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Software diffing (a.k.a., code alignment) is a fundamental technique to differentiate similar and dissimilar code
pieces between two given software products. It can enable various kinds of critical security analysis, e.g., n-day
bug localization, software plagiarism detection, etc. To date, many diffing tools have been proposed dedicated
to aligning binaries. However, few research efforts have elaborated on cross-version Android app diffing,
largely hindering the security assessment of wild apps. To sum up, existing diffing works usually establish
scalability-oriented alignment algorithms, and suffer from significant alignment errors when handling the
large codebases of modern apps.

To fill this gap, we propose APKDIFFER, a method-level (i.e., function-level) diffing tool dedicated to aligning
versions of the same closed-source Android app. APKDIFFER achieves a good balance between scalability
and effectiveness, by featuring a two-stage decomposition-based alignment solution. It first decomposes
the codebase of each app version, respectively, into multiple functionality units; then tries to precisely
align methods that serve equivalent app functionalities across versions. In evaluation, the results show that
APKDIFFER noticeably outperforms existing alignment algorithms in precision and recall, while still having a
satisfactory time cost. In addition, we used APKDIFFER to track the one-year evolution of 100 popular Google
Play apps. By pinpointing the detailed code locations where app versions deviate in privacy collection, we
convincingly revealed that app updates may pose ever-evolving privacy threats to end-users.
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1 Introduction

Currently, end-users or third-party security analysts, who have no access to the app source code,
are in severe need of reliable app diffing tools to help tease out the security or privacy risks of
those ever-evolving wild apps. To be specific, Android apps are frequently updated over time to
maintain usability, e.g., about 25% of popular apps [48] from Google Play release new versions
on a weekly basis. However, those newly deployed app versions are found to leak more privacy
information [55], introduce new bugs [28] or even silently launch malicious backdoors [4, 5]. To
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thoroughly audit whether an app update brings these veiled issues, a fundamental step is to first
infer the code changes caused by the update, that is to diff the code of pre-update version and
post-update version in a fine-grained way. In practice, such a diffing task is usually given at the
method-level (i.e., function-level). With the method mapping in hand, one can concentrate on
examining the added/removed/modified methods to ease the auditing of app updates. Meanwhile,
the alignment information also eases the reverse engineering of the updated app, by migrating the
reversing knowledge (e.g., method profiles) of an old version to the new one.

To date, various diffing tools [6, 13, 24, 27, 34, 42] (e.g., BinDiff [24]) have been proposed dedicated
for aligning binaries. Comparatively, for Android apps, existing research [16, 25, 41, 58, 61, 69]
mostly put an emphasis on repackaged/cloned app detection. They can quantitatively measure how
similar are given apps, while failing to further pinpoint the detailed code changes between similar
apps. There do exist some app diffing works [20, 39], but either with overly coarse granularity (e.g.,
class-level [20]) in diffing or merely adopting straightforward code-structure-based diffing strategy
(e.g., match packages and their belonging methods [39]), which are not resilient to cross-version
obfuscation deviations, code structure refactoring and implementation updates.

Problem Description. In essence, the method alignment has long been formulated as graph
matching problem [24]. It aims to find a solution of method correspondences between two call
graphs that minimizes both node (i.e., methods) discrepancies and edge (i.e., caller-callee relations)
disagreements. However, due to the combinatorial nature of node-to-node comparison and edge-to-
edge comparison, graph matching is theoretically NP-hard [43] and an exact optimal matching can
only be applied to small graphs (e.g., graphs with dozens of nodes). Considering that an Android
app usually contains tens of thousands of methods [47], it is obviously infeasible to scale an optimal
graph matching algorithm to cross-version method alignment of Android apps.

Existing Method Alignment Algorithms. In the field of binary diffing, although the past decade
has witnessed rapid advances in method similarity calculation [15, 23, 29, 31, 42, 44, 59, 60, 67]
(i-e., to measure the similarity between two single methods), less light is shed on the NP-hard
whole-software method alignment problem (i.e., call graph matching problem). To alleviate the
scalability issue of call graph matching, previous binary diffing works [6, 13, 24, 27, 34, 42] usually
establish kinds of approximation algorithms, by neglecting either node-to-node comparison or
edge-to-edge comparison. For instance, the Greedy Search algorithm (e.g., Diaphora [6]) and the
Linear Assignment algorithm (e.g., BinHunt [27]) eliminate edge information. They reduce the
graph matching problem to a bipartite matching problem, which aims to correlate two sets of
discrete nodes rather than connected ones. Alternatively, the Neighbor Search algorithm (e.g.,
Bindiff [24]) simplifies the node-to-node comparison by only trying to align neighbors of already
aligned nodes. Although these approximations help solve the call graph matching problem in
feasible time, significant alignment errors would occur. Besides, in the field of app diffing, some
existing works [39] attemp to reduce the complexity of whole-app method alignment task, by first
matching high-level code structures (i.e., packages) and then matching their belonging methods.
However, the widely existing code-structure-related obfuscation and refactoring would easily cause
error propagation of method alignment.

Moreover, existing works indiscreetly adopt a simplified 1-to-1 method alignment mechanism
(i.e., one method in a version can only be aligned with one method in another version). However,
method extract/inline, which is one of the most popular types of code refactoring [49] and compiler
optimization [32], would probably derive complex 1-to-n or n-to-n method alignment relations
(examples see Figure 1). As highlighted in [32], suppose that buggy or sensitive methods are
extracted or inlined, existing 1-to-1 alignment tools cannot accurately correlate them across versions.
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Our Work. In light of this, we propose APKDIFFER, a scalable, effective and extract/inline-aware
tool dedicated for aligning methods between versions of the same closed-source Android app.
Different from existing alignment algorithms, APKDIFFER tackles the scalability issues of call graph
matching via a novel decomposition-based solution, which can achieve a good balance between
scalability and effectiveness. To be specific, it decomposes the large call graphs of two app versions
into matched pairs of sub-graphs, by clustering methods that serve equivalent app functionalities
across versions. In such a manner, APKDIFFER can avoid computation-heavy large-scale graph
matching and achieve satisfactory scalability by only aligning methods among decent-scaled
sub-graphs. To further ensure high effectiveness, APKDIFFER brings ideas from advanced graph
matching algorithms [18, 38, 68] to comprehensively consider both node and edge consistencies
when deciding 1-to-1 alignment results. Finally, APKDIFFER identifies overlooked n-to-n method
correspondences, by verifying whether callers and callees of already aligned methods are potentially
extracted methods. The challenges and key insights to realize the above ideas are elaborated in §3.

Evaluation Results. We conducted a series of experiments to demonstrate the advantages of
APKDIFFER. Due to the lack of public benchmark datasets for app diffing, we first constructed a
large benchmark dataset from F-Droid [7] apps, containing 150 app versions and over 300,000
ground truth 1-to-1 method mappings. Experimentally, ApkDIFFER shows high effectiveness on
this benchmark dataset, having 96.06%/92.76% precision and 86.70%/81.79% recall when identifying
1-to-1 method mappings between app versions with 1-/5-version-gap. As comparison, APKDIFFER
is noticeably superior to all existing method alignment algorithms in effectiveness, achieving 3.69%
~ 34.86% precision improvement and 16.12% ~ 64.30% recall improvement. Besides, APKDIFFER
can reliably identify n-to-n method correspondences which are overlooked by existing alignment
algorithms, with 84.0% precision and 82.8% recall. Moreover, APKDIFFER has satisfactory efficiency
due to decomposition-based design and can practically scale to complex apps with large codebase.
We also conducted thorough ablation studies to emphasize the importance of each design choice.

Utility of APKDIFFER. To further demonstrate the utility of our work, we utilized APKDIFFER
to assist the privacy assessment of real-world app updates. Notably, previous studies [55, 64]
have already confirmed that Android apps are collecting more user-sensitive privacy information
during the version update process, technically by observing cross-version changes in permission
usage [64] or network traffic [55]. However, without the capability of fine-grained app diffing, these
studies cannot pinpoint the exact code locations where app versions deviate in privacy collection,
consequently hard to achieve an in-depth diagnosis of app privacy issues (e.g., to understand the
intention or threats of evolved privacy-collection behaviors through code-level analysis). To fill
this gap, we utilized APKDIFFER to enumerate all method-level code changes between app versions,
and then automatically checked whether each code change causes a deviation in privacy-collection
behavior (i.e., sensitive API invocation that accesses user privacy).

Following the above idea, we tracked the one-year evolution of 100 popular Google Play apps
(each with over 50 million downloads). Results show that each quarterly update of these apps may
introduce about 11.0% previously unknown privacy-collection behaviors. After classifying the code
locations of these privacy-collection behaviors, we found that about 70% of them are caused by app
functionality updates and the remaining ones occur in version-shared functionalities. With manual
code-level diagnosis, we confirmed that some evolved privacy-collection behaviors are ill-intended
and may stealthily bring new threats (e.g., abuse of user location or identity theft) to user privacy.
Contributions. This paper makes the following contributions:

e We propose APKDIFFER, an end-to-end alignment tool that can precisely and efficiently identify
both 1-to-1 and n-to-n method correspondences across Android app versions.
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Fig. 1. Examples for different types of method alignment relations. Method extract/inline causes 1-to-2
alignment relations and nested method extract/inline probably derives more complex 1-to-n (n>2) or n-to-n
(n > 2) relations.

e We conducted extensive experiments to demonstrate the effectiveness and efficiency of APKDIFFER.
Results on the benchmark dataset show that APKDIFFER is superior to existing alignment method-
ologies in both precision and recall, meanwhile having satisfactory time cost.

e We utilized APKDIFFER to track the evolution of real-world popular apps and conclusively
uncovered the privacy threats of app updates.

