can be probably
maintained until 𝑇𝑘 . In such a manner, these 𝑇0-applied mutation
operators can also compress the drivable areas at 𝑇𝑘 .
Running Example. For clarity, Figure 5 shows how VioHawk
mutates an initial scenario to identify a violation of the traffic law
that prohibits lane changes crossing double yellow lines.

5 Evaluation

In this section, we first introduce the experimental setup and the
benchmark dataset (§5.1); then we demonstrate the capacity of
VioHawk in reproducing known ADS traffic violations (§5.2) and
identifying previously unknown ones (§5.3).

5.1 Experiment Setup

Prototype. We implemented a prototype of VioHawk with 4K+
lines of Python code. Our prototype uses LGSVL Python APIs [1]
for scenario mutation and execution, leveraging its user-friendly
interfaces to configure scenario attributes and simulate the sce-
nario. Regarding the computation of hazardous areas, a critical
functionality of VioHawk, we achieved it by integrating and cus-
tomizing Commonroad-Reach 2023.1 [36]. According to existing
practices [51], we set 30 seconds as the timeout for each scenario ex-
ecution. Here, we agree that longer execution time of scenarios can
help to find more diverse driving situations. However, violations
often occur only in specific driving conditions (i.e., road structures
and infrastructures, traffic flows, etc.). Therefore, further increasing

the execution time of a scenario is not necessarily helpful in our
problem domain.
Target ADS. We chose Baidu Apollo [3] as our target ADS, mainly
because it is one of the most representative open-source high-level
ADSs with widespread commercialization, and has been considered
as an evaluation target in various ADS-related researches [21–23, 34,
44, 47, 50–52, 54, 57, 58]. Specifically, we focused on the latest stable
version of Apollo (i.e., Apollo 7.0) for the subsequent experiments.
ADS Simulation Platform. The LGSVL [46] is an open-source
simulation platform and has gained popularity in ADS simulation
testing due to its high fidelity and flexibility. We selected it (i.e.,
LGSVL 2021.2.2 [10]) as our simulation platform since it offers stable
connections with our target ADS (i.e., Apollo).
Dataset of ADS Traffic Violations: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐺𝑇 . After a system-
atic literature review, we found that there are no publicly available
scenario datasets of ADS traffic violations (i.e., configuration files of
simulation scenarios that imply ADS traffic violations). Hence, we
decided to construct such a benchmark dataset for our target ADS
(i.e., Apollo 7.0) from scratch. Fortunately, existing works [51, 55]
in detecting ADS traffic violations have released videos (i.e., screen
recording of simulation testing) or textual reports about their iden-
tified violation scenarios. Based on these clues, we tried our best
to recreate the simulation scenarios (i.e., scenario configuration
files) that have equivalent scenario semantics. Specifically, Law-
Breaker [51] and AVChecker [55] mainly considered U.S./Chinese
traffic laws, and identified violations of 27 traffic laws when testing
Apollo 5.5/6.0. After over 50 manual hours of investigation, we
confirmed that only the violations of 10/27 traffic laws (listed in
Table 5) can be successfully reproduced on Apollo 7.0. The reasons
for the 17/27 failures are twofold: ❶ 14/17 failures: The released
videos or textual reports cannot provide enough information for the
initialization of various scenario configurations (e.g., exact maneu-
vers of NPCs). ❷ 3/17 failures: The buggy code pieces responsible
for the violations have been patched on Apollo 7.0.

With the 10/27 violation scenarios in hand (i.e., one violation sce-
nario for each traffic law), we tried to further enhance the diversity
of our benchmark dataset, so as to ensure convincing evaluation
results. Specifically, we traversed the built-in road maps (e.g., San
Francisco map [16]) of the simulation platform (i.e., LGSVL), to
verify whether these traffic violations can be manually reproduced
at different road shapes and structures. Finally, we collected 42
ground-truth violation scenarios (marked as 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐺𝑇 ) against
the 10 traffic laws (listed in Table 5).
Baseline. After careful literature review (see §2.3), we devoted
extensive efforts to thoroughly compare VioHawk with 6 baseline
tools [31, 37, 42, 51, 56, 57]. Among these baselines, LawBreaker [51]
and ABLE [56] are the two most relevant works that can handle
complex real-world traffic laws. Furthermore, we also considered
AV-Fuzzer [42], DriveFuzz [37], SAMOTA [31] and AutoFuzz [57]
as our baselines. They are representative testing tools for detecting
general ADS accidents (i.e., collisions and out-of-road) or violations
of simple traffic laws (i.e., speed limits and traffic lights). We en-
hanced these baseline tools with VioHawk’s violation oracles, so
as to achieve fair comparison between the effectiveness of viola-
tion identification. In addition, necessary implementation efforts
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Table 5: Collected Traffic Laws in 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐺𝑇 .

