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Abstract
Android phones often carry personal information, attracting
malicious developers to embed code in Android applications
to steal sensitive data. With known techniques in the lit-
erature, one may easily determine if sensitive data is being
transmitted out of an Android phone. However, transmis-
sion of sensitive data in itself does not necessarily indicate
privacy leakage; a better indicator may be whether the trans-
mission is by user intention or not. When transmission is
not intended by the user, it is more likely a privacy leak-
age. The problem is how to determine if transmission is
user intended. As a first solution in this space, we present
a new analysis framework called AppIntent. For each data
transmission, AppIntent can efficiently provide a sequence of
GUI manipulations corresponding to the sequence of events
that lead to the data transmission, thus helping an analyst
to determine if the data transmission is user intended or
not. The basic idea is to use symbolic execution to gener-
ate the aforementioned event sequence, but straightforward
symbolic execution proves to be too time-consuming to be
practical. A major innovation in AppIntent is to leverage
the unique Android execution model to reduce the search
space without sacrificing code coverage. We also present an
evaluation of AppIntent with a set of 750 malicious apps, as
well as 1,000 top free apps from Google Play. The results
show that AppIntent can effectively help separate the apps
that truly leak user privacy from those that do not.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.2.5
[Software Engineering]: Testing and Debugging—Sym-
bolic execution

Keywords
Android security; privacy leakage detection; symbolic exe-
cution
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1. INTRODUCTION
With the growing popularity of Android, millions of ap-

plications (or apps for short) are available to users from a
variety of Internet sites (called app markets). While users
enjoy the rich features of the apps, their sensitive personal
data, such as phone numbers, current locations, and con-
tact information, may be stealthily collected and misused
by the ill-intended developers of some apps. A recent study
has showed that Android apps frequently transmit private
data to unknown destinations without user consent [46]. To
protect users, there is a great need for strong analysis tools
that Android app markets can use to identify and remove
malicious apps.

State-of-the-art approaches of privacy leakage detection
on smartphones focus on detecting sensitive data transmis-
sion, i.e., whether personal data leaves the device [21, 22, 26,
30, 40, 29]. However, in this era of mobile apps with cloud
computing, what constitutes a privacy leakage by mobile
apps is a subject that needs reconsideration. Many benign
apps provide services from the cloud to end users. These
apps normally need to collect sensitive data such as loca-
tion, contact, to send out to the cloud. Malicious apps that
steal user data may also exhibit the same behavior, namely
transmitting private information to the cloud (or via other
means). Therefore, transmission of sensitive data by itself
may not indicate true privacy leakage; a better indicator
should be whether the transmission is user intended or not.
• User-intended data transmission. To use the func-

tion provided by an app, a user often tolerates his/her
private data being sent out via some communication
channels. For example, when using SMS management
apps [3], a user can forward an SMS message to a third
party, by several button clicking on the touchscreen.
As another example, when using a location-based ser-
vice [7], a user usually knows his/her location is sent
out to get interesting contents tailored to the location.
Since this kind of functional use of sensitive data is
consistent with user intention, we should not treat this
kind of transmission as a privacy leakage.
• Unintended data transmission. The irregular transmis-

sion of sensitive data performed by an app, which is
unknown to users and irrelevant to the function user
enjoys, is defined as unintended data transmission, or
privacy leakage. In most cases, users are unaware of
this kind of transmission because the malicious apps
always do that in a stealthy manner.



The above shows that whether sensitive data transmission
is a privacy leakage or not actually depends on whether the
transmission is user intended or not. Unfortunately, due to
the complex nature of user intention and different/unpredictable
settings of different apps, it is almost impossible to have an
automated method to determine user intentions. Alterna-
tively, it is more practical to design an automated tool to
provide a human analyst with the context information in
which the data transmission occurs. Intuitively presented
context information will make the task of the human an-
alyst easier in determining if the transmission is user in-
tended. This motivates our work on the AppIntent frame-
work. Given sensitive data transmission, AppIntent derives
the input data and user interaction inputs that lead to the
transmission. The context information of the transmission
shown to the analyst is in the form of a sequence of UI
manipulations (i.e., GUI screens along with the highlighted
GUI controls that indicate the supposed user operations)
that is captured from a controlled execution of the app with
the derived input data and user interaction. By looking at
the displayed UI manipulations, a human analyst can then
make a judgement.
Symbolic execution is an effective technique to extract fea-

sible inputs that can trigger specific behaviors of a program
such as particular transmission of sensitive data. The key
idea of symbolic execution is to systematically explore fea-
sible paths of the program under analysis by reducing the
search space from an infinite number of possible data inputs
to a finite number of data scopes (represented by symbolic
inputs). However, existing symbolic execution techniques
mainly focus on non-interactive programs [10, 16, 28, 39].
Dealing with events triggered by user actions in GUI apps is
challenging because the possibly large number of combina-
tions of input events can severely worsen the path explosion
problem during symbolic execution. However, in AppIntent,
user interactions cannot be abstracted away from apps for
symbolic execution because user interaction is an essential
part to judge whether the transmission is intended by the
user or not.
To deal with the path explosion problem, we have devel-

oped a new symbolic execution technique called event-space
constraint guided symbolic execution for Android apps. We
first apply static analysis to the target app to identify the
possible execution paths leading to the sensitive data trans-
mission under analysis (such as sending SMS). We then use
these paths as the basis to generate our event-space con-
straints, which represent all the possible event sequences for
the given execution paths by considering the call graph and
the Android execution model. Our guided symbolic execu-
tion then considers only the paths that satisfy the event-
space constraints. Our experiments show that these con-
straints restrict the search space very effectively since the
number of execution paths to be explored during the guided
symbolic execution is usually small.
To evaluate the effectiveness of AppIntent, we perform an

extensive experimental evaluation using real-world apps in-
cluding 750 malicious apps reported in [46] and 1,000 top
free apps from Google Play, to detect whether they trans-
mit user’s private data and to distinguish whether the trans-
mission is user intended or not. In our experimental results,
252 apps have sensitive data transmission, among which 224
apps contain user unintended transmission while other 28
apps contain only user-intended data transmission.

