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Abstract
Broken-Access-Control (BAC) vulnerabilities have consistently been
ranked among the most critical security risks in web applications,
occupying the top positions in the OWASP Top 10 over the past
several years. These vulnerabilities allow attackers to bypass access
control mechanisms and perform unauthorized operations, posing
security and privacy threats to sensitive business and user data.
Despite substantial attention given to BAC vulnerabilities, effective
and reliable approaches to detecting these issues remain limited.

In this work, we present BACScan, a novel black-box approach
to detect BAC vulnerabilities in web applications. Unlike existing
response similarity-based oracles that check only unauthorized
read accesses, BACScan introduces an innovative feedback-driven
oracle, which determines whether unauthorized read or modifica-
tion operations have occurred by inferring operationally-dependent
web pages and analyzing the operational feedback. We evaluated
BACScan on 20 real-world applications and successfully identified
89 vulnerabilities, including 54 previously unreported ones, out-
performing state-of-the-art tools. We reported all newly identified
vulnerabilities to the affected vendors. To date, 35 new CVE IDs
have been assigned.
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• Security and privacy→Web application security.
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1 Introduction
Broken-Access-Control moves up to the category with the most serious
web application security risk.

— The OWASP Top 10 [19].
With the rapid advancement of web applications, numerous

commercial platforms (e.g., Amazon [1], PayPal [9]) now store sub-
stantial volumes of critical privacy-sensitive user data, including
identity and payment information, thereby making them attractive
targets for web attackers. To protect this sensitive data, developers
implement and deploy access control mechanisms to prevent unau-
thorized operations. However, inadequate or improperly configured
access control mechanisms can give rise to serious vulnerabilities,
known as Broken-Access-Control (BAC) vulnerabilities.

In recent years, BAC vulnerabilities have become increasingly
severe. According to the OWASP Top 10, BAC vulnerabilities have
consistently ranked among the most critical issues over the past
five years [18, 19, 21]. In OWASP 2023, BAC vulnerabilities even
accounted for four out of the five most severe vulnerabilities [21].
Furthermore, numerous widely-used applications, including PayPal,
Twitter, and TikTok, have been reported to exhibit BAC vulnerabil-
ities, as documented in HackerOne [15, 16]. Attackers may exploit
these vulnerabilities to perform unauthorized operations, includ-
ing arbitrary read, modification, or even deletion of sensitive data,
thereby posing significant threats to the availability and integrity
of the vulnerable applications [20, 22].

Although BAC vulnerability detection is a well-explored research
topic, the increasing severity of BAC vulnerabilities highlights the
long-lasting lack of highly effective detection techniques. Recent de-
tection approaches can generally be categorized into white-box and
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black-box methods. White-box approaches exhibit significant limi-
tations, including high false positive rates, the inability to generate
proof-of-concept (PoC), and scalability issues associated with static
analysis techniques [45]. To address these limitations, researchers
have explored dynamic black-box scanning techniques (i.e., scan-
ners), which are widely used methods for penetration testing and
are particularly effective in detecting security flaws in real-world
scenarios [24, 30]. Given these advantages, we adopted a black-
box approach for detecting BAC vulnerabilities and conducted a
thorough study of existing black-box techniques. Specifically, these
techniques [28, 35, 37, 49, 50, 62] rely on a response similarity-based
oracle (shortened to response-based oracle) for detecting BAC vul-
nerabilities. In particular, the security analysts set up an attacker
and a victim user accounts with the scanners. The scanner uses the
attacker’s credentials to send HTTP requests to access the victim’s
personal data. If the response received by the attacker is similar to
the victim’s, a BAC vulnerability is reported.

However, the design of this oracle exhibits significant inherent
flaws. Oracle is a crucial and fundamental component of black-box
scanners, playing a pivotal role in determining the effectiveness of
black-box vulnerability detection [32]. Unfortunately, the response-
based oracle is based on a flawed assumption: the direct response to
a BAC attack request always provides evidence indicating whether
the exploit is successful or not. This assumption holds true in scenar-
ios like unauthorized data leakage via Read-based Broken Access
Control (RBAC) vulnerabilities, where the leaked data is directly
returned to the attacker via the HTTP response. However, in other
scenarios such as unauthorized data deletion viaModification-based
Broken Access Control (MBAC) vulnerabilities, this assumption
fails as the direct HTTP response to the attack request does not nec-
essarily indicate whether the unauthorized operation is successful.
This erroneous oracle leads to a significant rate of false negatives
and false positives in the detection of MBAC vulnerabilities (70.97%
and 86.96% in our evaluation, respectively).

In this paper, we propose BACScan, a novel black-box approach
to detecting BAC vulnerabilities in web applications. Specifically,
BACScan employs the state-of-the-art (SoTA) response-based oracle
for detecting RBAC vulnerabilities where the direct HTTP response
provides feedback. We design a novel feedback-driven oracle for
MBAC vulnerabilities where the direct HTTP response cannot re-
flect the modification status. It determines whether unauthorized
modifications have succeeded by observing the feedback from other
operationally-dependent pages that indicate the modification sta-
tus. While the idea is intuitively simple, effectively implementing
and applying this feedback-driven oracle for MBAC vulnerability
detection presents significant challenges. To achieve this, two main
challenges must be carefully addressed:
• C1: How to accurately and efficiently identify status pages that
provide feedback in a black-box context? Accurately identifying
the corresponding status pages that provide feedback for modi-
fication pages is critical for vulnerability detection. However,
in a black-box scenario, only HTTP requests and responses are
available. Given the vast number of requests and responses in
modern web applications, accurately and efficiently pinpointing
these operationally-dependent status pages is non-trivial.
• C2: How to navigate the application into the correct state to collect
effective feedback for MBAC vulnerability detection? Once the

status page providing feedback is identified, the next step is
to replay modification requests using an attacker’s session and
verify if unauthorized changes to data occur. However, the target
application may not be in the right state, and issues like attempts
to delete non-existent data may cause operations to fail, resulting
in failed request replays and affecting detection accuracy.