2 Background

In this section, we first define the necessary symbols, and introduce the problem formulation. Then,
we review existing alignment algorithms and pinpoint their limitations.

Symbol Definition. The call graph G, of app version Vy can be defined as G, (Ny, E, ). The node
set Ny is a finite set that contains all the app methods, and the edge set E, c Ny x N, represents
the caller-callee relations between methods.

Problem Formulation. Given two app versions V; and V;, the method alignment can be formulated
as a graph matching problem, which aims to identify a solution of node correspondences between
Gr(N;,E;) and G;(Ny, E; ). For ease of expression, the solution of method alignment can be presented
as a matrix P € {0, 1}NXIN!| where P[i, j] = 1 only if the method n! € N, is aligned with the method
ni € N, (otherwise, P[i, j] = 0). Considering the existence of method extract/inline, there might
be different types of method alignment relations across versions, including 1-to-1, 1-to-n or even
n-to-n (examples see Figure 1).

According to the graph theory [56], searching for an optimal solution of node correspondences
across graphs is to find one that maximizes the sum of the node-to-node and edge-to-edge similari-
ties. In the problem context of method alignment, the node-to-node similarity reflects the semantic
and syntactic consistency between two given methods, technically calculated via code similarity
measures [23, 29, 31, 42, 59, 67]. The edge-to-edge similarity further evaluates the consistency of
the caller-callee relations between aligned methods.

Existing Method Alignment Algorithms. Due to the combinatorial nature of node-to-node
comparison and edge-to-edge comparison, the graph matching problem is known to be NP-hard and
an exact optimal algorithm can only work on very small graphs (e.g., < 30 nodes). Therefore, existing
works [13, 22, 24, 27, 34, 42] in method alignment mainly devise algorithms to solve a solution
approximately, sacrificing effectiveness for efficiency. Even worse, they all miss the n-to-n method
correspondences caused by method extract/inline. In the following, we will briefly introduce these
alignment algorithms and their limitations, with symbols defined at the beginning of this section.

o Greedy Search (GS) (e.g., Diaphora [6]) For each n; € Ny, the GS algorithm determines its aligned
method n, € N,, which shares the highest code similarity score with n; among all methods in N;.
First, it ignores the consistency of caller-callee relations between aligned methods, consequently
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producing biased alignment results. Second, it only accepts the locally best alignment solution
even when there exists a globally better one.

o Linear Assignment (LA) (e.g., BinHunt [27]) The LA algorithm reduces the complex graph matching
problem to a bipartite matching problem, which treats the methods of N; and N, as discrete
nodes. Such problem reduction enables one to solve optimal alignment results in polynomial
time (e.g., using the Hungarian algorithm [36]). However, similar to the GS algorithm, since the
topology consistency is ignored, it would probably produce imprecise results.

o Neighbour Search (NS) (e.g., BinDiff [24]) The NS algorithm first identifies an initial set of aligned
methods between N, and N; following specific heuristics (e.g., align methods that refer to the
same constant string variable). Then, it attempts to only align methods that are neighbors (i.e.,
callers or callees) of already aligned ones in a 1-to-1 manner. Although this scheme can largely
eliminate edge disagreements between aligned methods, it suffers from error propagation that
previous alignment errors affect the alignment of remaining methods.

Notably, built on top of the above approximated alignment algorithms, existing app diffing works
(e.g., PEDroid [39]) would additionally leverage code-structure-based codebase decomposition
to further reduce the complexity of the alignment task. For example, PEDroid would first try to
align packages or classes, and then their belonging methods. It assumes that most obfuscators
and cross-version code updates will not affect the internal code structures. Obviously, this strong
assumption easily fails in real-world scenarios.

3 Design Overview

In this section, we will introduce the overall idea of APKDIFFER (see §3.1), the challenges to
implement this idea (see §3.2), our key insights to overcome these challenges (see §3.3), and finally
the workflow of APKDIFFER (see §3.4).

3.1 Overall ldea

The pain point of cross-version method alignment for Android apps is that, released apps usually
contain a large number of methods (e.g., over 60k [47]) due to an unclear boundary between
app codebase and library codebase, making graph-based alignment face severe scalability issues.
Existing works mitigate the scalability issue via approximation algorithms (see §2) at the cost
of noticeable effectiveness loss. To ease such effectiveness-efficiency conflicts, our overall idea is
problem decomposition with two key stages:

Stage-I: Graph Decomposition. Based on a partition metric K, G, and G, are first partitioned
into sets of sub-graphs, denoted as K(G,) = {G},...,GF} and K(G;) = {G}....,G!}. Furthermore,
a sub-graph mapping function F : K(G,) — K(G;) is proposed to identify matched pairs of sub-
graphs.

Stage-1I: Method Alignment. For each matched pair of sub-graphs GX and G/ (i.e., G € K(G,),
G/ € K(G;), F(G¥) = G}), we perform method alignment between G¥ and G, to identify both the
1-to-1 and n-to-n method correspondences.

The decomposition-based solution can improve scalability, because it helps avoid the large-scale
graph matching and reduce the problem scale by only aligning methods among sub-graphs. When
handling limited-scale sub-graphs, we have a chance to deploy a more cautious alignment algorithm.
Hence, it can potentially achieve a good compromise between effectiveness and efficiency.
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Fig. 2. Workflow of APkDIFFER.

3.2 Challenges

However, the two stages (i.e., Graph Decomposition and Method Alignment) of this decomposition-
based solution, if not carefully designed, would harm both the efficiency and effectiveness of
APxDIFrFER. Here, we discuss the non-trivial challenges for the design of these two stages.

Challenges for Designing Graph Decomposition.
o (C1) The scale of sub-graphs got by partition should be neither too large nor too small to achieve

a good performance. When the scale is too large, APKDIFFER would suffer from heavy-weight
computation when aligning methods among sub-graphs. When the scale is too small, the sub-
graph matching process would introduce unacceptable overhead.

e (C2) The decomposition procedure should not introduce significant effectiveness loss of method
alignment. That is, we should try to ensure that two aligned methods, can always be classified
into two matched sub-graphs, which requires a careful design of graph partition metric and

sub-graph matching methodology.
Challenges for Designing Method Alignment.

e (C3) According to the problem formulation (see §2), the call graph matching should compre-
hensively consider both node similarities (i.e., code similarities between methods) and edge
similarities (i.e., consistencies of caller/callee relations between aligned methods), rather than
primarily focusing on one of them like existing alignment algorithms.

¢ (C4) To support the identification of method extract/inline, the method alignment should be
built on top of the complex n-to-n alignment mechanism, which causes exponentially larger
search space than the simple 1-to-1 mechanism. It intuitively poses greater challenges to design
a reliable while computationally feasible alignment solution.

3.3 Key Techniques

To tackle these challenges, we propose two key techniques, namely Functionality-driven Graph
Decomposition and Progressive Method Alignment, and our insights behind are presented as follows:

Functionality-driven Graph Decomposition. Here, our key observation is that, Android apps
are event-driven software, where the app runtime behaviors are triggered through different types
of events, including GUI events, lifecycle events and system events. Each event-handling can be
regarded as a functionality unit of the app. This observation inspires us to propose a functionality-
driven graph decomposition, which can potentially tackle the aforementioned challenges.

o (Tackle C1) To make code reusable and maintainable, developers commonly prefer code modular-
ization [8] to implement each functionality unit with a limited portion of code. Therefore, by
clustering methods that serve the same functionality unit, we can probably achieve a balanced
call graph partition, which produces decent-scaled sub-graphs.
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o (Tackle C2) The aligned methods across versions should expose identical or similar code behaviors,
thus probably serving equivalent functionality units. As such, we can match sub-graphs by
verifying the equivalence of corresponding functionality units across versions, and after that,
only need to align methods among matched sub-graphs. This functionality-driven decomposition
strategy should be more stable than those code-structure-based ones (e.g., package-hierarchy-
based decomposition [39]).

Progressive Method Alignment. According to recent advances [18, 38, 68] in graph matching,
progressive algorithms have attracted a lot of attention due to their high effectiveness and efficiency.
They first identify a sub-optimal solution, and refine it incrementally in adaptive search space, so
as to return a satisfactory solution with acceptable time cost. Borrowing this idea, we design a
3-step progressive alignment algorithm, including Anchoring, Refining and Expanding, to overcome
the challenges mentioned in §3.2.

o (Tackle C3) The Anchoring step solves an initial set of 1-to-1 alignment results by maximizing
the sum of only node similarities. After that, the Refining stage switches the objective function
of alignment to the sum of node similarities and edge similarities, and incrementally mutates
the alignment status of selective methods to see whether it helps boost the objective. In this
way, we can gradually correct previous alignment errors that are caused by ignorance of edge
comparison.

o (Tackle C4) Finally, the Expanding step works by thoroughly verifying whether any neighbors
of 1-to-1 aligned methods are actually extracted methods. The key rationale behind is that, two
aligned methods across versions, even with certain code pieces extracted or inlined, should still
share a high similarity score with each other and thus can possibly be aligned in previous steps.
Besides, the extracted/inlined methods should always be neighbors of the original method on the
call graph.

3.4 Workflow

As illustrated in Figure 2, the general workflow of APKDIFFER consists of following steps:
Stage-I: Functionality-Driven Graph Decomposition.

o Graph Partition: APKDIFFER identifies all functionality units in each app version, and performs
graph partition by grouping methods that serve the same functionality unit.

o Sub-graph Matching: APKDIFFER matches sub-graphs across versions by measuring the equiva-
lence between functionality units.

Stage-II: Progressive Method Alignment.

e Anchoring: APKDIFFER identifies an initial set of 1-to-1 method mappings among each matched
pair of sub-graphs.

e Refining: APKDIFFER refines the 1-to-1 mappings by incrementally correcting alignment errors.

o Expanding: APKDIFFER identifies n-to-n method correspondences by searching overlooked ex-
tracted methods.