The contribution of this paper is fourfold. First, we note
that sensitive data transmission does not always indicate pri-
vacy leakage; rather, user-intended data transmission should
be discriminated from user-unintended. Second, we develop
an event-space constraint guided symbolic execution tech-
nique, which effectively reduces the event search space in
symbolic execution for Android apps. As a result, event in-
puts as well as data inputs related to each propagation path
of data transmission can be effectively extracted. Third, we
develop a dynamic program analysis platform to execute the
app driven by the discovered event and data inputs, so that
we can display the sequence of UI manipulations, emulating
the entire process leading to the data transmission. Finally,
we evaluate our approach by using 750 reported malicious
apps, as well as 1,000 top free apps from Google Play. Some
interesting findings are also provided together with the eval-
uation results.

The rest of this paper is organized as follows. Section 2
introduces the challenge of symbolic execution for Android,
and Section 3 gives an overview of the AppIntent frame-
work. Section 4 presents the details of event-space constraint
guided symbolic execution. The dynamic analysis platform
of AppIntent is depicted in Section 5. Section 6 presents
the evaluation of AppIntent using real-world Android apps.
Section 7 discusses the related work, and Section 8 concludes
this paper and points out some future research directions.

2. BACKGROUND: SYMBOLIC EXECUTION
FOR ANDROID APPS

Symbolic execution is a program analysis technique that
has been used in a wide range of applications such as test
case generation [14, 17, 27, 28, 34, 39], fuzz testing [35], and
security flaws detection [13, 15, 20, 26, 31, 42]. It is a traver-
sal process, which explores a search space during the analysis
process. The general idea of symbolic execution is to limit
the search space because its execution time and practica-
bility depend on this scope. For those non-interactive pro-
grams, symbolic execution can efficiently explore the search
space of data inputs through a well-defined classification of
these inputs. However, symbolic execution faces unresolved
challenges when it is applied to GUI apps.

GUI apps, which are widely used in computers and hand-
held devices, are driven by not only data inputs, but also
event inputs. Users can interact with apps by triggering
runtime events such as clicking a certain button. Event in-
puts, which introduce highly variable program behaviors and
hard to be classified into input scopes, greatly increase the
search space of GUI apps. To the best of our knowledge,
there are no efficient solutions to this problem, and most
of the existing symbolic execution approaches for GUI apps
sacrifice code coverage for performance by applying random
scheduling strategy [38], exhaustively searching possibilities
(to an upper bound of event sequences) [25], or assuming
that event handlers will not cooperate with each other [24].
Recently, Contest [9] reduces the symbolic execution time of
smartphone apps to 5%-36% of the original running time by
utilizing profiling results, but the cost of this analysis is still
too high.

When modeling the space of runtime event inputs, the
most important characteristic of the space is the possible
orders of events. In most cases, the behavior of a GUI app



can be represented by the events triggered by the user along
with the order of these events.

2.1 Android Basis
Similar to Java GUI apps, Android apps are usually driven

by runtime events and callbacks. The non-determinism in-
troduced by arbitrarily and distinctively triggered events in-
creases the complexity when exploring the search space and
severely challenges the symbolic execution of GUI apps. The
search space of events is decided by Android programming
and execution model, which needs a careful consideration in
analysis.
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Figure 1: Android application model. This figure depicts
the lifecycle of Android activities. The lifecycle of other
components are similar.

There are two major kinds of events in Android: callbacks
to manipulate the state transition of an app, and listeners to
handle system events and user interactions with GUI com-
ponents:
Android Events: Callbacks of Lifecycle States. Un-

like in the common Java world, Android app does not have
a unique program entry such as main(). Instead, it is com-
posed of one or more components which work together to
fulfill the functionality. The major type of components in
Android is activity. An activity represents a single screen
with a user interface. The other components, e.g., services,
content providers, and BroadcastReceivers, are background
tasks that perform long-running operations or respond to
other threads. For each component, app developers override
callback functions, which are commonly used to maintain
its lifecycle, as depicted in Figure 1. These callbacks are ex-
pected to be automatically invoked by Android application
manager. Therefore, symbolic execution faces a severe chal-
lenge because of the non-deterministic and unbounded trig-
gering order of callbacks. For example, a possible execution
could be (OnStart ⇒ OnPause ⇒ OnResume ⇒ OnPause
⇒ OnResume⇒...). It will further worsen the already noto-
rious search space explosion problem of traditional symbolic
execution. Actually, symbolic execution may never finish
because the search space is infinite. We propose a guided
symbolic execution mechanism which can effectively solve
this problem with static analysis.
Android Events: GUI Events and System Events.

An app running on Android is commonly GUI based, and

its execution is typically driven by events from the specific
GUI controls (represented as a View object) that the user
interacts with. An app contains a collection of nested in-
terfaces, called event listeners. These listeners capture user
interactions with the app GUI. When respective interactions
occurs on the GUI controls, for example, if a button is clicked
by a user, the pre-defined event handlers are triggered cor-
respondingly. System events are handled in the same way.
Like callbacks, runtime events are also non-deterministic.
They can be triggered in any order and at any time, thus
exhaustively executing all possible sequences of events is a
task that will never end. Fortunately, events in an Android
app are commonly invoked when the state of the app is
RUNNING. In this state, the main thread is hung to wait
for incoming events. Thus, the event triggering behavior
commonly depends on the order, not the exact triggering
time.