Inspired by Black Widow [32], we observe that the data access
and operational dependency betweenweb pages can help us identify
the corresponding status pages of the modification page. The status
pages could provide feedback for detecting unauthorized modifi-
cations. Therefore, BACScan introduces a novel data structure to
represent the data dependency relationship, called the Inter-page
Data Dependency Graph (IDDG). Specifically, it utilizes SoTA crawl-
ing techniques with the victim user’s credentials to construct the
IDDG based on the navigation graph. The process involves inter-
cepting requests to modification pages, generating and inserting
unique tokens, and leveraging the hierarchical strategy to efficiently
traverse the navigation graph to establish data dependencies be-
tween modification and status pages. Then, BACScan leverages the
constructed IDDG to apply the novel feedback-driven oracle to
detect MBAC vulnerabilities. Specifically, it follows the navigation
edge to replay modification requests with the attacker’s credentials
and follows the data dependency edge to revisit corresponding
status pages to obtain feedback. It then detects potential MBAC
vulnerabilities based on the presence or absence of unique tokens.

We evaluate the effectiveness and performance of BACScan on 6
open-source web applications with 44 known BAC vulnerabilities
and 14 applications with no known vulnerabilities. These applica-
tions have been widely evaluated in previous studies [26, 34, 48,
56, 58] and each has at least 100 stars on GitHub, demonstrating
their representativeness and popularity. Moreover, they are imple-
mented in various languages, including Java, PHP, and Go, further
demonstrating the language-independent advantage of BACScan. As
a result, BACScan successfully discovered 89 vulnerabilities, includ-
ing 54 (verified) high-risk 0-day and 35 known BAC vulnerabilities.
Besides, we compare BACScan to state-of-the-art techniques (i.e.,
BurpSuite [12] and EvoCrawl [35]). BACScan performs significantly
better, detecting up to 49 additional vulnerabilities. These newly
discovered BAC vulnerabilities have the potential to leak sensi-
tive user information, delete or modify critical operational data and
records (e.g., changing a patient’s prescription), posing serious secu-
rity and privacy threats to individual users and business operations.
Given their significant security impact, we responsibly reported all
the newly detected vulnerabilities to the relevant developers. At
the time of writing, 39 vulnerabilities have been confirmed by the
developers, and 35 have been assigned new CVE IDs.

In summary, our paper makes the following contributions:

• We design a new feedback-driven oracle that leverages inter-page
data dependency for black-box detection of BAC vulnerabilities.
• We propose a novel black-box detection approach—BACScan—to
effectively detect BAC vulnerabilities in web applications. We
will open-source our prototype upon publication.
• Our evaluation with 20 real-world popular web applications
demonstrates the effectiveness of BACScan, with the discovery
of 54 (verified) 0-day BAC vulnerabilities and the assignment of
35 new CVE IDs.
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http://website/user-a.php?op=delete
User A's info

• Name: Alice

• Addr: US

User B's info

• Name: Bob

• Addr: UK

http://website/user-b.php?op=delete

Web Application

User A (Victim)

User B (Attacker)

Figure 1: Threat Model of BAC Vulnerability.

2 Problem Statement
2.1 Broken-Access-Control Vulnerability
Web applications store substantial amounts of sensitive user data,
such as identity and payment information, which is protected by
applications’ access control mechanisms. However, misconfigura-
tions in these mechanisms would result in Broken-Access-Control
(BAC) vulnerabilities [18], including issues like CWE-284 (Improper
Access Control) [4]. These vulnerabilities allow attackers to bypass
access controls and perform unauthorized operations, such as read-
ing, modifying, or deleting sensitive data of other users, posing
risks to the application’s confidentiality, integrity, and availabil-
ity [20, 22]. For example, as shown in Figure 1, although both users
should only have access to their own data, User B (the attacker) can
exploit the vulnerability to delete the data of User A (the victim)
without authorization.

2.2 Existing Detection Techniques
Existing white-box approaches [43, 44, 46, 52–54] utilize various
application-specific inputs (e.g., runtime logs and code annotations)
to identify access control checks within applications, treating inad-
equately safeguarded security-sensitive operations as BAC vulner-
abilities. While the high-level idea is reasonable, these approaches
still present notable limitations due to high false positives, inability
to generate PoCs, and reliance on specific programming languages.

Recently, numerous studies have explored black-box techniques
for detecting BAC vulnerabilities. Black-box scanning is widely em-
ployed in security penetration testing. This approach uses scanners
to simulate real-world attacks from an external adversary’s per-
spective, where the attacker lacks prior knowledge of the system’s
internal logic and implementation but can observe the system’s
external behavior. Black-box techniques are particularly effective
in detecting security flaws in live or production environments due
to their low reliance on source code, significantly increasing their
practicality in real-world scenarios [24, 30]. Given these advantages,
we decided to adopt a black-box approach for detecting BAC vul-
nerabilities and conducted a thorough study of existing techniques.