ID Data Source Description Driving Intention
1

Driving Condition
1

Restricted Areas Hazardous States

R-1 [51]&Chinese Law When the red light is on, vehicles can not cross the intersection. Cross Intersection In Front of Stop Line Traffic light is red.

R-2 [51]&Chinese Law When the yellow light is on, only vehicles
that have crossed the stop line can cross the intersection. Cross Intersection In Front of Stop Line Traffic light is yellow.

EGO’s position is behind the stop line.

R-3 [51]&Chinese Law When overtaking, vehicles shall not affect
driving of the vehicles in the adjacent lane. Lane Change In Front of NPC EGO and NPC are in adjacent lanes.

R-4 [55]& U.S. Law When a vehicle has stopped behind the crosswalk,
vehicles shall not cross the crosswalk. Cross Crosswalk On Crosswalk NPC’s speed is zero.

NPC’s position is behind the crosswalk.

R-5 [55]& U.S. Law When a pedestrian is at the crosswalk,
vehicles shall not pass the crosswalk. Cross Crosswalk On Crosswalk Pedestrian’s position is on the crosswalk.

R-6 [55]& U.S. Law Vehicles shall not park at the crosswalk. Parking On Crosswalk EGO’s speed is zero.

R-7 [55]& U.S. Law Vehicles shall not park within 20 feet of a crosswalk. Parking Near Crosswalk (20 feet) EGO’s speed is zero.

R-8 [55]& U.S. Law Vehicles shall not park within 30 feet of a traffic light. Parking Near Traffic Light (30 feet) EGO’s speed is zero.

R-9 [55]& U.S. Law Vehicles shall not park within 30 feet of a stop sign. Parking Near Stop Sign (30 feet) EGO’s speed is zero.

R-10 [55]& U.S. Law When a pedestrian is on the crosswalk at the turning side
of the intersection, vehicles shall not enter the intersection. Cross Intersection On Crosswalk EGO’s heading changes.

Pedestrian’s position is on the crosswalk.
1 Decomposition and area-based formalization of traffic laws using VioHawk.

Table 6: Traffic Violation Reproduction with VioHawk, LawBreaker, DriveFuzz, AV-Fuzzer, ABLE, AutoFuzz and SAMOTA.

Law ID GT Violation

Scenarios

1 TTE
2
⇑ # of Seed Queue

3

AV-Fuzzer DriveFuzz LawBreaker ABLE AutoFuzz SAMOTA VioHawk

R-1

( I, C, ↑ ) ✗/253 ✗/164 61m4s /62 23m7s /23 15m49s /16 155m0s /122 8m15s /11
( I, T, ↑ ) ✗/264 ✗/161 47m4s /46 35m15s /34 27m26s /24 126m41s /112 9m37s /13
( I, T,¼) ✗/267 ✗/153 ✗/203 21m19s /23 ✗/157 68m37s /60 13m3s /13
( I, Y, ↑ ) ✗/256 ✗/161 33m3s /35 21m54s /23 10m32s /11 64m22s /55 11m50s /16
( I, Y,¼) ✗/255 ✗/167 103m16s /127 18m32s /20 ✗/157 36m7s /27 8m57s /12

R-2

( I, C, ↑ ) ✗/264 ✗/168 92m7s /84 102m13s /100 ✗/151 ✗/145 7m49s /10
( I, T, ↑ ) ✗/268 ✗/181 64m16s /74 21m32s /25 ✗/157 ✗/192 13m7s /19
( I, T,¼) ✗/267 ✗/146 105m16s /120 21m28s /23 ✗/157 ✗/146 12m43s /18
( I, Y, ↑ ) ✗/258 ✗/145 78m53s /97 30m3s /34 ✗/157 ✗/149 13m16s /18
( I, Y,¼) ✗/262 ✗/171 106m13s /119 25m18s /28 ✗/131 ✗/134 15m11s /21