3. GOAL AND OVERALL ARCHITECTURE
AppIntent is not an automated method to detect unin-

tended data transmission, which is probably a mission im-
possible. Instead, as a first step in this space, AppIntent is
designed to be an automated tool to present to a human an-
alyst the sequence of UI manipulations that corresponds to
the sequence of events that leads to the sensitive data trans-
mission, thereby facilitating the discrimination of whether
sensitive data transmission is user intended or not.

Our Goal. To achieve our vision, we have the following
three goals:
• Produce the critical app inputs that lead to sensitive

data transmission. Specific to Android GUI apps, in-
puts are always composed of: a) Data inputs which
contain text inputs from outside; b) Event inputs from
user interactions through GUI interface and from sys-
tem through IPC. In addition, we need to track down
the root-cause that gives rise to the transmission and
filter out the massive set of irrelevant inputs.
• Guarantee a good code coverage. To find all feasible

paths, we need to thoroughly traverse diverse program
paths that may lead to a leakage, and at the same
time, we want to ensure low false positive as well as low
false negative rate during this analysis. In addition, to
enable large-scale validation tasks, we do not want too
much overhead.
• Provide an easy-to-understand tool for human ana-

lysts to ascertain under what circumstance the sen-
sitive data transmission happens. Using the produced
app inputs, we need to conduct the execution of an app
according to each feasible path. We want to exercise
the app’s functionality automatically, which can em-
ulate users’ operations, and by observing the UI ma-
nipulation and prompting, we can then easily judge
whether the data transmission is essential for a user-
intended functionality.

Overall Architecture. Figure 2 depicts the overall ar-
chitecture of AppIntent, which analyzes a target app in two
steps:
• Event-space Constraint Guided Symbolic Execution. The

first step is to generate critical inputs incurring sensi-
tive data transmission. We adopt static taint analysis
to preprocess and extract all possible data transmis-
sion paths as well as possible events related to each
path, which helps to construct an event-space con-



Figure 2: Overall Architecture of AppIntent

straint graph. Subsequently the graph is used in the
guided symbolic execution to extract critical inputs.
Meanwhile, code coverage is guaranteed due to the na-
ture of symbolic technique. The detail is introduced
in Section 4.
• Dynamic Program Analysis Platform. Inputs gener-

ated in the first step is not intuitive enough though
they precisely tell under what conditions transmission
would happen. Using these inputs, we adopt Android
InstrumentationTestRunner [1] to automate the app
execution step by step, which reflects users’ interac-
tions in UI manipulations, and the sensitive data prop-
agation is also tailored to the related UI for a better
understanding. We believe it can effectively visualize
the root cause of the transmission so that we can intu-
itively judge whether the transmission is user intended
or not.

4. EVENT-SPACE CONSTRAINT GUIDED
SYMBOLIC EXECUTION

In this section, we present our event-space constraint guided
symbolic execution technique for Android apps. We show
how to reduce the search space considerably and finish the
symbolic execution in an acceptable amount of time without
sacrificing the code coverage.
We begin with an intuitive example, and then present an

overview of this stage, followed by a detailed description
of how to construct the event-space constraint graph using
static analysis. Finally we describe how the graph facilitates
guided symbolic execution.

4.1 A Concrete Example
Here we use an app, Anzhuoduanxin [3], to demonstrate

how our event-space constraint guided symbolic execution
works. The app has a program path containing the trans-
mission of an SMS message when a user forwards a new in-
coming message. For easy understanding, as depicted in Fig-
ure 3, we simplify the data propagation to a path involving
only one BroadcastReceiver, PushReceiver, and two activi-
ties, MessagePopup and ComposeMessageActivity. The new
message is handled in the onReceive() method of PushRe-
ceiver that starts up the activity MessagePopup, and the
message is displayed in the foreground on which a user can
click the FORWARD button to invoke the forward() method
that starts up the activity ComposeMessageActivity. On the
next user interface, the user can click the SEND button to
invoke the sendMessage() method to have the message for-
warded.
In our symbolic execution, we first use static taint analy-

sis to identify all possible transmission paths, and then we

extract instructions of sensitive data propagation with the
context information along each path. In our example, we get
the path: {OnReceive, i1} ⇒ {startNewMessagesQuery, i2}
⇒ {forward, i3} ⇒ {forward, i4} ⇒ {sendMessage, i5} ⇒
{sendMessage, i6}. Then we construct an event-space con-
straint graph according to the information gathered in static
analysis. As Figure 4 shows, those massive irrelevant events
to this path have been filtered out, and only 18 events related
to this path, including lifecycle callbacks, GUI events, and
system events, are kept. We connect these events with edges
according to the lifecycle state transition and the call graph.
This event-space constraint graph is used as a guideline for
symbolic execution to find sequenced events that possibly
incur the transmission. Since our goal is to find the root
cause and disclose the context of the user actions, we only
need to find the shortest paths that cover the sensitive data
transmission instructions respectively. As Figure 5 shows,
for the given transmission, we get only two chains of events
in sequence, which will be verified during symbolic execu-
tion, with a very small overhead. On our dynamic program
analysis platform, the feasible chain is used to emulate a
user’s operations step by step automatically, which demon-
strates which functionality is executed when sensitive data
transmission happens. In this case, we can easily determine
that this is indeed user-intended data transmission.