4 Approach
4.1 Functionality-Driven Graph Decomposition

As introduced in §3.3, APKDIFFER utilizes functionality unit as the key metric for graph decompo-
sition. Here, we first introduce the definition of functionality units, followed by the functionality-
driven graph partition and sub-graph matching.

Definition of Functionality Unit. Due to the framework-based model and the event-driven
nature of Android apps, developers can accordingly customize different framework callbacks to
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Table 1. The Whitelist of Framework Callback Classes.

Event-Type # of Callback Classes

GUI-Event 82
Lifecycle-Event 7
System-Event 381

handle various runtime events. Hence. all executed methods to handle a specific event, grouped
together, can be viewed as a basic functionality unit of the app. More formally, given the call
graph Gy (Ny, E, ), a functionality unit can be represented as a sub-graph G% (N}, E%) of G, where
N¥ g N,. Each sub-graph G¥(N}, E¥) has only one entry point method entry(G%) , which refers
to a customized framework callback. For any method m € N, m is always reachable starting from
entry(G¥) on the call graph.

Similar to existing works [40, 46], we classify the functionality units into three categories,
according to the type of events to be handled: @ GUI-Event Handlers respond to user actions that
originate from the graphical interface (e.g., button click and text edition); @ Lifecycle-Event Handlers
manage lifecycle state transitions of app or UI components (e.g., creation of activity or fragment);
® System-Event Handlers are executed when the app receives system notifications (e.g., updated
GPS locations).

Functionality-driven Graph Partition. Existing graph partition techniques are usually designed
based on the modularity maximization principle, which aims to group densely interconnected
nodes as a sub-graph. These kinds of partition techniques are widely used in community detection
among social networks [21], object localization in computer vision [62] and so on. However, the
graph partition in APKDIFFER acts as a pre-processing step of method alignment between Android
app versions. It should not only split the call graph into limited-sized sub-graphs with low time
cost, but also ease the precise matching between sub-graphs. As thoroughly discussed in §3.2, the
functionality unit should be a proper partition metric that meets these requirements.

The detailed procedure of Functionality-driven Graph Partition is presented as follows: Firstly,
we identify all app callbacks that are implemented to handle GUI events, lifecycle events or system
events. To achieve this goal, we manually construct a whitelist of framework classes (summarized
in Table 1) where the callback interfaces are defined, and identify app methods that override one
of these framework callbacks. Secondly, for each identified app callback (i.e., the entry point of a
functionality unit), a unique sub-graph is constructed by grouping all methods that are reachable
from this callback method on the call graph.

Functionality-driven Sub-Graph Matching. After the graph partition, we can get a list of sub-
graphs for each app version, i.e., K(G,) = {GL,G2...Gf} and K(G,) = {G}, G%...G}}. Subsequently,
the sub-graph matching aims to find a correspondence between K(G, ) and K(G;,), ie,F: K(G,) »
K(G;). Each sub-graph got by partition uniquely represents a functionality unit and has only one
entry point method. Thus, we choose to match functionality units (i.e., sub-graphs) by correlating
these entry point methods.

o Match GUI-Event Callbacks. The GUI-event callbacks are registered and invoked to handle user
operations on interactive Ul elements. Our key insight is that, conceptually same user interfaces
should trigger consistent app behaviors. Hence, to match GUI-event callbacks, one can verify
whether these two callbacks are bound with identical UI elements across versions. To this end,
recent studies [26, 70] have validated that the identifier name (i.e., ViewIdResource Name) can
be a very reliable clue to determine whether two Ul elements across versions are identical. For
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01 <LinearLayout

02 android:orientation="horizontal" ...>
03  <Button

01 <Linearbayout 04 android:textColor="..."
02android:orientation="horizontal™ ...> 05 android:layout gravity=r. ..

03  <Button 06 android:id="@id/next button"
04 android:id="@id/next button" 0 U —
0s android:layout_width="..." & os s>
06 android:layout_height="..." & 1 oo </Lineartayours>
S \
09 </LinearLayout> z>;l\ \CCi‘l‘LtorlalActlvltyz:jnl) {
01TutorialActivity::onCreate (Bundle argé) ( /|03 gthis.IG = findViewById(0x7£100087); Twik
02 (1) ... . 04 Spthis.kr();
03 this.EW - findViewById (0x7£0c0062) ;™" 05
04 C 08 1 (1) A different password for each site.
05 this.EW.setOnClickListener (new 07 No passwords stored
hashmypass .app.ak (this) ) ; 08 ThtorialActivity: tkr () {
06 .. ) 09 “sthis.LG.setOnClickListener (new
hashmypass.app.tutorial.a(this))
£ 11} [O)
.app.ak::onClick () { 7
urrentItem(...); 0lhashmypass.app.tutorial.a::onClick () (
Skip tutorial 02  if(Lj.getCurrentItem()==2){
03
04
05 else {

06 Lj.setCurrentItem(...);

Fig. 3. Example for matching GUIl-event callbacks between versions of a F-Droid app (Twik-1.3.1 vs Twik-1.3.6).
We follow two steps to determine that two onClick() callbacks can be matched. Firstly, we utilize data-flow
analysis (marked as (1) in the figure) to identify the Ul elements (i.e., this.EW and this.LG) that the callback
methods are bound with. Secondly, we find that two Ul elements share the same identifier name "next_button"
(marked as (2) in the figure).

instance, [70] has extensively evaluated the effectiveness of this ID-based heuristic with real-
world apps, showing only 2.28% false negative rate and 3.1% false positive rate on 42,504 pairs
of cross-version GUI elements. Therefore, we choose to use this heuristic to match GUI-event
callbacks: Firstly, for each callback, we identify the corresponding UI element by tracking the
framework-based callback registration procedure with data-flow analysis. Secondly, we verify
whether two UI elements share the same identifier name to match two given callbacks. For ease
of understanding, Figure 3 shows a running example.

e Match Lifecycle-Event Callbacks. The Android framework allows developers to build lifecycle-
aware app components and Ul components (e.g. activities and fragments). The lifecycle-event
callbacks, which manage the lifecycle state transition, are declared in corresponding component
classes. Thus, we can match these callbacks by verifying whether they belong to identical
component classes across versions. To accomplish this task, we resort to existing research
efforts [71] in class matching.

e Match System-Event Callbacks. Similar to how we match lifecycle-event callbacks, we match
system-event callbacks by matching their declaring classes.

Handling Sub-Graph Overlapping. After matching all these three types of event-handling
callbacks, we can determine the matching relations between two sets of sub-graphs, i.e., F: K(G,)
— K(G;). But notably, the sub-graphs got by partition commonly have overlaps. The overlapping
parts (example see Figure 4) are usually utility modules or library modules, and the methods within
belong to more than one sub-graph. In practice, we will gradually merge these methods with
caller-callee relationships to determine the overlapping parts. Since we need to align methods
among each matched pair of sub-graphs (see §4.2), we should try best to avoid repeatedly aligning
methods within the overlapping parts.

To alleviate this issue, we first extract the list of overlapping parts for app version V, and V;
respectively, denoted as {O, } and {O; }. Here, each o, € {O,} or o, € {O;} is a weakly-connected
component on the call graph of V; or V,, i.e., given any two methods m;, m; € o,, there always exists
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a call path from m; to m;, or from m; to m;. Then, we try to align the overlapping parts across
versions. For each o, € {O,} and o; € {O;}, 0, can be aligned with o, only when they share exactly
the same entry points (i.e., o, and o; can be reached from aligned callbacks on the call graph of
V, and V;). Finally, for each aligned pair (o,,0; ), we remove their containing methods from other
sub-graphs, and mark (o, 0;) as a new matched pair of sub-graphs.

Here, we set a strict policy to match overlapping parts since mismatched overlapped parts
would cause error propagation to method alignment procedure. For matching overlapped parts, we
expect to boost the efficiency of APKDIFFER and avoid introducing alignment errors, thus favoring
precision over recall.

4.2 Progressive Method Alignment

Based on the results of graph decomposition, we seek to identify both the 1-to-1 and n-to-n method
alignment relations among each matched pair of sub-graphs. In this section, we first give a global
picture of the alignment algorithm, then present the algorithm details.

Progressive Alignment Algorithm. Inspired by recent advances [18, 38, 68] in graph matching,
APKDIFFER tries to align methods among sub-graphs in a progressive manner, including 3 key steps
(listed in Algorithm 1): Anchoring, Refining and Expanding. @ The Anchoring step computes the
initial 1-to-1 alignment results with Linear Assignment algorithm, which may produce significant
alignment errors without comprehensively considering the topology consistency. @ The Refining
step is designed to correct the 1-to-1 alignment errors incrementally and iteratively. The key idea
is to design a topology-sensitive objective function to re-evaluate each previously aligned pair, and
seek better alignment solutions in adaptive search space. ® The Expanding step finally tries to
expand the 1-to-1 alignment results to n-to-n ones, by identifying overlooked extracted methods.

For ease of understanding, Figure 5 shows a running example of the above procedure. In the
following, we will introduce the algorithm details of these 3 steps respectively, with symbols defined
in §2 (e.g., alignment results are expressed via a (0,1)-matrix P).

Step-I Anchoring. During Anchoring, we compute initial 1-to-1 alignment results by leveraging
Linear Assignment algorithm (e.g., Hungarian algorithm [36]). To be specific, it searches for an
optimal (0,1)-matrix P; ., by only maximizing the sum of node similarities (i.e., code similarities
between methods, denoted as Sim,,q.), under the 1-to-1 alignment mechanism.