Many works (e.g., [28, 35, 37, 49, 50, 62]) introduced automated
black-box scanners for BAC vulnerability detection. Specifically,
they typically adopt a response similarity-based oracle and employ
a three-step approach. First, they configure two users of the target
application for the scanner, with one acting as an attacker and
the other serving as a victim user. Second, the scanner utilizes
both the victim’s and the attacker’s sessions to explore the web
application, separately collecting the pages accessible to each, along

with the corresponding page content (i.e., HTTP responses) for each
user. Third, the scanner filters out public pages accessible to both
the attacker and the victim and selects the pages that are only
accessible to the victim. It then replaces the victim’s session with
the attacker’s, keeping all other request parameters identical, and
revisits the pages that are exclusively accessible to the victim. If
the content for a given page is highly similar between the attacker
and the victim, the scanner reports a potential BAC vulnerability.

2.3 Limitations of Existing Black-box Scanner
Undoubtedly, the oracle is a crucial and fundamental component
of black-box scanners, playing a pivotal role in determining the
effectiveness of vulnerability detection [32, 34]. At first glance,
the response-based oracle appears intuitively reasonable and well-
suited for BAC vulnerability detection. However, upon an in-depth
analysis of the oracle’s underlying mechanism, we observe that
it is predicated on a flawed assumption: the direct response to a
BAC attack always contains evidence indicating whether the exploit is
successful or not. This assumption significantly limits the scanner’s
applicability to only a narrow subset of BAC vulnerabilities.

Specifically, in certain scenarios, this assumption holds true.
For example, the presence of a victim’s order details within the
attacker’s HTTP response clearly indicates a BAC vulnerability.
Nevertheless, in other scenarios, this assumption fails and results
in significant issues such as false negatives and false positives. To
provide a more clear illustration, we classify BAC vulnerabilities
based on their impact on data integrity and organize them into two
distinct categories: Read-based Broken-Access-Control (i.e., RBAC)
and Modification-based Broken-Access-Control (i.e., MBAC).

❶ RBAC vulnerabilities are characterized by read-only opera-
tions (e.g., SELECT) through which attackers can achieve unautho-
rized read access to data without modifying it. The direct response-
based oracle typically works well for detecting RBAC vulnerability,
as the goal of exploiting RBAC is to leak sensitive data. Conse-
quently, the accessed private data is directly leaked to the attacker
via the HTTP response, which serves as an indicator of whether
unauthorized data access has occurred.

❷ MBAC vulnerabilities, on the other hand, involve modifica-
tion operations (e.g., INSERT, UPDATE, and DELETE) and represent a
significant portion of BAC vulnerabilities. Given that MBAC can se-
verely compromise data integrity (e.g., deleting critical private user
data), its potential impact is much more severe than that of RBAC.
However, for MBAC vulnerabilitis, the direct response-based oracle
is generally ineffective. In some cases, the status of datamodification
is present in the direct HTTP response, indicatingwhether the unau-
thorized modification is successful (e.g., {"status":"success"}
in HTTP response). Nevertheless, in most cases, the status is not
available in direct response to modification requests. This is due
to the intrinsic nature of MBAC, which primarily focuses on data
modification. The modification status might not be observable in
the direct response to the user and be present in other dependent
responses. Consequently, treating the direct response as an indica-
tor of modification status (i.e., response-based oracle) for detecting
MBAC vulnerability leads to a significant number of false positives
and false negatives. As demonstrated in §5.3, our evaluation re-
veals that the false positive and false negative rates can reach as
high as 70.97% and 86.96%, respectively. Therefore, it is crucial to
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POST /api/v1/user/update

Host: api.*****.com

Cookie: Alice

uid=1&new_name=newalice

POST /api/v1/user/update

Host: api.*****.com

Cookie: Bob

uid=1&new_name=newalice

HTTP/1.1 200 OK

Content-Type: application/json

{"uid": "1", "addr": "US"}

HTTP/1.1 200 OK

Content-Type: application/json

{"uid": "2", "addr": "UK"}

POST /api/v1/order/delete

Host: api.*****.com

Cookie: Alice

order_id=1

POST /api/v1/order/delete

Host: api.*****.com

Cookie: Bob

order_id=1

HTTP/1.1 302 Found

Content-Type: application/json

{"status": "redirect: /order"}

HTTP/1.1 302 Found

Content-Type: application/json

{"status": "redirect: /order"}

a) Real-world Example in WeBid (Vulnerable)

b) Real-world Example in SuperMarket (Secure)

Figure 2: Real-world BAC Vulnerability Examples.

identify the correct dependent indicators of modification status to
accurately detect MBAC vulnerabilities.

2.4 Real-World BAC Example
To highlight the limitations of existing work, we present two real-
world examples illustrated in Figure 2.

Figure 2 (a) illustrates a 0-day MBAC vulnerability within We-
Bid [17]. The response-based oracle is ineffective in detecting this
vulnerability, resulting in a false negative. Specifically, user Alice
(the victim) sends a request to the /api/vi/user/update page
to update her username. The parameters uid and new_name repre-
sent Alice’s user ID and the new username, respectively. User Bob
(the attacker) replaces the cookie with his own while leaving the
rest of the request unchanged, and then replays the request. Since
the developer failed to implement an appropriate access control
policy to verify the relationship between the currently logged-in
user and the value of the uid parameter, Bob can modify Alice’s
username without authorization, exposing an MBAC vulnerability.
However, the response to this modification request does not con-
tain any indicators showing whether the update is successful. The
application only returns the information related to the user who
makes the request, such as the uid and address. Consequently, even
though the attacker successfully modified the victim’s data without
authorization, the response-based oracle incorrectly concludes that
no vulnerability exists due to the dissimilarity between the attacker
and victim responses, ultimately leading to a false negative.