4.2 Overview of Event-space Constraint Guided
Symbolic Execution

As stated earlier, the major challenge symbolic execution
faces is the problem of space explosion, which is dramati-
cally worsened by the Android GUI interaction and execu-
tion model. A complete app-wide symbolic execution is not
scalable due to the large number of possible events. Actu-
ally, to achieve sensitive data transmission, usually only a
small portion of events will be triggered in sequence, along
with sequenced instructions that propagate the data. This
motivates us that if we are provided with a set of instruc-
tions that possibly incur the transmission, we only need to
consider and extract the events that may trigger at least
one instruction of the set, as well as the possible prerequi-
sites of these events. In this way, the event search scope can
be greatly limited to those related events instead of massive
irrelevant events while code coverage is guaranteed. We con-
struct an event-space constraint graph aided by static anal-
ysis, and it facilitates symbolic execution in finding possible
sequences of events that are used to reproduce the transmis-
sion.

In the following, we first give a definition of this special
graph, and then explain how to obtain this graph by static
program analysis.
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Figure 3: A simplified SMS forwarding case.

4.3 Construction of the Event-space Constraint
Graph

As depicted in Figure 4, the event-space constraint graph
is a directed graph, with each node in the graph representing
a lifecycle callback, a GUI event, or a system event. There
are two kinds of nodes:
• A thick-line node represents an event of which the

event handler method contains at least one instruc-
tion of a given data propagation path. We call this
kind of events critical events.
• A thin-line node represents an event which is a prereq-

uisite for a critical event, and it does not contain any
instructions of the given path. Such an event could
be either a lifecycle callback of the activity that con-
tains this critical event, or an event belonging to any
prerequisite component that eventually starts up the
activity that contains this critical event. We call this
kind of events essential events.

A directed edge in the graph represents the order of prece-
dence for two adjacent nodes. Edges can be calculated ac-
cording to the lifecycle state transition and the call graph
together.
Basically, for the graph, we ensure:
• All critical events should be included.
• All lifecycle callbacks of an activity that contains a

critical event should be included.
• Any event belonging to a prerequisite component that

eventually starts up an activity containing a critical
event should be included, as well as its lifecycle call-
backs.
• No edge violates the predefined order of the lifecycle

state transition or the sequence of the call graph.

4.3.1 Extracting Critical Events
To build the the event-space constraint graph, first of all,

we need to extract all critical events according to the given
data transmission path. For each instruction in the path, we
backward traverse the call graph to find all events that might
trigger it. As shown in Figure 3, backward traversing the call
graph from instruction 2 (i2), we can get two critical events,
OnStart() and OnNewIntent(). We may introduce some
false positives due to the limitation of static analysis tech-
niques, but symbolic execution can eliminate these false pos-
itives later. In this phase, we finally obtain sequenced crit-

ical events, <PushReceiver, onReceive>, <MessagePopup,
OnStart |OnNewIntent>, <MessagePopup, OnClick>, and
<ComposeMessageActivity, OnClick>.

An activity may have different views to lay out various
user controls (e.g. buttons), on which a user interacts with
the app, and user interactions of various views are usually
handled by the same handler method. The above critical
events that we have extracted are from only the call graph
and does not have the information about views except the
handler methods. It poses a difficulty for the later guided
symbolic execution. To solve this issue, we build a program
dependency graph, extract branch conditions for view pa-
rameters from the graph, and annotate the critical events
with these conditions as the context information. As de-
picted in Figure 3, the extracted branch condition for i3
and i4 is view==v1. After that, if we find that a critical
event involves different views, we divide this event into sev-
eral thick-line nodes, with respect to each view. Other GUI
events are handled in a similar way.

4.3.2 Extracting Essential Events
So far, we get all the critical events that contain the in-

structions of the given transmission path, but they are just
the critical interior nodes to symbolically execute the path.
According to the Android runtime execution model, we also
need to collect the essential events that are the prerequisites
to the critical nodes, in order to behave well during sym-
bolic execution. For example, an execution can not directly
invoke OnResume() before the app is activated by invoking
OnCreate() and OnStart() in sequence. Actually, an app
strictly follows the state transition order of the app lifecy-
cle, as illustrated in Figure 1. For each critical event of a
component, we first supplement those missing lifecycle call-
backs with directed edges according to the origin order. And
then, aided by the call graph, we supplement all prerequi-
site components that eventually start up the activity which
contains a critical event, as well as edges produced accord-
ing the call graph. Meanwhile, the corresponding lifecycle
callbacks of these prerequisite components are added in. In
Android, inter-component communications are implemented
through Intents. Thus, if a component receives an intent
from another one, we treat the sender of the intent as the
prerequisite of the receiver component, and add a directed
edge to represent their order. Especially, if an intent is used
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Figure 4: The extracted event-space constraint graph of the given example.

to start a new activity or service, the onCreate() callback of
created component is marked as the receiver of the intent. In
the current version of AppIntent, we only track intents that
eventually start a new activity or service, as well as broad-
cast messages that are properly handled by a BroadcastRe-
ceiver, because they are officially documented by Google [2]
and most of the apps use these two approaches to send in-
tents. The intents with undocumented usage (which we en-
vision could be handled in a similar way) are left to future
work. The supplemental process will not end until there is
no any prerequisite components found.
Upon finishing the above steps, we finish constructing the

event-space constraint graph. As noted earlier in this sec-
tion, for a given transmission path, all related events, in-
cluding the critical and the essential events, have been ex-
tracted. The subsequent symbolic execution only needs to
traverse this graph for sequenced events that possibly trig-
ger the transmission and verifies whether it is a valid path.
Since massive irrelevant events have been filtered out, the
search scope is greatly reduced while the code coverage is
guaranteed well.