Entry Point Entry Point
o

Button GameActivity::
--onCli t7//]] REDBGame:: R
::onClick() [// newRound() ’ onResume()

//fy '///
” /”III /

Functionality (7 Overlapped |:|
) ™™ 22 e Method

Fig. 4. Example for sub-graph overlapping in a F-Droid app com.phikal.regex-v1.2. The method newRound()
and its callees play the role of game initialization and might be executed by different functionality units.
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Algorithm 2 Progressive Alignment Algorithm.

Input: Sub-graphs of V;, K(G,) = {G},G2...GF};
Sub-graphs of V;, K(G,) = {G},G%...G};
Sub-graph Correspondence, F : K(G,) — K(G;);

Output: 1-to-1 Method Alignment Results: M;;

n-to-n Method Alignment Results: My;

M, < @ MN < &;

tmp < &; // tmp results of 1-to-1 alignment relations

/* Step-1 Anchoring */

for f = (G!, G}) inF do

tmp.put(f, Anchor (G, G1));
/* Step-II Refining */
for Iteration=1to K do
for f = (G.,G}) inF do
Refine(tmp.get(f),G, GI);

/* Step-1II Expanding */

. for f = (G}, G!) in F do

M{, M{, = Expand(tmp.get(f), G, G);

M; =My u M My = My o ML;

return M;, My;

R A U R o A

— _ =
W N = O

—_
=

* _ . i J
P} chor = ArgMaxp Yp[; jj-1 Simpoge(mk, m})

Step-1I Refining. Since the Anchoring step would produce significant alignment errors without
considering edge similarities between aligned methods, the Refining step aims to incrementally
correct this kind of 1-to-1 alignment errors. To enable this capability, we design a new objective
function which integrates both node similarities (Simy,,qc) and edge similarities (Sim,qge), to re-
evaluate the previous alignment solution and seek better ones. We implement Sim,q4, based on
neighborhood consensus measure [72]. That is, to calculate what percent of the local neighbors of
two aligned methods are also correctly aligned with each other. Here, APKDIFFER still works under
the 1-to-1 alignment mechanism.

Pr*efine = argmaxp ZP[i,j]:l Simfusion(m;’ m;)

Simnode(mlrsm{ )+Simedge (mlr’m{)
2

Simfusion (m;, mg) =
To get a satisfactory solution under the above objective function, we propose an iterative Decide-
Search mechanism (i.e., Decide potential misaligned methods and Search for better alignment

solutions) as the optimal policy for this non-linear objective function. For ease of expression, we
denote the (0,1)-matrix during k-th iteration as P(k) and we have P(O) =pP*

refine refine” " anchor
point. In the following, we introduce the Decide-Search mechanism which boosts the objective

score when transforming Pr(:;llnl to Pr(f}ine.

as the starting

e Decide. Given a previously aligned method pair (m., m{) in the k-1 iteration, the D(egide phase of
k

k-th iteration mainly aims to verify whether there exist any m* or m; that Sim fusian(m’r‘ ,ml)
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$im(C,C’) > Sim(B,C") Sim(E,E") > Sim(E,G’) ) Sim(E, E+F) > Sim(E, E’)
~ _ H)

P A

® J

o)'@%ﬁ ©

%, BB, € C 0D {(A,A), (B, B), (C, C), (D, D),
(A A), B,C), (D, D), (E, G} {AA), @), (D, D) E-63) A, ey P (G Oy BB
I
1) Anchoring 2) Refining 3) Expanding

Fig. 5. Running example of Progressive Method Alignment. Firstly, the Anchoring step identifies 4 initial
1-to-1 alignment relations. Secondly, the Refining step determines that (B,C’) and (E,G") might be wrong,
by measuring the topology consistency across versions. Then it marks these methods as unaligned and
re-compute new alignment relations to get 6 1-to-1 alignment results. Finally, the Expanding step identifies
an extracted method F’ and (E, E' + F") forms a 1-to-2 alignment relation.

> Slm}igja)n(m’r, m]) or Sim(i)sion(mi, m/) > Sim(i;.lo)n(mi, m]). If so, (m’,m]) is probably mis-
aligned in the last k — 1 iterations. Accordingly, we reset Pr(szi;)e[i, j] from 1 to 0.

e Search. After the Decide phase, the Search phase tries to seek new possible 1-to-1 alignment
relations for those remaining unaligned methods.

Here, we again leverage the Hungarian algorithm [36] to determine new alignment relations

between these methods based on re-computed pairwise similarity scores Simj([k) -
usion

The Refining stage terminates when no new alignment relations can be found or the pre-defined

limit of iteration is reached (set to 3 in the prototype of APKDIFFER).

Step-III Expanding. Finally, the Expanding step seeks to identify overlooked method extract/inline.
Compared to previous two steps, 1) The objective function should be further adjusted to support the
n-to-n alignment mechanism. For ease of expression, given two method sets C, = {m, .., m"} ¢ N,
and C; = {m}",...,m"} ¢ N;, we define symbol ¢p(C,,C;) to denote the n-to-n alignment relation
between C, and Cy, i.e., V m’r eC,,V m{ € C;, P[i, j] = 1. Due to the characteristics of method
extract/inline, methods in C, or C; should always be adjacent to the call graph. 2) New similarity
metric Simg,; should be defined to evaluate the score between two sets of methods rather than two
single methods. Basically, we can calculate Simge; (Cy, Cy) with Sim pyion (7(Cr), 7(Ct) ), where ()
denotes a virtual method which is generated by merging all methods back to their corresponding
callers in the given method set.

P:xpand = argmaxp Y4,(c,.c,) Simset(Cr, Ct)

Simger (Crs Ct) = Simfusion(ﬂ'(cr)s ﬂ(Ct) )
Theoretically, the n-to-n alignment mechanism causes exponentially larger search space than
the simple 1-to-1 mechanism, making it a computationally intensive task to identify method
extract/inline. Based on key observations highlighted in §3.3, we figure out a reliable algorithm

to solve a near optimal solution efficiently. Specifically, with the high-quality 1-to-1 alignment
results Pr(:}ine
unaligned callers or callees of those already aligned methods. For simplicity, we suppose that

there exists an aligned pair of methods (m’, m}) and m! has an unaligned callee m*. The method
k

r

got from k-iteration refinement, we can search potentially extracted methods among

mF is viewed as an extract method only when Sim sion (({ml, mf}), ml) > Sim ysion (ML, ml),

implying that merging m* back to mi at the callsite makes m’ more similar to m]. Furthermore, if
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the aligned pair (({m., m*}), m) still have unmatched callers or callees, we repeat above process
to check whether there exist a nested method extract/inline.

5 Evaluation

We conducted experiments to extensively evaluate the effectiveness (RQ1, see §5.2) and the efficiency
(RQ2, see §5.3) of APKDIFFER, including an ablation study to measure the contributions of its two
key techniques (RQ3, see §5.4).

5.1 Experimental Setup

Prototype. We implemented a prototype of APKDIFFER with over 6,400 lines of Java code. Techni-
cally, our prototype uses FlowDroid [11] for call graph construction, and also optimizes FlowDroid
to identify more app callback methods with an expanded list of callback interfaces (listed in Table 1).
Moreover, our prototype uses Backstage [37] (a Ul analysis framework) to associate UI elements
with their corresponding callback handlers. Our implementation extends Backstage to support
more types of Ul elements (i.e., from 58 types to 82 types). As mentioned in §2, APKDIFFER doesn’t
aim to design a new code similarity function, but still relies one for code alignment. With a sys-
tematic evaluation of existing works [23, 29, 31, 42, 59, 67], our prototype uses a simple Jaccard
distance-based [63] code similarity calculation method.

Baselines. As thoroughly summarized in §2, the method alignment algorithms used by existing
diffing tools can be classified into three categories, namely Greedy Search (GS), Linear Assignment
(LA) and Neighbor Search (NS). Therefore, we mainly compared APkDIFFER with these three
alignment algorithms. Since there are no public implementations of these algorithms for Android
apps, we re-implemented these algorithms with over 800 lines of Java code. In particular, we
implemented the LA algorithm with the classic Hungarian algorithm [36]. Following the heuristics
proposed in [24], our implementation of the NS algorithm first determines the initial alignment
results by correlating methods that refer to the same constant string, and then gradually aligns
the callers and callees of the aligned methods. To make a fair comparison, the above baseline
implementations use the same code similarity function as APKDIFFER. Besides, in the field of app
diffing, PEDroid [39] is a representative tool that has the end-to-end capability to align methods
across different versions of the same app. Hence, we also directly compare ApPKDIFFER with PEDroid
to demonstrate the advantages of our work.

App Datasets. Our evaluation requires a dataset consisting of cross-version Android apps. To the
best of our knowledge, there are no such datasets that are publicly available. Hence, we decided to
construct such a dataset from scratch based on apps from the F-Droid Open-source App Market [7].
During the app selection, to ensure the representativeness of the dataset, we filter those toy apps
with less than 4,000 methods in the released APk file, or with less than 5 released app versions.
Furthermore, as detailed in §5.2, the ground truth method mappings between APK files should
be obtained from the compiling process of the app source code. To ensure the success of app
compilation, we devoted great manual efforts in setting up the compilation toolchain for different
app versions, fixing outdated third-party dependencies, enabling code obfuscation and compiler
optimization, etc. Finally, we got 150 ready-to-compile app versions of 50 diverse apps, including
Game, Video Player, Device Tool, etc. Specifically, for each app, we collected 3 released versions (V,,
Vg, V,) with fixed version gaps, i.e., Vg=V,+1 and V}, =V, +5. From these app versions, we constructed
two app datasets with different version gaps for the evaluation: @ Dataseta; contains 50 app pairs
whose versions are (Vy, Vp); @ Datasetys contains 50 app pairs whose versions are (Vy, V).