Figure 2 (b) illustrates a false positive caused by the response-
based oracle in SuperMarket [11]. In this scenario, user Alice deletes
her own order by sending a request to the /api/v1/order/delete
page. User Bob, acting as the attacker, replicates this request but
replaces the cookie with his own before replaying it. Due to the
developer having implemented proper access control measures,
Bob cannot delete Alice’s order without authorization, meaning

no MBAC vulnerability actually exists. Nevertheless, since the re-
sponses to both requests are highly similar, the response-based
oracle erroneously concludes that a vulnerability is present, result-
ing in a false positive.

3 Overview of Our Method
Although the response-based oracle is effective for RBAC, it proves
fundamentally unsuitable for detectingMBAC vulnerabilities due to
the intrinsic differences in their operational characteristics. There-
fore, in this work, rather than relying on the traditional response-
based oracle, we propose a novel oracle for effective black-box
MBAC vulnerability detection. In this section, we first introduce
the design of our new oracle (in §3.1), then discuss the challenges
encountered (in §3.2), and finally present our solution (in §3.3).

3.1 MBAC Detection Oracle
Given that attackers aim to modify data by exploiting MBAC vul-
nerabilities, detecting MBAC vulnerabilities hinges on determining
whether an unauthorized data modification is successful. Building
on this understanding, the key insight behind our approach is that
the data altered by a modification page can be displayed on a status
page. In other words, there exists a status page that provides mod-
ification feedback in most cases, although it can be one different
from the modification page. This makes sense because web applica-
tions would usually present user-specific data that can be modified
through multiple channels on some dedicated pages. Such pages,
which are used to view data, can therefore function as status pages
providing feedback. For example, consider an application that has
two pages: an order submission page and an order list page. When a
user submits an order through the order submission page, the details
of that order can be displayed on the order list page. By examining
the order list page, we can determine whether the order submission
is successful, as it displays the data regarding the submitted order.
If the data shown on the order list page changes unexpectedly or
is modified by another user without the original user’s consent, it
becomes apparent that unauthorized modifications have occurred.
Thus, the order list page serves not only as a display for submitted
orders but also as a crucial indicator for detecting any unauthorized
data manipulation on the order submission page.

Therefore, we design a feedback-driven oracle for MBAC vulner-
ability detection. Specifically, the intuitive detection workflow can
be outlined in the following two steps: (1) we crawl and explore the
application with the victim’s credential, analyze the HTTP requests
and responses, and identify the status page that displays the data
related to the modification request. (2) we replay the modification
request using the attacker’s credential and revisit the status page to
obtain feedback, which indicates whether the modification is suc-
cessful. By leveraging this feedback-driven oracle, we can confirm
the presence of an MBAC vulnerability if the data has been altered
without authorization.

3.2 Challenges
This feedback-driven oracle and detection workflow may appear
straightforward. However, implementing this oracle and effectively
applying it for MBAC vulnerability detection presents significant
difficulties. Two main challenges must be addressed carefully.
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Challenge I: How to accurately and efficiently identify sta-
tus pages that provide feedback in a black-box context? Ac-
curately identifying the corresponding status pages that provide
feedback for a modification request is the first crucial step. Any
errors or oversights in this process can directly lead to false pos-
itives or false negatives during vulnerability detection. However,
this is not a trivial task. As demonstrated, we cannot access the
source code or query the database in a black-box context. The only
information available comes from HTTP requests and their corre-
sponding responses. In web applications, there are typically thou-
sands of such requests and responses. Manually analyzing each one
or exhaustively traversing them would be highly time-consuming.
Therefore, accurately and efficiently identifying the corresponding
status pages that provide feedback from a large volume of requests
and responses is undoubtedly a challenging task.
Challenge II: How to navigate the application into the correct
state to collect effective feedback for MBAC vulnerability
detection? After identifying the status page that provides feed-
back, the next step involves replacing the session with those of an
attacker, replaying the modification requests to the target page, and
revisiting the corresponding status page to verify whether unau-
thorized modifications to the victim’s data have occurred. However,
several critical issues must be addressed to ensure the application
is in the correct state, allowing for the successful replay of modifi-
cation requests. For instance, during data dependency construction,
DELETE-type operations may permanently remove certain data,
making it unmodifiable. In this case, when the scanner replays the
delete request to detect vulnerabilities, the data to be deleted no
longer exists, causing the replayed request to fail and resulting in
false negatives. Furthermore, modification requests may contain
parameters such as CSRF tokens, which could cause the replayed
request to fail, thus impacting the accuracy of vulnerability detec-
tion. Consequently, it is essential to interact with the application
in the correct state, thereby collecting effective feedback for MBAC
vulnerability detection.

3.3 Our Solution
To address these key challenges, we propose our novel solutions,
which consist of two key techniques.
Technique I: Inter-page Data Dependency Construction. In-
spired by Black Widow [32], we observe that there exists a data
dependency between the data manipulated by the modification page
and the data displayed by the status page. This dependency helps
identify the status page that indicates the state of the modified data,
thus acting as feedback for detecting unauthorized modifications.
To establish such dependency, we introduce a novel graph data
structure called Inter-page Data Dependency Graph (IDDG), which
connects modification pages and their corresponding status pages
through data dependency edges (detailed in §4.1).