4.4 Guided Symbolic Execution
We now explain how to traverse the above constructed

graph to derive all possible sequenced events as the guide-
line to symbolic execution. The process of guided symbolic
execution is depicted in Algorithm 1, in which P represents
the events that are triggered before the last traversed critical
event, and C represents the data constraints that should be
fulfilled to reach the current execution point. If C is empty,
then none of the data inputs can result in the target exe-
cution, i.e., the path can never be covered in any program
execution.
Algorithm 1 works as follows. Our symbolic execution tra-

verses the event-space constraint graph using the thick-line
nodes as step stones. Each time when we proceed from a

G ← Event-space Constraint Graph
CEC ← Critical Events Chain of G
C ← ∅, P ← ∅
StartPoint ← App Entrance of the Main Activity
Procedure TraverseGraph(ce)

forall the ne : < ce, ne > ∈ CEC do
mp ← FindMinimalPath(ce, ne, G)
C ← SymbolicExecute Forward(C, mp)
P ← P ⊕ mp
if ∀ e : < ne, e > /∈ CEC then

Output: C as Data Constraint, P as Event
Inputs
exit()

end
else if C != ∅ then

TraverseGraph(ne)
end
C ← SymbolicExecute Rollback(C, mp)
P ← P − mp

end
end
TraverseGraph (StartPoint)
Output: No feasible inputs found
Algorithm 1: Event-space Constraint Guided Symbolic
Execution



thick-line node, possible successors of this critical event are
extracted from the event-space constraint graph. Since any
of the successors can be the next critical event, we randomly
pick an event first and calculate a feasible path from the cur-
rent critical event to the chosen successor. Since only the
essential prerequisites are needed, we extract the minimal
path (using the Dijistra’s algorithm) as a chain of events,
which are sequentially triggered in the symbolic execution.
If the event chain is revealed to be not available to any in-
puts (C == ∅), or all possible successors in critical event
chains are already explored (∀ e : < ne, e > /∈ CEC), we
rollback the symbolic execution and try to trigger other fea-
sible critical events.
Using Figure 4 as an example, guided by the event-space

constraint graph, our symbolic execution explores a much
smaller event space, as illustrated in Figure 5, and reports
the following event chain as event inputs: { <PushReceiver,
OnReceive>, <MessagePopup, OnCreate>, <MessagePopup,
OnStart>, <MessagePopup, OnResume>, <MessagePopup,
OnClick(v1)>, <ComposeMessageActivity, OnCreate>, <
ComposeMessageActivity, OnStart>, < ComposeMessage-
Activity, OnResume>, < ComposeMessageActivity, OnClick(v2)>
}. In addition, by using a modified version of choco data
constraint solver [6], we generate corresponding data inputs
according to the data constraints calculated in the symbolic
execution.

5. DYNAMIC ANALYSIS PLATFORM
By using our event-space constraint guided symbolic exe-

cution, we can extract app inputs to trigger a given sensitive
data transmission path. Although these inputs provide all
the preconditions of target data transmission, they might
not be intuitive enough for human to understand. To display
these preconditions in an easy-to-understand manner, we set
up a dynamic analysis platform to present which function-
ality is used when the transmission happens. With the help
of Android InstrumentationTestRunner [1], a driven exe-
cution can be conducted for each sensitive data transmission
path. AppIntent automatically generates a test case based
on the inputs gathered before, and attaches it to the app by
repackaging the original Android apk. Then, by running the
test case though the Android activity manager, a controlled
execution with the following features are presented:
• Automatically trigger Event Inputs. Events in the event

chain are automatically triggered by performing corre-
sponding operations. For example, to trigger a clicking
event, a performClick operation is applied to the cor-
responding view, and we call the setTestProvider-

Location method for a location change event. Ap-
pIntent currently does not support runtime events like
phone call events because Android Instrumentation-

TestRunner does not support them. Since in most
cases, view context of each event is already attached
to the event chain, we can use the attached context
directly for GUI events. On the other hand, if there is
no view constraint, we randomly pick a view from the
manifest file as the context of event. In addition, be-
tween each two GUI events, we generate a short delay
so that analysts have time to observe the GUI display
of each step.
• Automatically provide Data Inputs. Most of the data

inputs generated by symbolic execution are text in-
puts to GUI elements, and we directly set the cor-

responding text field with the expected value. Some
app inputs are messages from system or other apps,
so we can attach these inputs to corresponding event
messages. Besides, some apps trigger specific behavior
based on the wall time of the Android system. For
example, some malicious behavior happens only if a
certain amount of time passed in the current execu-
tion. We explicitly generate sleep operations if data
constraint relies on the current system time. In the
current version of AppIntent, we do not support net-
work inputs because we generate test cases through
Android InstrumentationTestRunner [1], which can-
not intercept and modify network inputs. This could
be improved by hooking the network interfaces in the
Android framework, which is our future work.
• Highlight activated views of GUI events. Activated

view of each GUI event provides essential context, which
represents a GUI element on the screen, for each user
interaction. For example, if a clicking event is trig-
gered, we need to know what element on the user in-
terface is clicked by user. Thus, AppIntent highlights
GUI element by setting its background color to red,
as depicted in Figure 7(a) and Figure 7(b). For GUI
elements whose view cannot be obtained by Android
InstrumentationTestRunner, e.g., the list items, we
highlight these elements by triggering some dialog box
to display the view information.
• Highlight sensitive data read and transmission. To fig-

ure out whether the functionality of the app requires
sensitive data transmission, our controlled execution
needs to reveal when the data loading and transmission
happen during the presented event chain. We highlight
these two execution points by raising a notification di-
alog box, as depicted in Figure 7(c) and Figure 7(d).

6. EVALUATION
In the implementation of AppIntent, we first leverage DED

[23] to decompile Android DEX files into Java bytecode. We
implement our event-space constraint graph extraction on
top of soot [8] and the guided symbolic execution engine on
top of JavaPathfinder [10]. We implement the controlled
execution and dynamic analysis platform on top of Instru-
mentationTestRunner [1]. In this section, we present our
evaluation results on the effectiveness and accuracy of Ap-
pIntent. In our evaluation, the event-space constraint guided
symbolic execution uses an Intel Xeon machine with 2 eight-
core 2.0Ghz CPUs and 32 GB physical memory, which runs
Debian Linux with kernel version 2.6.32. The controlled ex-
ecution of AppIntent is run on Android 2.3.