R-3

( 2L, S, ↑ ) ✗/265 ✗/224 ✗/186 ✗/147 ✗/142 " 5m43s /7
( 2L, B, ↑ ) ✗/238 ✗/156 ✗/183 ✗/186 ✗/142 " 8m11s /10
( 4L, S, ↑ ) ✗/274 ✗/192 ✗/209 ✗/154 ✗/170 ✗/154 129m11s /173
( 4L, B, ↑ ) ✗/241 ✗/164 ✗/170 ✗/180 ✗/167 " ✗/193

R-4

( I, C, ↑ ) ✗/252 ✗/159 ✗/200 95m36s /110 ✗/177 ✗/140 11m33s /16
( I, T, ↑ ) ✗/272 ✗/166 ✗/212 20m20s /21 ✗/177 159m37s /136 7m24s /10
( I, T,¼) ✗/266 ✗/147 ✗/198 ✗/192 ✗/210 ✗/161 7m23s /10
( I, Y, ↑ ) ✗/259 ✗/146 ✗/209 101m28s /113 ✗/138 ✗/143 10m19s /14
( I, Y,¼) ✗/246 ✗/148 ✗/205 ✗/199 ✗/176 ✗/146 6m26s /8

R-5

( I, C, ↑ ) ✗/264 ✗/151 ✗/182 ✗/211 ✗/186 ✗/151 7m7s /9
( I, T, ↑ ) ✗/269 ✗/160 ✗/183 ✗/191 ✗/144 ✗/148 3m47s /4
( I, T,¼) ✗/269 ✗/146 ✗/177 ✗/212 ✗/136 ✗/152 12m43s /18
( I, Y, ↑ ) ✗/260 ✗/139 ✗/174 ✗/199 ✗/148 ✗/145 5m41s /7
( I, Y,¼) ✗/257 ✗/152 ✗/162 ✗/257 ✗/150 ✗/146 8m31s /11

R-6

( I, C, ↑ ) ✗/254 ✗/163 ✗/213 ✗/203 ✗/173 ✗/139 3m49s /4
( I, T, ↑ ) ✗/271 ✗/164 ✗/215 ✗/118 ✗/210 ✗/163 5m42s /7
( I, T,¼) ✗/256 ✗/145 ✗/212 ✗/204 ✗/170 ✗/159 19m48s /29
( I, Y, ↑ ) ✗/261 ✗/139 ✗/208 ✗/195 ✗/170 ✗/158 4m34s /5
( I, Y,¼) ✗/246 ✗/155 ✗/199 ✗/216 ✗/172 ✗/148 8m17s /11

R-7

( I, C, ↑ ) ✗/257 ✗/162 ✗/200 ✗/230 ✗/177 ✗/138 11m2s /15
( I, T, ↑ ) ✗/272 ✗/163 ✗/200 ✗/207 ✗/175 ✗/156 4m26s /5
( I, T,¼) ✗/264 ✗/143 ✗/196 ✗/195 ✗/163 ✗/151 5m42s /7
( I, Y, ↑ ) ✗/261 ✗/141 ✗/199 ✗/205 ✗/177 ✗/152 14m55s /19
( I, Y,¼) ✗/250 ✗/150 ✗/185 ✗/232 ✗/134 ✗/139 3m41s /4

R-8

( I, C, ↑ ) ✗/257 ✗/164 ✗/202 ✗/207 ✗/154 ✗/138 4m57s /6
( I, T, ↑ ) ✗/272 ✗/164 ✗/207 ✗/217 ✗/154 ✗/164 6m56s /9
( I, T,¼) ✗/267 ✗/145 ✗/236 ✗/219 ✗/157 ✗/154 3m33s /4
( I, Y, ↑ ) ✗/261 ✗/144 ✗/192 ✗/206 ✗/161 ✗/155 3m1s /3
( I, Y,¼) ✗/253 ✗/153 ✗/206 ✗/197 ✗/133 ✗/126 ✗/177

R-9 ( I, C, ↑ ) ✗/238 ✗/206 ✗/168 ✗/186 ✗/177 ✗/141 8m36s /11

R-10
( I, C,¼) ✗/249 ✗/157 ✗/188 ✗/198 ✗/141 ✗/145 4m31s /5
( I, T,¼) ✗/260 ✗/157 ✗/194 ✗/221 ✗/148 ✗/146 6m9s /8

1
Road Structure(I/2L/4L): Intersection/2-Lane/4-Lane; Road Shape(C/T/Y/B/S): Crossroads/T-Junction/Y-Junction/Bend/Straight Road; Driv-
ing Direction(↑ /¼): Going Straight/Turning.