Specifically, we demonstrate the IDDG construction process
through Algorithm 1: ① Our approach utilizes SoTA crawling tech-
niques [32] to explore the web pages of the target application, using
both the victim’s and attacker’s sessions to construct separate navi-
gation graphs for each user. We then analyze the URLs and contents
of all pages, filtering out public pages that are accessible to both
attackers and victims. ② During the victim’s page exploration (line
2), our approach intercepts requests to modification pages only

Algorithm 1: IDDG Construction
Input: Initial Page (𝑃0), Victim’s Session 𝑉𝑆
Output: IDDE Set (𝐸)

1 𝐸 ← ∅
2 foreach 𝑝 ∈ ExplorePage(𝑃0,𝑉𝑆) do
3 𝑝 ← InterceptRequest(𝑝)
4 if Type(𝑝) ∈ {POST, PUT, DELETE} then
5 𝑡𝑜𝑘𝑒𝑛 ← GenerateToken(𝑝)
6 𝑝m ← ReplaceParams(𝑝, 𝑡𝑜𝑘𝑒𝑛)
7 ReleaseRequest(𝑝m)
8 end
9 foreach 𝑝r ∈ HierarchicalTraverse(𝑝) do
10 if CheckToken(𝑝r, 𝑡𝑜𝑘𝑒𝑛) then
11 𝐸 ← 𝐸 ∪ {(𝑝r, 𝑝m)Type}
12 end
13 end
14 end

Algorithm 2:MBAC Vulnerability Detection
Input: IDDG 𝐺 , Attacker’s Session 𝐴𝑆 , Victim’s Session 𝑉𝑆 ,
Output: Vulnerabilities 𝑉

1 𝑉 ← ∅
2 foreach 𝑝m ∈ 𝐺 do
3 if InsertPage(𝑝m) or UpdatePage(𝑝m) then
4 ReplayReq(𝑝m, 𝐴𝑆)
5 end
6 if DeletePage(𝑝m) then
7 𝑡𝑜𝑘𝑒𝑛 ← GenerateToken(𝑝)
8 ReInsert(𝑝m, 𝑡𝑜𝑘𝑒𝑛,𝑉𝑆)
9 ReplayReq(𝑝m, 𝐴𝑆)

10 end
11 𝑝r ← GetDependencyNode(𝑝m,𝐺)
12 if CheckVuln(𝑝r, 𝑡𝑜𝑘𝑒𝑛,𝑉𝑆) then
13 𝑉 ← 𝑉 ∪ 𝑝m
14 end
15 end

accessible to the victim, replaces parameter values with randomly
generated tokens, and then releases the request (lines 3-8). ③ Next,
we employ a hierarchical strategy to traverse the navigation graph,
prioritizing in pages that are more likely to serve as feedback (line
9). Notably, our approach stops graph traversal once the first status
page capable of providing feedback is identified, thus improving
efficiency. ④ Our approach revisits the status pages to record any
tokens. When a token inserted by a modification page appears
(for INSERT and UPDATE) or disappears (for DELETE) on a status
page, a data-dependency edge is established between the status and
modification pages, along with its corresponding operation type,
i.e., INSERT, UPDATE, or DELETE (lines 10-12). By following these
steps, our approach can accurately represent the inter-page data
dependency relationships within the IDDG.
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Technique II: IDDG-based MBAC Vulnerability Detection.
Utilizing the constructed IDDG, our approach applies the novel
feedback-driven oracle to detect MBAC vulnerabilities. The work-
flow for this phase is shown in Algorithm 2. ⑤ We attempt to replay
the victim requests sent to modification pages in the IDDG using
the attacker’s session. For INSERT- and UPDATE-type modification
pages, we directly replay the request (lines 3-5). For DELETE-type
modification pages, unlike other types, we first locate the page
that originally inserted the token into the current delete page, and
then replay the insertion operation to insert the token back onto
the page (lines 6-10). ⑥ Next, leveraging the inter-page data de-
pendency relationships recorded in the IDDG, we follow the data
dependency edge to locate and revisit the corresponding status page
using the victim’s session, detecting vulnerabilities by obtaining
feedback. Specifically, we designed distinct oracles for each type of
modification page (see §4.2). For INSERT and UPDATE types, the
appearance of a new token on the status page indicates an MBAC
vulnerability. For DELETE, the absence of a previously existing
token signals an MBAC vulnerability (lines 11-14).

4 BACScan
In this section, we provide the design details of our BAC (includ-
ing MBAC and RBAC) vulnerability detection approach, named
BACScan. Figure 3 illustrates the architecture of BACScan, which
consists of two key modules.

• IDDG Construction (§4.1). This module constructs the IDDG to
represent the data dependency relationships between web pages,
thereby facilitating vulnerability detection.
• BAC Vulnerability Detection (§4.2). This module initiates HTTP
requests and leverages the feedback-driven oracle and response-
based oracle to detect both MBAC and RBAC vulnerabilities.

4.1 IDDG Construction
In this section, we first present the formal definition of the IDDG,
followed by a detailed explanation of how BACScan constructs the
IDDG using one example.