6.1 Evaluation Methodology
In order to evaluate the effectiveness of AppIntent and its

key techniques, we need to answer the following two ques-
tions: (i) When producing app inputs leading to some sensi-
tive data transmission, to what extent does event-space con-
straint guided symbolic execution reduce the search space
while guaranteeing the code coverage? (ii) Using the con-
trolled execution based on app inputs, how effective is Ap-
pIntent to distinguish unintended data transmission with
user-intended one?

In the following, we evaluate the execution time of sym-
bolic execution with or without our technique to answer the
first question and use two sets of real-world Android apps
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Figure 5: Event chains explored in symbolic execution by traversing the graph in Figure 4

to answer the second one. Besides, we provide some find-
ings about sensitive data transmission patterns which are
revealed by the result of AppIntent.

6.2 Effectiveness of Event-space Constraint Guided
Symbolic Execution

To illustrate the effect of event-space constraint guided
symbolic execution, we choose 3 famous apps from Google
Play as samples. Among them, Maps is the Google map,
Youlu is an SMS management app, and WeChat (a.k.a.
Weixin) is a popular chatting tool. As presented in Table 1,
without the help of event-space constraint graph, symbolic
execution cannot finish in 5 days when we explore only 20
triggered events for the target app. This clearly demon-
strates that exhaustively exploring event space is not scal-
able and practical. On the other hand, symbolic execution
cannot cover the critical events in WeChat in this configu-
ration, and failed to cover critical events in two cases(Youlu
and WeChat) if we lower the threshold to 10 events. This
means that naively limiting the search space can damage
the effectiveness of symbolic execution. However, guided by
event-space constraint graph, normally less than two hours
are needed to explore the limited exploration space, and ex-
tract app inputs corresponding to the sensitive data trans-
mission, without sacrificing the code coverage. Thus, it is
clear that compared to existing approaches, guided symbolic
execution proposed in this paper can greatly increase the ex-
ploration effectiveness.

Case Origin Origin AppIntent
(10 events) (20 events) (hours)
(hours) (hours)

Maps 5.43 >120 0.40
Youlu 0.97 >120 0.13
WeChat 21.56 >120 1.33

Table 1: Running time of symbolic execution. Column 2 and
3 represent the running time when symbolic execution ex-
plores ten or twenty triggered events without the help of our
event-space constraint guided symbolic execution. Column
4 shows the execution time of AppIntent.

6.3 Effectiveness on Analyzing Sensitive Data
Transmission

In this experiment, two sets of real-world Android apps
are selected to evaluate the effectiveness of AppIntent. The
first set contains 750 malware apps from [46], which are
known to perform malicious activities such as information
leakage, money stealing, and privilege escalation. The sec-
ond set contains 1,000 top free Android apps downloaded
from Google Play. To compare with state-of-the-art pri-

vacy leakage approaches, we evaluate the same test datasets
with TaintDroid [22] driven by MonkeyRunner. The results
are depicted in Table 2. To verify the result of AppIntent,
we perform manual analysis, in which we not only check
whether apps reported by AppIntent transmit sensitive data,
but also verify whether apps eliminated by AppIntent do not
contain sensitive transmission.

As from the table, static taint analysis (the first step of
AppIntent) detects 582 (442+140) cases of possible sensi-
tive data transmission from two datasets. We find that 164
cases are false positives, which are eliminated by the next
step of AppIntent, guided symbolic execution. With a man-
ual analysis of the code of these programs, we find that most
false positives in static analysis are caused by the insufficient
context information and dead code, such as debugging code
wrapped by if(debug) branches. There are another 44 cases
from static analysis that failed to pass our symbolic execu-
tion. A further investigation shows that DED is unable to
transform 42 cases from dex format to Java classfile, and
the other two cases contain native code that currently can-
not be handled by AppIntent. To check whether the app in-
puts generated by symbolic execution trigger sensitive data
transmission, we applied manual analysis on the result of
symbolic execution, and found that all cases transmit sensi-
tive data defined in this paper.

With the app inputs extracted in symbolic execution, Ap-
pIntent successfully generates controlled executions for 358
(288+70) apps, among which, 245 (219+26) have been iden-
tified as unintended data transmission. We notice that the
top free apps still have user unintended leakages, among
which most apps are SNS (Social Networking Service) apps
or apps that have embedded advertising modules. The leak-
age of SMS and contacts are all found in SNS apps. On the
other side, malware may also contain both user intended and
non-intended transmission, because malicious data leakage
can hide behind some normal data transmission to bypass
the state-of-the-art security validations. For example, we
found that an application acts like an SNS app in disguise,
but in the background, it stealthily transmits user contacts
without user consent. It is worth noting that the current
version of AppIntent failed to execute test cases of 43 apps
because they are driven by network input, which is not sup-
ported by InstrumentationTestRunner. This could be fur-
ther supported by instrumenting control code in Android
framework.