2
TTE records the time required to trigger the traffic violation and the time limit is set to 3 hours.

3
# of Seed Queue refers to the number of scenarios to be executed before triggering the violation or reaching the time limit.

4 ": scenario cannot be encoded using SAMOTA’s vector representation; ✗: violation cannot be reproduced in 3 hours.

are needed to make these baseline tools comply with our testing
environment.
Experiment Environment.We conducted all experiments on a
Ubuntu 18.04 server with 314 GB of memory, two Intel Xeon Gold
5215 CPUs, and four NVIDIA GeForce RTX 2080 TIs. This hardware
configuration provided sufficient stability to run our target ADS
and the simulation platform.

5.2 Reproducing Known Traffic Violations

Experiment Design. In this experiment, we evaluated the effec-
tiveness and efficiency of VioHawk in reproducing the 42 known
traffic violations collected in 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐺𝑇 (see §5.1). Here, we tried to
demonstrate the advantages of VioHawk by comparing it with six
baseline tools (see §5.1). Since VioHawk and these baseline tools
all take initial simulation scenarios (seeds) as inputs to activate the
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violation identification. Hence, we additionally prepared 42 initial
simulation scenarios for them (i.e., one initial scenario provided
for the reproduction of each traffic violation). Notably, these initial
scenarios were not meticulously crafted. They only contain the
necessary road structures, the EGO vehicle and the least number of
traffic participants that satisfy the law-specified driving conditions.
Given the initial scenarios, we used each tool to run 42 fuzzing
tasks, and the time limit for each fuzzing task was set to 3 CPU
hours. During the fuzzing testing, we considered two evaluation
metrics: ❶ Time to Exposure (TTE) quantifies the time required
to trigger the desired traffic violation; ❷ # of Seed Queuemeasures
the number of generated scenarios before triggering the violation
or reaching the time limit.
Experiment Results. As shown in Table 6, VioHawk successfully
reproduced 40/42 traffic violationswithin the time limit. For compar-
ison, baseline tools could reproduce at most 13/42 traffic violations.
Furthermore, unfortunately, DriveFuzz [37] and AV-Fuzzer [42]
failed to identify any of the ground-truth violations collected in
𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐺𝑇 . For the violations successfully reproduced by both
VioHawk and baseline tools, VioHawk could save 1.6X~8.9X the
reproduction time. On average, VioHawk only required about 15.0
rounds of mutations to trigger the desired traffic violation. These
key results clearly demonstrate the high effectiveness of VioHawk,
due to the proposed area-based criticality-guided fuzzing.
False Positives. To ensure fair comparisons with existing works,
each baseline tool is enhanced with our violation oracles to observe
the occurrence of target traffic violations (see §5.1). When analyzing
the experiment results listed in Table 6, we manually confirmed
that no false positives were reported. This is mainly because our
violation oracles are implemented based on the area-based traffic
law formalization, which strictly encodes the violation conditions.

As described below, we also conducted a thorough breakdown
analysis on the fuzzing results of each tool.
Breakdown Analysis: VioHawk. Despite the high effectiveness
in violation detection, VioHawk still failed to reproduce 2/42 traffic
violations collected in 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐺𝑇 . After careful analysis, we con-
firmed that the 2 failures were caused by implementation issues
rather than design flaws. To be specific, Commonroad-Reach [36],
the third-party library that VioHawk integrates to calculate the
drivable areas, currently cannot handle complex high-curvature
four-lane roads. Also, when mutating the driving maneuvers of
NPC vehicles at an intersection, LGSVL APIs (i.e., APIs provided
by the simulation platform) cannot correctly set the target lane to
follow. In the future, we would fix these implementation issues to
further improve the usability of VioHawk.