Determining Code Similarity Measure. The key contribution of our work is to propose an
accurate and scalable method alignment algorithm dedicated for diffing the entire codebases of
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app versions, while not a more reliable code similarity measure to compare two single methods. In
real practice, APKDIFFER can cooperate with different similarity calculation techniques to compute
method-to-method similarity scores (i.e., node-to-node similarity in call graph matching). After
a systematic review of the literature, we find that existing code similarity measures [15, 23, 29,
31, 42, 59, 60, 67] mostly work on binaries, without support for Android apps. Here, we try our
best to establish three method-level similarity calculation techniques for Android apps: @ Simr:
AndroSim [22] is a module implemented in AndroGuard [2]. AndroSim leverages compressor-
based algorithms to compute the Normalized Compression Distance (NCD) [19] distance between
two normalized methods as their similarity scores. @ Simr,: Centroid [16] encodes the structural
characteristics of each method CFG into a 3-dimensional token and compute the token distance
as the similarity score between methods. Since Centroid is not open source, we implemented it
carefully by following the technical details presented in the paper with over 2,200 lines of Java
code. ® Simrs: Existing works [59, 60] have validated that one can extract stable features from
methods as the clue for similarity calculation. Following such practices, we extracted 4 types of
features (listed in Table 2) for each app method. After that, we calculated the Jaccard distance [63]
between feature sets of two methods as their similarity score.

Table 2. Extracted features to implement Simrs.

Feature Description

Numeric Feature  Integer, Long, Float, Double with Constant Values

String Feature References to Constant String
API Feature Invoked Platform/System APIs
Instruction Feature Number of Switch/ Throw/Ret Instructions

Table 3. Effectiveness of different similarity measures.

imilari D .
Similarity Measure _ Dataselsim_
precision@1

Simrq 59.61%

Simr; 29.68%

Simrs 67.53%

From above three established similarity calculation techniques, we seek to pick up the one with
the best performance to be utilized in APkDIFFER. To evaluate the performance of these similar-
ity measures, we constructed another dataset Datasets;,, by following the similar construction
methodology of Dataseta; and Datasetys. To be more specific, we downloaded another 50 F-Droid
apps (each app with two randomly selected versions) and got 66,927 true 1-to-1 method mappings
among them.

Eventually, as shown in Table 3, we measured the top-1 precision (denoted as precision@1) of
these three similarity calculation techniques on Datasets;,, and Simrs has the best performance. But,
it is surprising that even Simrs has a low top-1 precision (i.e., 67.53%). After thorough investigation,
we find the low top-1 precision is mainly caused by numerous simple methods in Android apps
(e.g., wrapper methods, getter/setter methods), which are hard for code similarity measures to
differentiate. Even though, APKDIFFER achieves good results in aligning such methods, with the
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design of graph decomposition and progressive method alignment. Besides, to prune error alignment
results during method alignment, only method pairs whose similarity scores exceed a pre-defined
threshold can be aligned. We set the threshold to 0.4 since the similarity scores of 97.3% true method
mappings in Dataset;;,, exceed 0.4.

Environment. All our experiments are conducted on a Ubuntu 18.04 server with 216 GB memory
and 64 CPU cores (Intel Xeon Gold 5218) running at 2.30 GHz.

5.2 Effectiveness Evaluation (RQ1)

Inspired by the evaluation design of existing works on C/C++ binaries [13, 42], we first evaluated
the effectiveness of APKDIFFER in 1-to-1 method alignment. In addition, different from all existing
works, APKDIFFER supports n-to-n method alignment. Thus, we further designed experiments to
measure its effectiveness in n-to-n method alignment.

5.2.1 Evaluating 1-to-1 Method Alignment. To evaluate the effectiveness, we need a ground truth
dataset that labels the 1-to-1 method mappings between app versions. However, to the best of our
knowledge, there is no such public benchmark for Android apps. Therefore, we first constructed a
ground truth dataset, and then compared APkDIFFER with baselines on it.

Ground Truth Construction. Following the practice of existing works [13, 42], we labeled 1-to-1
method mappings for the collected app datasets Dataseta; and Datasetas in two steps. First, we
compiled the source code of V;, V5 and V, for each app (with common code obfuscation and
compiler optimization enabled) and collected the built APK files as APK,, APKg and APK,. During
the compiling process, we also collected the generated ProGuard [9] mapping files, which record
the original non-obfuscated method signature (i.e, package/class/method name) for each method in
the built app. Second, we correlated the methods between APK, and APKg, and between APK,
and APK,, with the help of their ProGuard [9] mapping files. The principle for method correlation
is simple, i.e., two methods can be mapped if they have identical original method signatures. Note
that we excluded method mappings from framework packages (e.g., java.”, javax.”, kotlin.”, kotlinx.”,
android.support.” and androidx.”) to enlarge the diversity of ground truth data. It is also notable
that our dataset already includes a certain proportion of method pairs with significantly changed
implementations but the same original method signature before obfuscation, especially those with
a 5-version gap.

In all, we labeled 158,999 and 152,703 method mappings for Dataseta; and Datasets, respectively.
Note that the labeled method mappings do not contain n-to-n method alignment relations, which
would be evaluated in §5.2.2. In the below, we compared ApkDIFFER with the baselines in 1-to-1
method alignment on Dataseta; and Datasetas.

Experiment Design. We use precision and recall to evaluate the effectiveness of APKDIFFER and
baselines in 1-to-1 method alignment. The two metrics are calculated as follows, where GT refers
to ground truth method mappings and R refers to the set of results returned by the alignment tool.

GTOR|  poeql] = IGTORI

Precision =
[R| |GT]

Since APKDIFFER supports n-to-n method alignment, it may return mappings between two method
sets, e.g., (Cr,C;) where C ¢ N, and C; ¢ N;. We mark (C,, C;) as a correct mapping if there exists
a ground-truth method mapping (m,, m;) such that m, € C, and m; € C;, when evaluating the
effectiveness of 1-to-1 method alignment.

Experiment Results. The evaluation results are presented in Table 4. We can find that APKDIFFER
significantly outperforms all baselines in both precision and recall on both datasets. We are glad to
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Table 4. Effectiveness Results in 1-to-1 Method Alignment.

Tool Dataseta; Datasets
avg. precision avg. recall avg. precision avg. recall
Greedy Search 65.57% 64.64% 57.90% 56.39%
Linear Assignment 65.66% 64.81% 58.73% 57.44%
Neighbor Search 92.37% 70.58% 87.33% 64.07%
PEDroid 90.31% 22.40% 89.24% 33.21%
APKDIFFER 96.06% 86.70% 92.76% 81.79%

! avg. precision = (precision(app;) + ... + precision(appy)) / N
% avg. recall = (recall(app,) + ... + recall(appn)) / N

find that, even on Datasetps, APKDIFFER achieves over 90% precision and over 80% recall, which
demonstrates APKDIFFER as a useful tool for app diffing.

We manually investigated the alignment errors produced by these baselines. The key reason
for the poor performance of GS and LA lies in that, they ignore the edge relations when aligning
methods; thus they cannot determine the correct method mapping when there exist multiple similar
candidate methods. NS falls short due to the error propagation, i.e., when a method is aligned
incorrectly, all its neighbors would be wrongly aligned. The main reasons for the unsatisfactory
performance of PEDroid [39] are twofold: (1) PEDroid evaluates the similarity of cross-version
methods solely based on normalized instructions, overlooking caller-callee relations, which makes
it difficult to distinguish between methods with significant modifications or minimal instructions;
(2) PEDroid employs heuristic-based package matching and class matching strategies to decompose
codebases. To be more specific, it first identifies identical packages that have identical classes, then
identifies similar packages among those sharing the same hierarchical relationships with identical
packages, matches similar classes among matched packages based on implementation features, and
finally matches methods among matched classes. Obviously, this decomposition strategy is not
resilient to code optimization, obfuscation, and refactoring, which might alter package hierarchies
or class structures. Compared with the baselines, APKDIFFER not only comprehensively considers
the graph structure during method alignment, but also introduces a progressive method alignment
strategy to correct previous alignment errors. Also it is important to note that, our design of
functionality-driven sub-graph matching also contributes to the high effectiveness of APKDIFFER.
More specifically, APKDIFFER has 97.77% precision and 96.81% recall when matching sub-graphs
(i.e., handler callbacks) between app versions in Dataseta;, 97.56% precision and 96.76% recall when
aligning those in Datasetas. The detailed matching results for different categories of functionality
units are presented in Table 5.

APKDIFFER also produced certain alignment errors (i.e., false positives and false negatives). We
took a close look at these alignment errors and find the reasons are three-fold.

e (causing 58.8% of FNs) First, APKDIFFER constructs sub-graphs by traversing the call graph
and clustering methods that are reachable from the handler callbacks. However, due to the
unsoundness [11] of static call graph construction and incompleteness of callback whitelist
(Table 1), 11.26%/11.73% ground-truth method mappings are missed during call graph traversal
of apps in Dataseta;/Datasetps. These methods are thus not involved in the method alignment
procedure.

e (causing 30.9% of FPs and 19.4% of FNs) Second, as demonstrated in Table 5, although
APKDIFFER shows high precision and recall in matching sub-graphs, there still exist certain
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Table 5. Breakdown Analysis of Functionality-driven Sub-graph Matching.

Event Dataseta; Datasets
Type avg. precision avg. recall avg. precision avg. recall
GUI-Event 95.73% 94.64% 92.32% 91.75%
Lifecycle-Event 99.95% 99.77% 99.50% 98.85%
System-Event 96.21% 96.04% 94.19% 93.29%

! avg. precision = (precision(app,) + ... + precision(appy)) / N
2 avg. recall = (recall(app;) + ... + recall(appy)) / N

mount of mismatched sub-graphs that mislead the method alignment procedure. We also
collect false positives and false negatives method alignment results that occur among these
mismatched sub-graphs.

e (causing 69.1% of FPs and 21.8% of FNs) Third, the remaining alignment errors all occur
among correctly matched sub-graphs. Although the signatures of some methods keep the
same during version updates and are collected in our ground-truth dataset, huge code changes
are made on the method implementation. This kind of methods are hard to be correlated
with totally different implementation.