4.1.1 IDDG Definition. The IDDG is constructed on top of the
navigation graph and represents the data dependency relationship
between pages through special nodes and edges. We introduce the
structure of the navigation graph and utilize graph notation to
rigorously define the formal representation of the IDDG.
Navigation Graph Definition. Navigation Graph is a data struc-
ture widely used in traditional tasks such as web vulnerability
scanning [29, 31, 32]. It represents how pages within a web applica-
tion are accessible from one to another through navigation edges.
Following existing work, we introduce the key components of the
navigation graph, i.e., the nodes and edges. The nodes represent in-
dividual web pages, such as the login page. Web crawlers typically
collect newly accessible web pages by exploring already visited
pages. The edges capture the relationships between page nodes,
indicating how one page can navigate to another, which may occur
through hyperlinks, event handling, form submissions, etc.

We use 𝑛 to represent the nodes in the navigation graph, and
𝑁𝐸 to represent the set of navigation edges. The formal definition
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Figure 3: Architecture of BACScan.

of 𝑁𝐸 is as follows:

𝑁𝐸 = {(𝑛prev, 𝑛next) | Navigate(𝑛prev) = 𝑛next}
IDDG Definition. The IDDG is constructed on top of the navi-
gation graph. IDDG represents the data dependency relationships
between web pages by connecting page nodes through a new type
of directed edge—inter-page data dependency edge (IDDE). Specifi-
cally, an IDDE connects from a modification page node to its corre-
sponding status page node. The modification pages process requests
that alter the data, e.g., submitting orders. The status pages process
requests that retrieve data and display this data to end users, e.g.,
listing orders. The IDDE indicates that data modified by the modifi-
cation page can be displayed on the connected status page. Besides,
the IDDE records the modification type performed on the data (i.e.,
INSERT, UPDATE, and DELETE), which facilitates further analysis of
data dependencies. The formal definition of an IDDE is as follows:

𝐼𝐷𝐷𝐸 = {(𝑛mod, 𝑛status) | Dependency(𝑛mod) = 𝑛status}
In this paper, consistent with Black Widow [32], we treat data read
pages that process GET requests as status pages and pages that
process POST, PUT, or DELETE requests as modification pages.
While this assumption is not always true, it is generally accepted in
the context of web applications. As defined in the HTTP RFC [33],
GET requests are idempotent and do not modify data, making them
suitable for categorization as data read operations. Besides, our
evaluation results in §5.5 demonstrate that this assumption has no
significant impact on the accuracy of the IDDG or the effectiveness
of vulnerability detection. We discuss this issue further in §6.

4.1.2 IDDG Construction. We now describe how BACScan con-
structs the navigation graph and connects the IDDE between pages.
Page Exploration. BACScan first explores each web page using a
crawler to construct the navigation graph. In accordance with the
state-of-the-art crawler [31, 32], BACScan explores the web pages
through four types of actions, i.e., extracting static URLs, submitting
forms, interacting with iframes, and triggering JavaScript event
handlers (e.g., clicks) within the pages. This method ensures that
BACScan conducts a comprehensive exploration of the current web
pages. Subsequently, BACScan treats the pages generated through
these actions as new page nodes, linking them to the currently
explored page through navigation edges. These edges represent
how the actions facilitate navigation from one page node to another,
thereby forming the navigation graph of the target application.
Token Insertion. During the exploration of each page, BACScan
intercepts all issued modification requests. Then, apart from certain
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structured parameters, such as date and email, BACScan replaces
other parameter values in the request with unique tokens, and sub-
sequently releases the intercepted requests one by one. Specifically,
we generate these unique tokens as pseudo-random strings of six
lowercase characters, e.g., axdvhn. This randomness ensures suffi-
ciently high entropy to prevent them from being mistaken for other
strings within the application.

It must be acknowledged that some data dependencies arise from
structured data, e.g., email, and replacing only unstructured param-
eters with unique tokens may miss these relationships. Neverthe-
less, pages with MBAC vulnerabilities typically contain numerous
unstructured parameters (e.g., username, address) that can be re-
placed. Therefore, we can leverage these parameters to establish
the data dependency relationships between pages, which do not
significantly affect the detection of MBAC vulnerabilities. As shown
in §5.2, our evaluation results demonstrate that the false negatives
caused by the structured parameters of BACScan are only 2.90%.
Hierarchical Navigation Graph Traversal. For each intercepted
modification request with an inserted token, BACScan attempts to
traverse the navigation graph to find the corresponding status page.
One straightforward method is to revisit all web pages to search for
the status page. However, this approach is highly time-consuming
and impractical. Therefore, BACScan employs a hierarchical traver-
sal strategy to efficiently identify the corresponding status page,
thereby establishing data dependency. Specifically, the hierarchical
strategy involves a comprehensive evaluation process of all pages
to prioritize in revisiting the most promising ones. The traversal
stops once the first page with a data dependency on the intercepted
modification request is identified. This approach helps avoid indis-
criminate traversal of all pages, thus facilitating a more efficient
identification of the status pages that provide feedback.