We further conducted breakdown analysis on the time cost of
VioHawk. We found that the average time cost of drivable area
estimation per time frame is only 1.63 seconds, and only about
17% of the total fuzzing time is used to calculate the drivable areas.
To sum up, our area-based formalization of traffic laws is quite
computationally efficient, and meanwhile can offer high-quality
guidance for scenario mutations. Besides, as introduced in §4.4,
3 of the 5 mutation operators utilized by VioHawk can only be
applied at the initial time frame of the scenario, rather than the
most critical frame. Here, we also conducted breakdown analysis
to investigate the consequences of this design choice. Finally, we

found that only 75/426 (i.e., 17.6%) 𝑇0-applied mutation operators
might unexpectedly cause a decrease in the criticality scores of
the scenarios. Hence, we argue that the consequences of these
ineffective mutations are quite tolerable and can be handled by our
criticality-based fuzzing scheduling mechanism.
Breakdown Analysis: LawBreaker and ABLE. Among all base-
lines, LawBreaker [51] and ABLE [56] have the best performance in
violation reproduction. Since ABLE [56] enhances LawBreaker [51]
with optimized GFlowNet model [20] and active learning technique,
it has comparably better performance than LawBreaker [51]. Gener-
ally, reasons are two-fold for the unsatisfactory effectiveness or effi-
ciency of these two tools: ❶ Incorrect quantification of scenario

criticality that misleads fuzzing scheduling.When producing
the violation scenarios of R-1 andR-2 (i.e., traffic-light-related laws
originally supported by these two baselines), LawBreaker [51] and
ABLE [56] mainly consider the distance to the stop line and the EGO
speed to quantify the scenario criticality. However, these discrete
indicators cannot reflect the scenario criticality when the traffic
light is green. In comparison, under the area-based formalization
of traffic laws leveraged by VioHawk, the states of traffic lights are
modeled as the necessary hazardous state for the traffic violation.
❷ Blind Scenario Mutations. In most cases, LawBreaker [51] and
ABLE [56] cannot identify violation scenarios even with about 200
rounds of mutations. Through manual case studies, we found that
they indeed could generate critical scenarios (i.e., quite close to
the scenarios implying ADS traffic violations). However, without
deterministic mutation guidance, it is quite hard for them to finally
trigger the desired violations.
Breakdown Analysis: DriveFuzz, AV-Fuzzer, AutoFuzz and

SAMOTA. Similar to LawBreaker [51] and ABLE [56], these base-
line tools also lack deterministic mutation guidance, consequently
causing unsatisfactory performance. Worse still, without the capa-
bilities of the formalization of complex traffic laws, these tools can
hardly navigate the scenario searching process towards the target
violations.

5.3 Identifying Unknown Traffic Violations

ExperimentDesign.To further demonstrate the utility of VioHawk
in traffic law compliance testing, we chose another ten traffic laws
for evaluation (listed in Table 7). Among these laws, six of them
are newly collected from the N.Y. Driver’s Manual [11] and the
Chinese traffic laws [14, 15], which are not considered in existing
works [37, 51, 55]. Besides, the remaining four of them are traffic
laws considered by existing works [37, 51, 55], but no violation
scenarios have been identified. Similar to the experiment presented
in §5.2, we accordingly prepare the basic initial scenarios as inputs
of VioHawk, and the time limit for each fuzzing task is set to 3
hours. Notably, when violation scenarios were identified on Apollo
7.0, we also tried to reproduce this scenario on Apollo 8.0 (i.e., the
latest version of Apollo), so as to investigate the evolution trends
of ADS against traffic law compliance.
Experiment Results. As summarized in Table 7, with the help
of VioHawk, we found that 9/10 traffic laws could be violated on
Apollo 7.0, and 8/9 violation scenarios can be reproduced even on
the latest version of Apollo (i.e., Apollo 8.0). The 1/9 reproduction
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Table 7: Previously Unknown Traffic Violations of Apollo.