5.2.2  Evaluating n-to-n Method Alignment. In all, APKDIFFER reports 2,989 n-to-n method mappings
in Datasetp; and 6,433 method mappings in Datasetps. However, since there is no ground truth
for the n-to-n method mappings, we cannot directly report the effectiveness of APKDIFFER in
n-to-n method alignment. In fact, it still remains an open challenge [10, 17, 33, 50] to construct a
benchmark for n-to-n method alignment, due to the huge manual labeling efforts. To evaluate the
precision and recall of APKDIFFER in n-to-n method alignment, we designed the following two
separated experiments. It is worth noting that we did not compare APKDIFFER with the baselines
here because they do not support n-to-n method alignment.

Evaluating False Positives. Our experimental methodology is to randomly sample a subset of
n-to-n method mappings returned by APkDIFFER for manual verification. Specifically, we selected
100/2,989 and 100/6,433 n-to-n method mappings reported by our tool on Dataseta; and Datasetas,
respectively. To avoid the biases of manual verification, each n-to-n method mapping was checked
by two authors, each of whom has at least 3-year experience in Android app reversing. After the
manual verification, we found that APKDIFFER reports 88 and 80 correct method mappings on
Datasetp; and Datasetys, respectively. That is, APKDIFFER achieves a precision of 84.0% (=168/200)
in n-to-n method alignment.

Evaluating False Negatives. To evaluate the false negatives, our methodology is to construct
a small set of true n-to-n method mappings and verify how many of them have been reported
by APkDIFFER. To help build the n-to-n method mappings, we resorted to RefMiner [65], which
can identify extract/inline candidates with AST-based source statement matching. By applying
RefMiner in analyzing the code repository of the app dataset, we got 80 and 315 method extract/inline
pairs from Datasetp; and Datasetys, respectively. However, after manual validation, we found
only 227 pairs are correct method mappings. The wrong mappings are mainly caused by design
limitations [51] of RefMiner. In all, we found APKDIFFER successfully identifies 188 of the 227 true
method mappings. That is, APKDIFFER achieves a recall of 82.8% (=188/227) in n-to-n alignment.

In the above two experiments, we also found some errors of APKDIFFER in n-to-n method
alignment, which are mainly caused by two reasons.
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Table 6. Efficiency Results in Method Alignment (RQ2).

Dataset Dataset
Tool Al A5

avg. cost max. cost avg. cost max. cost

Greedy Search 349s 1,650s 448s 3,706s
Linear Assignment  1,183s 8,210s 1,832s  21,075s
Neighbor Search 459s 2,507s 411s 2,356s
PEDroid 8.0s 29.4s 9.6s 28.2s
APKDIFFER 521s 2,770s 538s 2,617s

! avg. cost = (cost(app;) + ... + cost(appn)) / N
% max. cost = max(cost(app1), ... , cost(appn))

e (causing 78.1% of FPs and 82.1% of FNs) First, APKDIFFER obtains the n-to-n method map-
pings by expanding 1-to-1 mappings (see §4.2). Thus, errors in identifying 1-to-1 method
correspondence inevitably propagate to the expanding procedure.

e (causing 21.9% of FPs and 17.9% of FNs) Second, during version updating, method extract/inline
operations are usually accompanied with additional code updates (e.g., non-negligible code
changes are applied on the extracted code pieces). These code changes make it hard to
determine whether a target method is actually an extracted method or a newly added method
during version update.

Despite these limitations, the near 90% precision and recall on Dataseta; and near 80% precision
and recall on Datasetps indicate that APKDIFFER is an effective end-to-end automated solution for
identifying method extract/inline across app versions.

5.3 Efficiency Evaluation (RQ2)

We evaluated the time cost of APKDIFFER in aligning app versions from Dataseta; and Datasetps.
As shown in Table 6, APKDIFFER costs about 500s on average to align app versions from Dataseta;
and Datasetps. To be specific, 19.2% of the runtime is spent on static call graph construction and UI
analysis, 23.9% on call graph decomposition and the remaining 56.9% on method alignment. We
also compared ApkDi1rrER with four baselines (i.e., GS, LA, NS and PEDroid). The average time
cost of APKDIFFER is slightly more than that of GS and NS. This is mainly because APKDIFFER is
enabled with the additional capability of identifying n-to-n method mappings. Among all these
tools, LA costs the most time, because the computational cost of the Hungarian algorithm is O(n*).
Impressively, PEDroid requires only about 10s to align two app versions. The primary reason is
that PEDroid relies on lightweight heuristics to decompose the codebase (e.g., package hierarchy
and class structure). However, as demonstrated in §5.2, this pursuit of high efficiency comes at the
expense of unsatisfactory effectiveness of method alignment.

As shown in Table 6, we can also find that APKDIFFER can practically scale to complex apps
with large codebase (e.g., less than 0.5h to align the app with over 40,000 methods). Surpris-
ingly, APKDIFFER has better performance on large apps even when compared to GS which is an
efficiency-oriented approximation algorithm. This mainly owes to the graph decomposition design
of APkDIFFER, which limits the matching scope into small sub-graphs.
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Table 7. Ablation Study Results on Key Techniques of ApkDIFFER (RQ3).

. Dataset Dataset,
Evaluation Target Tool a1 43

avg.  avg. avg. max. avg. ~ avg. avg. max.
precision recall cost cost precision recall cost cost

APKDIFFERS  90.60% 79.82% 1,244s 7,710s  82.84% 74.02% 1,821s 15,011s
Functionality-Driven  APKDIFFER:  90.33% 65.28% 238s 817s 83.77% 64.90% 224s 901s
Graph Decomposition APKDIFFER,  88.10% 71.47% 305s 1076s 81.65% 67.13% 329s 993s
APKDIFFER  96.06% 86.70% 521s 2,770s 92.76% 81.79% 538s 2,617s

APkDIFFER(GS) 80.85% 72.94% 485s 2,561s 76.30% 66.76% 480s 2,470s

Progressive Method ApPKDIFFER(LA) 86.29% 77.80% 519s 2,643s 78.80% 68.95% 508s 2,610s
Alignment ApkDIFFER(NS) 93.71% 83.02% 510s 2,587s 88.87% 75.47% 466s 2,571s
APKDIFFER 96.06% 86.70% 521s 2,770s 92.76% 81.79% 538s 2,617s

! APKDIFFER® denotes APKDIFFER without Functionality-Driven Graph Decomposition

2 APKDIFFER, /p denotes replacing Functionality-Driven Graph Decomposition with class-based or
package-based decomposition

3 ApPkDIFFER(*) denotes replacing Progressive Method Alignment with baseline alignment algorithms

5.4 Ablation Study (RQ3)

APkDIFFER features two key techniques to provide scalable and effective cross-version method
alignment, i.e., Functionality-Driven Graph Decomposition and Progressive Method Alignment. We
conducted experiments to evaluate how do these two techniques facilitate cross-version app diffing.

Ablation Study on Graph Decomposition. APKDIFFER introduces Functionality-Driven Graph
Decomposition to boost the efficiency of method alignment by splitting a single call graph into many
small sub-graphs. Thus, we first removed the graph decomposition from ApkDIFFER to see how
the efficiency and effectiveness of APKDIFFER was affected. The experiments were conducted on
Datasetp; and Datasetps and the effectiveness was measured on the ground truth of 1-to-1 method
mappings. The evaluation results are shown in Table 7. We can find that graph decomposition
largely improves the efficiency of APKDIFFER. Both the average time cost and the maximum time
cost of aligning a pair of app versions have been reduced by graph decomposition. More surprisingly,
graph decomposition also noticeably improves the precision and recall of method alignment. The
main reason is that method alignment is easier to achieve good performance in a smaller matching
scope. The results clearly render the functionality as an appropriate granularity to decouple Android
apps for method alignment, which improves both efficiency and effectiveness.

We conduct a comparative analysis between our functionality-driven codebase decomposition
approach and two conventional structural decomposition methods: (1) class-based decomposition
(first matching classes across apps, then aligning methods within matched classes) and (2) package-
based decomposition (first matching packages across apps, then aligning methods within matched
packages). Specifically, we adopt ApkDiff [20] and LibPecker [71] as representative baselines for
class-based and package-based decomposition, respectively. To ensure fair comparisons, we utilize
the class/package matching results generated by these baseline tools and apply our Progressive
Method Alignment technique to matched classes or packages. As demonstrated in Table 7, the
existing code-structure-based methods outperform our functionality-driven approach in efficiency,
primarily due to the computational overhead of precisely determining functional boundaries in
our method (e.g., requiring intensive call graph traversal to identify functionality-relevant code).
However, as demonstrated in Table 5, our decomposition methodology is more resilient to code
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obfuscation and cross-version code updates, thus having more satisfactory precision/recall in
method alignment.

Ablation Study on Progressive Method Alignment. APKDIFFER proposes Progressive Method
Alignment to improve the accuracy of method alignment, which also supports n-to-n method
alignment. To evaluate how this technique helps APKDIFFER, we created three new baselines by
replacing the progressive alignment framework in ApkDIFFER with the three baseline alignment
algorithms (i.e., GS, LA, and NS). By comparing APKDIFFER with these new baselines, we can directly
demonstrate the advantages/disadvantages of Progressive Method Alignment. Table 7 summarizes
the comparison results on Datasetp; and Datasetps for 1-to-1 method alignment. Based on the
results, we can find that though Progressive Method Alignment costs slightly more time than other
alignment algorithms, it significantly improves the precision and recall of method alignment.