To achieve this, a scoring algorithm is designed to assess the
likelihood of being a status page of specific modification pages.
This algorithm integrates multiple factors, including URL similarity,
request parameter relevance, and the distance to the intercepted
modification page within the navigation graph. BACScan then se-
lects the page with the highest score for prioritized access. The
details of the scoring algorithm and its breakdown are as follows:

𝑆 (𝑚,𝑟 ) = 𝑤1
1 + 𝑆𝑖𝑚 (𝑚,𝑟 ) + 𝑤2 ·

1
𝑛

𝑛∑︁
𝑖=1

I(𝑝𝑖 ∈ 𝑟 ) +
𝑤3

𝐷𝑖𝑠𝑡 (𝑚,𝑟 ) (1)

❶ URL Similarity. BACScan analyzes the response of the inter-
cepted modification request and attempts to extract the redirect
URL provided in the response, which may appear either in the re-
sponse header (e.g., Location:/order) or the response body (e.g.,
redirect:/order). This design choice is based on the observation
that developers tend to redirect users to a page displaying the mod-
ified data, i.e., the status page, after a modification is performed.
Given that redirect URLs may contain various path parameters that
could cause direct URL matching to fail, BACScan thus leverages
the Levenshtein distance algorithm [59] to assess the similarity
between the redirect URL and the URLs of previously accessed
pages (denoted as 𝑆𝑖𝑚(𝑚, 𝑟 ) in Equation 1), assigning higher scores
to more similar pages. Additionally, in cases where no redirection
information is found in the response, BACScan defaults to using the
URL of the modification page as a substitute for the redirect URL.

❷ Request Parameter. BACScan then analyzes the relationship
between the parameters of the intercepted modification page (i.e.,
𝑝𝑖 ) and the content (i.e., HTTP response) of previously accessed
pages. Specifically, as shown in Equation 1, BACScan parses the
parameter names from themodification request and checks whether
they appear in the content of accessed pages. The result of I(𝑝𝑖 ∈ 𝑟 )
is set to 1 if the parameter is found in the content, or 0 otherwise.
This metric is well-founded. For instance, consider a modification
request that contains an address parameter, and another page
presents information related to addresses. It is reasonable to infer
that, compared to other pages, this data read page is more likely to
exhibit a data dependency with the modification request.

❸ Navigation Distance. The distance between the previously
accessed status pages and the intercepted modification page in
the navigation graph is another key factor considered by BACScan,
denoted as 𝐷𝑖𝑠𝑡 (𝑚, 𝑟 ). Typically, modification pages are closely as-
sociated with their corresponding status pages regarding business
functionality, and developers design them to require minimal in-
teraction, thus positioning them relatively close to each other in
the navigation graph. Therefore, BACScan assigns higher scores to
pages that are closer in distance.

As shown in §5.4, this hierarchical strategy enables BACScan
to reduce the total number of page visits, thereby improving the
efficiency of navigation graph traversal and resulting in a 109.10%
improvement in overall performance.
IDDE Connection. In the final step, BACScan establishes IDDE
by analyzing the relationship between the token inserted by the
modification page and the content of the revisited data read page.
Specifically, based on the type of operation performed on the token,
we categorize the IDDE into three types: 1) If the inserted token
appears in the content of the read page, BACScan treats it as the
corresponding status page and establishes an INSERT-type edge
between the two nodes. 2) If the inserted token is found in the
read page and a previously existing token disappears, BACScan
creates an UPDATE-type edge. 3) If only a previously existing token
disappears from the read page, BACScan forms a DELETE-type
edge. For modification page nodes that operate on the same token,
BACScan groups them into a single node cluster and labels the
modification type (i.e., INSERT, UPDATE, or DELETE) for each page
to facilitate further BAC vulnerability detection.

4.1.3 IDDG Construction Example. We refer to Figure 4 as an exam-
ple to provide a detailed explanation of how BACScan constructs the
IDDG. Figure 4 (a) illustrates a web page displaying order data. The
end user accesses this functionality via the /orderList path to
view her submitted orders. Figure 4 (b) shows the constructed IDDG
of the order data. The IDDG consists of three nodes, each represent-
ing adding, viewing, and deleting orders, respectively. To elaborate,
we take the IDDE between the "Add Order" and "List Order" pages
as an example to describe its construction process in detail. Initially,
during the page exploration phase, BACScan identifies that the "List
Order" page can navigate to the "Add Order" pages, thereby connect-
ing the two nodes using navigation edges (black line). Subsequently,
BACScan intercepts the order submission request, replaces the or-
der address parameter with a pseudo-randomly generated token,
and traverses the navigation graph to locate this inserted token.
Finally, by observing and analyzing the token’s behavior (e.g., its
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• Order 1
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Figure 4: An example of constructed IDDG and Cluster.

appearance or removal on the page), BACScan confirms the token’s
presence on the "List Order" page. As a result, BACScan establishes
an IDDE to represent the data dependency relationship between the
"Add Order" and "List Order" pages (red line). Figure 4 (c) presents
the cluster of nodes that operate on order data. BACScan precisely
identifies and marks the token’s location within the web page, en-
abling the grouping of subsequent modifications to this token (e.g.,
insertion, deletion) into a single operational cluster. This clustering
process further facilitates the detection of BAC vulnerabilities.

4.2 BAC Vulnerability Detection
In this section, we elaborate on how BACScan achieves effective
BAC vulnerability detection. Specifically, BACScan utilizes two dis-
tinct oracles, i.e., the feedback-driven oracle for detecting MBAC
vulnerabilities and the response similarity-based oracle for identi-
fying RBAC vulnerabilities.

4.2.1 MBACVulnerability Detection. The process of detectingMBAC
vulnerabilities primarily consists of two stages: Modification Re-
quest Replay and Feedback-driven Oracle Validation.
Modification Request Replay. BACScan attempts to replay the
victim requests sent to modification pages in the IDDG using the
attacker’s session, replacing the token in the parameters with a
newly generated token. Given that modification requests are typi-
cally POST or similar types that often require CSRF tokens, directly
replaying these requests may fail. To address this, BACScan traces
back along the navigation edges to locate the preceding data read
page of the target modification page. Then, starting from this read
page, BACScan follows the navigation edges, executing related ac-
tions such as triggering event handlers and submitting forms, until
it successfully reaches the target modification page.