As a comparison, TaintDroid can only detect 165 (125+40)
cases as possible privacy leakage, most of which are leakage
of device IDs. This is much less than AppIntent. Further-
more, the result of TaintDroid is hard to verify because it
does not contain corresponding app inputs. Through our
manual investigation, among these cases, 151 cases are also



Malicious Apps Google Play Apps
Source AppIntent Unintended/ Local TaintDroid AppIntent Unintended/ Local TaintDroid

(Static/ Intended Logging (Static/ Intended Logging
Symbolic/ Data Symbolic/ Data
Controlled Transmission Controlled Transmission
Execution) Execution)

Device 389/256/ 198/0 73 101 98/43/43 24/0 19 37
ID 246
Phone
Info

53/50/50 50/0 1 0 0/0/0 0/0 0 19

Location 76/68/67 46/4 18 11 36/15/15 0/13 2 5
Contacts 13/13/13 1/10 2 0 10/10/10 1/9 1 3
SMS 27/27/17 16/3 0 0 9/8/8 1/7 0 0
Total 442/304/288 219/17 74 125 140/70/70 26/29 22 40

Table 2: Sensitive data transmission apps detected. The first part depicts the results of the chosen malware, and the second
part are results of apps from Google Play. For each dataset, the first column represents the type of sensitive data transmitted,
while Column 2 depicts the reported data transmission cases after each phase of AppIntent. Column 3 presents the number of
data transmission of each kind. Column 4 depicts the number of sensitive data written to the local logging system. Column
5 lists the number of possible leakage cases detected by TaintDroid.

covered by AppIntent while 14 cases not. We manually
checked the code of ten apps reported by TaintDroid but
not reported in AppIntent, and found that nine of them do
not actually leak privacy information. The remaining four
cases either failed in DED, or contain native code that is not
covered by AppIntent. In the 151 cases that are reported by
both AppIntent and TaintDroid, 20 cases are actually classi-
fied as user-intended data transmission by AppIntent, which
means they are not true privacy leakage. Since TaintDoird
does not provide corresponding app input to trigger the sen-
sitive data transmission, it cannot distinguish user-intended
data transmission from unintended one.
In addition, we also have several interesting findings:
Finding 1: Data transmission of device IDs and phone

numbers are very common but typically not noticed by most
smartphone users. Among the detected unintended data
transmission in the two selected datasets, most cases are
transmission of device IDs or phone numbers. We also no-
tice that almost all data transmission cases of device IDs
and phone numbers do not inform users the operation. We
believe that it occurs because Android apps use such infor-
mation as the unique user identifier when connected to their
own server.
Finding 2: Lots of apps write sensitive data into local log-

ging system. Among the tested datasets, 96 (74+22) apps
log sensitive data into local logging system, which is bad
practice and may lead to indirect privacy leakage. Addition-
ally, we find that not only device IDs and phone numbers
are written to Android logs, but also locations and user con-
tacts are temporally stored in several cases. These logged
data can be leveraged by malicious apps that steal Android
log instead of transmitting sensitive data directly. Since
privacy leakage detection approaches do not cover leakage
of local logging, such apps could bypass existing detection
tools.

6.4 Analysis Time
Our static analysis phase costs 96 hours to analyze all

1,750 apps, among which 70 hours are used in static taint
analysis. The analysis time can be further reduced by dis-
tributing the analysis workload to multiple machines. Since
each application costs about 3.3 minutes on average, the

analysis time is almost negligible to the Android market op-
erators.

Our symbolic execution costs 5 to 134 minutes to verify a
certain path reported by static analysis, depending on the
search space and the complexity of the app. Verifying differ-
ent paths can also be processed in parallel because exploring
the possible search space of each sensitive data transmission
path does not depend on information of other paths. As an
offline analysis tool, such a validation time is also acceptable
to the marketplaces that have enough computing power.

6.5 Case Studies
We now present two case studies from our evaluation:

one represents user-intended data transmission (Anzhuod-
uanxin) and the other represents unintended transmission
(Tapsnake). Video demonstrations of AppIntent for both
cases are available at [4, 5].
Anzhuoduanxin [3] is an SMS management app that pro-
vides a set of SMS-related functions such as creating new
messages or forwarding a cached message to another user.
With the help of our event-space constraint guided symbolic
execution, AppIntent generates two feasible app inputs that
trigger sensitive SMS data transmission: Figure 6(a) depicts
one of the feasible inputs, and a simplified version of the
other is depicted in Figure 5. Without loss of generality, we
choose the first one to illustrate here.

Our dynamic analysis platform accepts this input and cre-
ates an execution as demonstrated in the video [4]. In this
case, the controlled execution first selects a record among
the list which represents all conversation records stored in
this phone. Then, by choosing a message and clicking a but-
ton that presents ”forward”in Chinese (Figure 7(a)), the app
user can forward this message to someone else. This mes-
sage can be sent to anyone by typing a named receiver and
clicking a button titled ”send”(Figure 7(b) and Figure 7(c)).
This execution is commonly used for forwarding a stored
message to a friend of the app user, thus it should not be
classified as malicious/unintended behavior.
Tapsnake is a malicious app that stealthily transmits user
locations to a predefined third party receiver. Depicted in
Figure 6(b), the app input generated by AppIntent shows
that two components are activated when the location infor-
mation is transmitted to a third-party user in Tapsnake: the



Figure 7: Screen shots of case studies.
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Figure 6: Feasible app inputs for sensitive data transmission
in case studies.

main activity of this app, and an embedded Service which
registers an event listener for location change event. Based
on this input, the corresponding execution, demonstrated
in the video [5], waits until the current time is greater than
0xdbba0 (which represents 15 minutes from the beginning of
the wall time) Then, the location information is sent after a
location change event is performed (Figure 7(d)). Since the
original application is a simple ”snake” video game, and its
functionality does not depend on the location information,
thus this behavior is unintended.

6.6 Usability of AppIntent
To evaluate how useful the information provided by Ap-

pIntent is, we randomly selected 100 cases reported, and
used them to evaluate the user experience. Since AppIntent
mainly focuses on providing enough information for discrimi-
nating user-intended data transmission from unintended one
at app markets, we invited three Android experts in our us-
ability study. During the evaluation, we first introduced
AppIntent to them with less than 15 minutes, and let them
get familiar with the given cases. Then, we ran the driven
executions generated by AppIntent in our Samsung Nexus
S mobile phone and showed them to all three participants.