6 App Evolution Study

In our evaluation, APKDIFFER shows appealing performance in aligning methods across different
versions of the same Android app. Particularly, to further demonstrate the utility of our work, we
leveraged APKDIFFER to perform Longitudinal Privacy Testing [55, 64] on real-world Android apps
to uncover veiled privacy issues of app updates.

6.1 Study Design

Novelty of Our Study. We note that this paper is not the first to explore this problem. However,
existing studies [55, 64] merely confirmed that wild apps are collecting more privacy-sensitive
information from an outside view, e.g., by observing the cross-version changes of permission
usage [64] or network traffic [55]. Without the capability of fine-grained app diffing, they cannot
further pinpoint the detailed code locations where two app versions deviate in privacy collection,
making it hard to diagnose identified privacy issues at the code-level, e.g., to analyze the developer
intention, code context or privacy risk of those evolved privacy-collection behaviors. To the best of
our knowledge, there are no existing works that utilize fine-grained code alignment techniques to
systematically conduct such a study. One possible reason could be, existing alignment tools cannot
reliably handle complex real-world apps.

To fill this gap, we choose to leverage APKDIFFER, a reliable code alignment tool, to assist the
privacy assessment of app updates. Given an app update, APKDIFFER can enumerate all method-
level code changes between pre-update version and post-update version. As such, analysts can
thoroughly inspect whether each code change implements previously known privacy-collection
behaviors. Through this study, we mainly want to emphasize the usability of APKDIFFER in auditing
complex real-world apps. Here, we do not quantitatively compare APKDIFFER with baseline tools,
mainly because one can hardly obtain the ground-truth method mappings between real-world app
versions.

Research Questions. Generally, we considered three research questions to run this empirical
study. In §6.2 (RQ1), §6.3 (RQ2) and §6.4 (RQ3), we introduce the methodologies to investigate these
questions and provide answers to them.

e RQ1. How do the privacy-collection behaviors generally evolve through app updates?
e RQ2. What are the causes of privacy-collection deviation across versions?
o RQ3. Do the evolving privacy-collection behaviors pose threats to end-users?

Dataset. We constructed a dataset containing real-world Android apps for this study (i.e., Datasetgp).
First, we randomly collected 100 popular apps from the Google Play Store, each of which has been
downloaded over 50 million times. These apps cover different app categories, e.g., Photography,
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Table 8. Evolution Trends of Privacy-Collection (RQ1).

pebpre pcbpost Evolution Trends
upch dpcb  upchb apcb CR AR DR

Voi Vo2 34,803 3,040 34,803 3,921 18.4% 10.4% 8.0%
Vo2 Vo3 35,145 3,547 35,145 4,489 20.8% 11.6% 9.2%
Vos Vo4 35,861 3,100 35,861 4,317 19.0% 11.1% 8.0%

Vpre Vpast

! Changing Rate (CR) = (# of apcb + # of dpcb) / # of pcbpye
? Addition Rate (AR) = # of apcb / # of pcbpy.
? Deletion Rate (DR) = # of dpcb / # of pcbpye

Shopping, Video, etc. Second, for each app, we downloaded their quarterly snapshots released in a
year from Androzoo [3], which are denoted as Vo1, Vi2, Vo3 and Vg, respectively. In this study,
we practically track the 1-year evolution of collected apps in Datasetgp, by diffing the quarterly
versions of each app (i.e., Vo1 <> Vo, Voo <> Vps and Vps < Vpu).

6.2 RQT1: Evolution Trends of Privacy-Collection

Methodology. We explored the evolution trends of privacy-collection behaviors mainly by in-
specting what percentage of source API invocations (i.e., APIs that access privacy information)
are unvaried/added/deleted during the version update. Specifically, given a pre-update version
Vyre and a post-update version Vy,: (€.8., Vo1 < Vp2), we first identified all privacy-collection
behaviors (i.e., invocations of source APIs) among these two versions, according to an API whitelist
curated by SuSi [54]. After that, with the help of APKDIFFER, we correlated these privacy-collection
behaviors across versions, and further classified them into 3 categories. For ease of expression, the
privacy-collection behavior is denoted as pcb in the following of this section.

o Unvaried Privacy-Collection Behavior (upcb): pcby € Vy,r. and pcby, € Vo5, form a pair of upcb,
only if 1) the caller methods of pcb, and pcb, can be aligned by APKDIFFER, and also 2) pcby
and pcb, invoke same source APL

o Added Privacy-Collection Behavior (apch ): After identifying all upcb pairs, we view each remaining
peb € Vyost as apceb.

o Deleted Privacy-Collection Behavior (dpch): Similarly, each remaining pcb € V. is viewed as dpcb.

Results. In total, APKDIFFER can successfully perform method alignment on 97/100 apps in
Datasetgp, the released APKs of which contain 90,905 methods in average. ApPkDIFFER failed
on 3/100 apps due to implementation issues of Backstage [37] and Soot [66], and we plan to fix
them in future. Table 8 presents the 1-year evolution trends of these 97 apps. In general, the
quarterly version updates might introduce 11.0% (=(10.4%+11.6%+11.1%)/3) previously unknown
privacy-collection behaviors and also delete 8.4% (=(8.0%+9.2%+8.0%)/3) at the same time. Notably,
existing studies [55, 64] also reported a similar finding, that is wild apps are accessing more privacy
information during version updating. But, as clarified in §6.3 (RQ2) and §6.4 (RQ3), by additionally
knowing the detailed code locations of those evolved privacy-collection behaviors, we could carry
out further in-depth diagnosis of identified privacy issues.

6.3 RQ2: Causes of Privacy-Collection Deviation

Methodology. Answers to RQ1 reveal that, the privacy-collection behaviors of studied apps are
continuously evolving through app updates. In addition, we try to probe the causes of those
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Table 9. Potential Causes of Privacy-Collection Deviation across Versions (RQ2).

Factor 1: Functionality Updates Factor 2: Library Integration

Vore  Vpost apcb dpcb apcb dpcb
F-ADD F-EQ F-DEL F-EQ LIB NON-LIB LIB NON-LIB

Voi  Voz 2743(70.0%) 1,178 (30.0%) 1,822 (60.0%) 1,218 (40.0%) 3,458 (88.2%) 463 (11.8%) 2,550 (83.9%) 490 (16.1%)
Vor Vo3  3.038(67.7%) 1451(32.3%) 2,179 (61.4%) 1368 (38.6%) 3,739 (83.3%) 750 (16.7%) 2,970 (83.7%) 577 (16.3%)
Vos  Vos 2978(69.0%) 1,339 (31.0%) 1,776 (57.3%) 15324 (42.7%) 3,806 (88.2%) 511 (11.8%) 2,453 (79.1%) 647 (20.8%)

! F-Add refers to added functionalities, F-EQ refers to aligned functionalities, F-DEL refers to deleted functionalities
% LIB refers to library codebase, NON-LIB refers to app-developer codebase

deviated privacy-collection behaviors across versions, according to their code locations reported
by APKDIFFER:

o Whether the deviation is caused by app functionality update? Given apcbh € Vjoq: , we collected
handler callbacks CBg.), to represent its served app functionalities, each of which can reach apcb
through control-flow edges. We think apcb should correlate with functionality addition, if there
exist cb € CBgy,cp that cb is a newly added method during update. Similarly, we can determine
whether dpcb € V), is correlated with functionality deletion.

o Whether the deviation stems from library codebase or app-developer codebase? Since third-party
libraries are frequently integrated by developers to ease development, we also want to check
whether the deviation occurs in library codebase or app-developer codebase. More specifically,
given apcb € Vyo5; or dpch € Ve, we try to verify whether its caller method is located in a
library package. To achieve this goal, we followed existing methodology proposed in [14], which
enhances LibRadar [45] (a detection tool of library packages) with package name heuristics.

Results. Table 9 illustrates the number of identified apch and dpcb during quarterly updates,
and their relations with functionality updates and library integration. From the table, we can see
that the introduction of apcb and dpcb is closely associated with the addition and deletion of app
functionalities. Besides, it is surprising that, there exist near 30% apcb and dpcb, whose served
functionalities can be aligned across versions. Looking into these cases, we find the reasons are
two-fold: 1) Two app versions might probably implement different handling procedure for same
runtime event (i.e., aligned callbacks), which causes deviation in accessed privacy data. 2) Some
pairs of apcb and dpcb serve same functionalities on two app versions and meanwhile invoke same
source API, which are probably caused by intra-functionality code refactoring. Besides, Table 9
also shows that a large percent (about 80%) of apcb and dpcb stem from third-party libraries.

Apart from the general statistics mentioned above, more importantly, we can obtain the func-
tionality entry (i.e., callback method) and the offending party (i.e., app developer or libraries) of
each suspicious privacy collection in a newer app version. This kind of information can largely
ease the assessment of privacy risks.

6.4 RQ3: Privacy Threats of App Updates

Methodology. Finally, we try to uncover the veiled privacy issues of app updates, by performing
manual code-level case studies on identified apcb. Note that, a apcb is considered to bring privacy
threats, if @ the accessed privacy information can be leaked through sink APIs (e.g., be sent
through the network); @ the apcb can potentially be triggered by end-users during runtime (i.e.,
not dead code); ® the intended app functionality has no necessary dependency on collected privacy
information (e.g., identity theft in a camera app). In the current study, we mainly want to emphasize
the utility of APKDIFFER in assisting cross-version privacy testing, while not claiming contribution
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on how to confirm the privacy threats. In future, we can incorporate some advanced analysis tools
to automate the assessment of privacy risks.