Type ID Source Description

Violation Detected by VioHawk

Apollo 7.0 Apollo 8.0

Right-Of-Way

NR-1 [55]&U.S. Law Vehicles approaching the intersection must give way to vehicles arriving earlier; ✓ ✓

NR-2 [55]&U.S. Law Vehicles should give way to pedestrians when turning at an intersection;

NR-3 U.S. Law Vehicles must decelerate when approaching the crosswalk; ✓ ✓

NR-4 [51]&Chinese Law Vehicles shall not enter a blocked intersection; ✓ ✓

Overtaking

NR-5 U.S. Law Vehicles shall not overtake if the oncoming vehicle is within 200 feet; ✓ ✓

NR-6 Chinese Law Vehicles shall not overtake on the bend; ✓ ✓

NR-7 U.S. Law Vehicles shall not overtake across the solid yellow line; ✓

Parking

NR-8 U.S. Law Vehicles shall not park near a parked vehicle; ✓ ✓

NR-9 [55]&U.S. Law Vehicles shall not park in the intersection; ✓ ✓

NR-10 Chinese Law Vehicles shall not park on the bend; ✓ ✓

failure is because Apollo 8.0 has deployed patches [13] to address
this issue. However, the remaining 8/9 reproducible violations in-
dicate that developers have not promptly addressed these traffic
violations.

6 Discussion

Usability of VioHawk. As shown in Table 5 (i.e., traffic laws
collected in 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐺𝑇 ), given a traffic law under test, we should
first manually determine which pre-defined oracles (see Table 1,
Table 2 and Table 3) should be used to achieve the area-based traffic
law formalization. To further improve the usability of VioHawk,
a possible solution is to automate this procedure by leveraging
advanced AI-based techniques (e.g., Large Language Models).
Applicability of VioHawk to Different Laws. As clarified in
§2.3, VioHawk is compatible with traffic laws that constrain di-
verse driving maneuvers (e.g., parking, braking, turning, overtaking,
etc.) of vehicles. For instance, among the 50 real-world traffic laws
considered by existing works [51, 55, 56], we confirmed that 43/50
traffic laws are related to driving maneuvers, and all of them can
be modeled by VioHawk.
Completeness of VioHawk. Considering the complex nature
of ADS functionalities and the inexhaustible search space of driv-
ing scenarios, it remains an open challenge to achieve complete
verification of ADS safety. Generally, VioHawk is a sound while
incomplete bug-hunting tool for ADS testing rather than a com-
plete verification tool. However, we believe that VioHawk can
still drive practical value for the community. Our case study (see
§5.3) demonstrates that the violations reported by VioHawk can
explicitly facilitate the diagnosis and mitigation of ADS faults.
Lesson Learned. In evaluation, we observed that Apollo only
considers some basic traffic rules (e.g., traffic-light-related) to ensure
traffic law compliance. Code implementations for the compliance
of other traffic laws are either omitted or scattered across different
source files. These improper implementation practices would make
it difficult for ADS developers to debug and fix safety-violation
issues, leaving various bugs unpatched across versions (see §5.3).
To tackle this issue, we strongly suggest that a standardized and
independent module can be developed and deployed in ADS for
guarding traffic law compliance, which can not only improve the
maintainability of ADS code, but also ensure the transferability of
ADS across regions with different traffic laws.

7 Related Work

Scenario-based ADS testing.Most existing works in ADS simu-
lation testing are devoted to detecting general ADS accidents (e.g.,
collisions) [23, 27, 28, 30, 33, 40, 41, 43, 48, 52, 53, 57]. While [31,
32, 37, 51, 56] have ventured into the detection of traffic law viola-
tions, as detailed in §2.3, they cannot effectively identify violation
scenarios without deterministic guidance on scenario mutations.
VioHawk, however, can meticulously induce the EGO vehicle to
drive into the law-specified hazardous areas (i.e., to violate a law).
Code-level ADS Verification. Formal verification methods [18]
leverage mathematical techniques (e.g., mathematical formulas) to
define and assess complex specifications for verifying the compli-
ance of hardware and software systems [25, 26, 35, 38, 39]. Recently,
AVChecker [55] has applied them to verify traffic law compliance
of ADS code. However, without giving simulation scenarios of
violation as proof, it inevitably reports false alarms.

8 Conclusion

In this work, we introduce VioHawk, a simulation-based ADS
fuzzer designed for detecting traffic violations of high-level ADSs.
VioHawkworks by formalizing traffic law regulations as hazardous
driving areas on the map, and applying mutation operations on
the scenario configurations to induce the autonomous vehicle to
drive into law-specified hazardous areas (i.e., to violate a law). We
conducted extensive experiments to demonstrate the advantages of
VioHawk compared to existing tools in identifying traffic violations
of Apollo (i.e., one of the most advanced high-level ADSs). With the
help of VioHawk, we identified 9+8 previously unknown violations
against real-world traffic laws on Apollo 7.0/8.0.
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