After that, participants were asked to fill a sheet in which
each case should be classified as ”user-intended” or ”unin-
tended”. We find that they can make their decision in less
than one minute after the driven execution finishes, which
shows that AppIntent greatly speeds up the process in vali-
dating Android apps.

The results from these three users are unambiguously the
same as our judgement in 98 cases. However, there are some
different opinions in two cases, which are both data trans-
mission of IMEI. Two out of three expects classified them
into user-intended because they think these apps need the
IMEI number to fulfill their functionality, while we classified
them as unintended data transmission because there is no
direct relation between the data transmission and the user
experience. This evaluation shows that AppIntent is still a
great assistance tool with high usability in practice. And it
certainly also has some room to be improved in the future.

7. RELATED WORK
AppIntent seems to be the first to systematically study

a method to separate user-intended Android data transmis-
sion from unintended ones. All other existing Android pri-
vacy leakage detection approaches only detect sensitive data
transmission. Static Taint Analysis [21, 40] focuses on iden-
tifying the possible privacy leakage path with the help of
reachability analysis and program slicing. However, these
approaches commonly introduce a lot of false positives and
cannot separate user-intended operations from unintended
ones because of lacking user intention and context infor-
mation. On the other side, Dynamic Taint Tracking tech-
niques [22, 41] track the sensitive data at runtime by in-
strumenting profiling code to the original app code. They
cannot be applied to automatically detect privacy leakages
in marketplaces because they report leakage only if such
dangerous propagation happens to occur in the execution.
While not implemented, Vision [26] argues that user grant-
ing of sensitive data usage can be represented by End-user
license agreements(EULA) and explicit notification during
the execution. Similarly, BLADE [32] detects web drive-
by download malware by recognizing whether it has user



consent or not. However, mobile apps commonly do not
provide EULA or notification even if the data transmission
is user-intended (e.g. SMS forwarding). Pegasus [18] de-
tects malicious behaviors that can be characterized by the
temporal order in which an application uses APIs and per-
missions, and similar to this paper, it focuses on detecting
malicious app behaviors that are inconsistent with the GUI
events. Nevertheless, privacy leakages cannot be modeled as
app usage of permissions or APIs, thus many privacy leak-
ages cannot be detected by such approach. Besides, Pega-
sus verifies program behaviors based on application-specific
properties, which are difficult to specify without the knowl-
edge of application code. Recently, VetDroid [44] enhances
Dynamic Taint Tracking by generating specifications for sen-
sitive operations. However, the specification mainly focuses
on the application logic but does not pay attention to the
trigger condition of each operation.
AppIntent needs to extract app inputs to distinguish user-

intended data transmission from unintended one. Smart-
Droid [45] proposes a hybrid static and dynamic analysis
method to reveal UI-based event trigger conditions based
on sensitive Android APIs. However, in order to generate
a reproducible driven execution, we need both event inputs
and data inputs. In this sense, AppIntent provides a more
complete and systematic approach. Besides, instead of An-
droid APIs, we need finer-grained analysis of app behav-
iors to detect privacy leakages. AppIntent proposes a sym-
bolic execution approach for Android GUI apps to extract
inputs. The search space explosion of symbolic execution
is a well-known issue. Earlier guided symbolic executions
direct the exploration with static analysis result [11, 33, 36,
37] or profiled program behavior[14, 19, 43]. All these ap-
proaches focus on the explosion caused by the data input
space, and cannot reduce the search space of runtime events
in Android. On the other hand, there is little work on lim-
iting the event space. In order to limit the search space,
Ganov, et.al [25] set an upper bound to the number of event
sequences generated, Kudzu [38] used a random generated
event order, and Ganov, et.al [24] proposed to generate test
cases by symbolically executing each event handler sepa-
rately. Although these features can limit the exploration of
event space, they greatly sacrifice the code coverage. Con-
test [9] seeks to prune redundant event sequences by check-
ing subsumption conditions, and can reduce the running time
of symbolic execution to 5%-36% of the original execution
time. However, the event space is still large after the prun-
ing and the path explosion problem still exists. To the best
of our knowledge, all existing approaches either trade accu-
racy for performance or suffering poor scalability. In this
paper, by using the result of static analysis as the guideline,
event-space constraint guided symbolic execution explores
event space efficiently without sacrificing the accuracy.

8. CONCLUSION AND FUTURE WORK
This paper addresses one of the major challenges faced by

smartphone markets - how to detect privacy leakage in An-
droid apps. Unlike previous approaches that simply consider
the transmission of private data as privacy leakage, we ar-
gue that such transmission may not indicate a true privacy
leakage, instead, a better indicator should be whether the
transmission is user intended or not. We present AppIntent,
a new app validation framework to help human analysts de-
termine if data transmission is intended by the user. With

the help of event-space constraint guided symbolic execu-
tion technique proposed in this paper, the search space of
symbolic execution is effectively bounded so that AppIntent
can extract app inputs that represent user interactions in an
acceptable amount of time. With the help of the dynamic
analysis platform, AppIntent can also intuitively display the
context information of the sensitive data transmission.

Our current techniques have the following limitations, which
are also our future work. First, native code is currently not
supported by AppIntent. Thus, privacy leakages in native
code cannot be captured. Second, since the Android In-

strumentationTestRunner [1] does not support instrumen-
tation of network input, our dynamic analysis platform can-
not simulate network inputs generated by symbolic execu-
tion. This could be solved by instrumenting code in Android
network interface. Finally, AppIntent fails to analyze some
apps because the DEX decompilation tool, DED [23], failed
to decompile these apps. We plan to use Dexpler [12], which
can directly parse DEX files, in soot, so that the decompi-
lation from DEX to Java bytecode is not needed.
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