Results. During manual case studies, we examined four types of apcb, based on a two-factor
(see RQ2, §6.3) classification, considering the correlation with functionality addition (i.e., the apch
serves added functionalities or version-shared ones) and library integration (i.e., the apcb locates
in library codebase or app-developer codebase). Unfortunately, we confirmed that all these types of
apcb may carry privacy threats. Due to space limitations, here we summarize a representative case

for each type.
#version-shared fsend message to handle
Broadcast Receiver sage 5
#added Activity / —
HomeOpenUrlActivity: :onCreate () call 1 Fieaks o5 s ;::xll;ler
#leak device id to WebView pages #Enable JS execution ! c lver . ih -
! ole IS - a1l \Q::handleMessage ()
, hO::b() ati\fomeOpenUrlAct ivity: i vl () ] b::a()
1 | [77 version-shared method
| | 7/ added method guring version update \ | /7 class: £.x.p.g
// class: com.xvideostudio.videoeditor.tool.hO rivate void onReceive (Context arg6, Intent arg7) {
1 | + public void b(JSONArray arg4, WebView arg5){ \ P v 9o, El
o+ . ..
\ + String v0 = ((Tel Vho.a + LocationManager v6_4 = ...;
_getSystemService ("phone”)) .getDeviceId() ; + if ((v6_4.isProvi led("gps")) []...) {
+ // leak GPS locations
1/ leak device id to WebView HTML Javascript + a.getInstance (0x270F) .m(502, 3000L);
+ arg5.loadUrl("javascript:"+argd.getString(0) . return;
T V0 = )
+
+ 1 )
screenrecorder.recorder.editor v6.3.1 com.transsion.phonemaster v5.0.9.0001
(a) Case-I: V Recorder (b) Case-II: Phonemaster
C #added Content Provider #collect account infc)\
MyTargetContentProvider::onCreate () )cal‘l( vite () \
Jcan1 \
Cneak UDID to remote server #get UDID with account inf3\
riza() )c‘all( via() \
// added method during version update ’
// class: com.my.tracker.obfuscated.v ’\
+ private String e (Context arg2) { 1 \
M _ g ' (bversion-shared Activitg\ol} #version-shared lib MoPub
+ lv2 = -getlargd) o R | MainPage: :onCreate () AdViewController::onAdLoadSuccess ()
Type ("com.google") ; 1 ¥
+ if(v2.length > 0){ call
n ] ? : -
return v2[0].namex, #oollect provider information
} \ | #leak to r'a_mf’(t)e server NimbusDialogFragmentInterstitial |V
o \ I e call ::loadInterstitial() \
+ ) 1 ] - ]
1 // version-shared method /
// added method during versidn update h // class: com.mopub.mobileads.NimbusDialogFragmentInterstitial [4'
// class: com.my.tracker.obgluscated.v h public void loadlnterstitial(...){
+ private String a(String arg3,Context argd) (
v " + v6.a.device.carrier = argd.getSystemService ("phone"))
// get UDID of device (i.e., Unique Device Identifier) -getNetworkOperatorName () ;
+  return argd. ("open_udid_cache",0)
.getString(arg3, null); // leak to remote server
+ nimbusAdManager.a(...,v6, ...);
+ }
video.downloader.videodownloader v1.8.0 mbinc12.mb32b v200.49
(c) Case-III: Video Downloader (d) Case-IV: MixerBox

Fig. 6. Cases for different types of privacy threats.

o Case-I Added Functionality & App-developer Codebase: 'V Recorder is a screen recoder app
with over 100 million downloads. When updated from v5.0.1 to v6.3.1, the app implements a
new suspicious activity HomeOpenUrlActivity. The activity contains an obfuscated method v1(),
which invokes set JavaScriptEnabled(true) to enable the execution of JavaScript. After that, an
obfuscated method com.xvideostudio.videoeditor.tool.h0 :: b() invokes source API getDeviceld()
and silently leaks the device id via JavaScript to WebView pages.

o Case-II Version-shared Functionality & App-developer Codebase: Phonemaster is a phone manager
with over 500 million downloads, which helps clean junk files and manage phone states. When
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updated from v5.0.5.0002 to v5.0.9.0001, the app additionally invokes the source API Location-
Manager.isProviderEnabled() in a version-shared onReceive() method to check the status of the
GPS provider. If enabled, it would send a message (message id is 502) to a malicious handler
method b.b.a.b.0::handleMessage(). Finally, the handler stealthily collects the GPS information
and finally leaks it through ContentResolver API (i.e., ContentResolver.insert()) in an obfuscated
method b.b.a.b.b::a().

o Case-IIl Added Functionality & Library Codebase: Video Downloader is a popular app for
downloading videos and music from the Internet, with over 100 million downloads. When
updated from v1.7.3 to v1.8.0, the app integrates a new advertisement library MyTarget, which
registers a new content provider in AndroidManifest.xml. The onCreate() method of the provider
invokes an obfuscated library method com.my.tracker.obfuscated.v::e() which accesses the account
information. The account information is further utilized to fetch the UDID (i.e., unique device
identifier), which is leaked to remote server.

o Case-1V Version-shared Functionality & Library Codebase: MixerBox is a music player with
over 100 million downloads. Different versions of this app integrates the same advertising
library com.mopub.mobileads. When updated from v200.46 to v200.49, a version-shared activity
mbinc12.mb32.MainPage still has dependency on the advertising library MoPub. However, certain
code updates are applied in the library codebase. When successfully loading advertisements,
the library method NimbusDialogFragmentinterstitial::loadInterstitial() additionally invokes the
source API getNetworkOperatorName() and leak the provider information through network traffic
in the method gi::a().

6.5 Threats to Validity

Firstly, the collected apps in Datasetgp are all popular apps in Google Play Store. Hence, the
longitudinal privacy changes of these apps might not be representative of the entire Android
ecosystem. In future, we plan to conduct such study based on apps from different app stores.
Secondly, APKDIFFER inevitably produce alignment errors when diffing app versions. However,
we believe these alignment errors would not largely affect the reliability and rationality of study
conclusions, since our extensive experiments have demonstrated the high precision and recall of
APKDIFFER.

7 Discussion

Limitations. Though the experiment results show that APKDIFFER noticeably outperforms existing
method alignment algorithms, it still has several limitations: @ APkDIFFER relies on a manually
curated whitelist of callback interfaces (see Table 1) to detect app functionality units. Although
our whitelist is more complete than that of FlowDroid [11], a possible optimization solution is to
leverage static framework modeling [12] to obtain a more precise whitelist. & APKDIFFER mainly
aims to correlate methods in Java/Kotlin codebase, and methods in native libraries are considered
out of scope. A recent work proposes JuCify [57] to merge the call graphs of app bytecode and
native code into a whole-app call graph, which can be integrated to tackle this issue.

Resilience to App Obfuscation. When constructing the benchmark dataset for evaluation, we
use the default ProGuard [9] obfuscation configuration to build the apps (see §5.2). Thus, we believe
that APKDIFFER can handle a certain degree of obfuscation. For call graph-level obfuscation (e.g.,
inserting dummy methods), the n-n alignment mechanism of APKDIFFER may help align such
methods. For control flow graph-level obfuscation (e.g., CFG flattening), semantic-aware code
similarity measures may improve the effectiveness of APKDIFFER in aligning such methods.
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8 Related Work

Code Similarity Calculation. The method alignment, formulated as call graph matching problem,
should comprehensively consider both node (i.e., method) similarities and edge (i.e., caller-callee
relation) similarities to solve precise alignment results. In practice, such node similarities are usually
calculated via code similarity calculation techniques [23, 29, 31, 42, 59, 67]. Notably, our contribution
is the method alignment methodology for whole-app diffing, independent of existing similarity
measures. We believe APKDIFFER can further improve the cross-version code diffing capability
from this understudied perspective. It is also an appealing idea to integrate advanced similarity
measures into APKDIFFER, and we will leave it for future work.

Method Extract/Inline Identification. Existing techniques in method extract/inline identification
either work on source code [35] or commit histories [65], or need heavy manual workloads [30].
Other works [15, 23] in method-level code similarity calculation rely on hard-coded heuristics to
reduce the impact of method extract/inline for more precise similarity detection (e.g., Asm2vec [23]
assumes callees with less than 10 instructions as extracted methods). Besides, although basic-block-
level code alignment [52, 53] can potentially detect method extract/inline, they face even severe
scalability issues when aligning ICFGs of Android apps.

App Diffing. Existing app diffing methodologies [20, 39] exhibit two key limitations: 1) excessive
reliance on overly coarse comparison granularity (e.g., class-level analysis [20]), and 2) adoption
of simplistic code-structure-based matching strategies (e.g., package-method association [39]).
These approaches demonstrate insufficient robustness when confronted with cross-version obfus-
cation variations, structural refactoring operations, and implementation updates. As comparison,
APkDIFFER achieves reliable method alignment based on novel functionality-driven codebase
decomposition.

App Clone Detection. Android app repackaging has been raised as a serious problem by various
researchers, calling for reliable app clone detection techniques to catch repackaged apps. This
line of techniques generally utilizes different kinds of app features (e.g., Ul features [61, 69], code
features [16, 25, 41] and so on) to determine how similar are two apps. Different from these works,
APKDIFFER can further give fine-grained method mappings, indicating the detailed code changes.

9 Conclusion

In this work, we propose APKDIFFER, a cross-version method alignment tool for Android apps.
Compared to existing method alignment techniques, APKDIFFER achieves a good balance between
scalability and effectiveness via a decomposition-based approach and additionally supports the
method extract/inline identification across versions. In evaluation, we performed extensive ex-
periments to demonstrate the effectiveness and efficiency of APKDIFFER. We further conducted a
real-world study to showcase the utility of APKDIFFER in assisting privacy assessment of real-world
app updates, convincingly revealing the privacy threats of app updates.
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