Furthermore, BACScan employs distinct strategies to replay the
modification request based on the type of operation. For INSERT-
and UPDATE-types, it directly replays the request to attempt unau-
thorized manipulation of the victim’s data. For DELETE-types, how-
ever, direct replay often fails. This issue arises because, during the
construction of the IDDG, the target data associated with the delete

page may have already been permanently removed. Consequently,
replaying a request to delete non-existent data leads to a server
error. For instance, during IDDG construction, if a DELETE-type re-
quest has already removed an order with the parameter OrderId=1,
replaying the same request would fail as the order no longer exists
and cannot be deleted again.

To address this issue, BACScan first leverages the node cluster
to locate the page that originally inserts the token removed by the
DELETE page. It then revisits the corresponding INSERT-type page
to reinsert the token into the application, modifying the parameters
of the replayed DELETE request to reference the newly inserted
data (e.g., OrderId=2). This approach ensures the successful replay
of DELETE-type modification requests.
Feedback-driven Oracle Validation. Then, BACScan follows the
IDDE to locate and revisit the status page with a data dependency
on the replayed modification request, using the victim’s session
to obtain feedback on whether the unauthorized modification suc-
ceeded. Specifically, BACScan adopts different detection strategies
based on the type of modification request.

• For INSERT-type operations, the appearance of a newly inserted
token on the status page acts as the feedback, directly indicating
an MBAC vulnerability. This feedback confirms that the scanner
can observe unauthorized insertion.
• For UPDATE-type operations, the detection of a new token along-
side the disappearance of an existing token on the status page
signals an MBAC vulnerability.
• For DELETE-type operations, the disappearance of a previously
existing token from the status page serves as evidence of an
MBAC vulnerability.

For example, in Figure 4 (b), BACScan uses the victim’s session
to insert token-A via the /addOrder modification page. The in-
serted token-A can be viewed on the corresponding status page
(i.e., /orderList). Next, BACScan replaces the value of Address pa-
rameter with token-B and replays the /addOrder request using
the attacker’s session. Finally, BACScan revisits the status page
/orderList using the victim’s session to check for the presence of
token-B. If found, BACScan reports an MBAC vulnerability.

4.2.2 RBAC Vulnerability Detection. For RBAC vulnerability de-
tection, BACScan employs the widely adopted three-step approach
described in §2.3. First, BACScan uses both the victim’s and the
attacker’s sessions to explore the web application, separately col-
lecting the pages accessible to each, along with the corresponding
page content (i.e., HTTP responses) for each user. Second, BACScan
adopts a SoTA approach [35] to filter out public pages accessible to
both the attacker and the victim. Specifically, it compares each page
in the attacker’s and victim’s navigation graphs, treating pages with
identical URLs and content as public. This process allows BACScan
to select only the pages containing sensitive data that are exclu-
sively accessible to the victim. Third, BACScan utilizes the attacker’s
session to replay the GET requests sent to data read pages within the
navigation graph. This step simulates unauthorized access attempts
by the attacker. BACScan then applies a SoTA response similarity-
based oracle, as described in [35], to detect RBAC vulnerabilities.
If the similarity score exceeds a predefined threshold (set to 0.7,
following [35]), BACScan concludes that sensitive data intended for
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the victim is also accessible to the attacker, thereby reporting an
RBAC vulnerability.

5 Evaluation
5.1 Experimental Setup
Implementation. Our prototype implementation follows the ap-
proach presented in Section §4. For the crawler, our prototype fol-
lows the BlackWidow [32] to automatically explore web pages (e.g.,
trigger JavaScript event handlers within pages), thereby construct-
ing the navigation graph. In addition, our prototype uses Python
and Playwright (maintained by Microsoft [10]) to interact with
the web browser, thereby intercepting requests and constructing
the IDDG. For the hyper-parameters in hierarchical traversal strat-
egy, we conducted sensitivity testing using our ground-truth set to
fine-tune the parameters, ultimately setting𝑤1,𝑤2, and𝑤3 to 0.4,
0.3, and 0.3, respectively. In total, the entire prototype consists of
4,116 lines of Python code. All experiments run on an Ubuntu 22.04
machine, equipped with a 64-core CPU and 256 GB of memory.
Experiments. Our evaluation seeks to answer the following four
research questions:

• RQ1: How effective is BACScan in detecting BAC vulnerabilities
within real-world applications?
• RQ2: How does BACScan perform compared to SoTA approaches?
• RQ3: How efficient is BACScan in performing the analysis?
• RQ4: How effective is the construction of IDDG?

Dataset. Our dataset comprises 20 popular open-source web appli-
cations. Among these, 14 applications are designated as the testing
set, while 6 applications with 44 known BAC vulnerabilities con-
stitute the ground-truth set. These applications have been widely
evaluated in previous studies and are implemented in various lan-
guages, including Java, PHP, and Go, further proving that BACScan
is language-independent. We manually set up the runtime environ-
ments for all 20 applications and applied BACScan to detect BAC
vulnerabilities within them. Detailed information about these ap-
plications is provided in Table 1. The step-by-step construction
process is as follows.

• Testing Set. We collected 14 widely-used web applications from
popular open-source repositories (e.g., GitHub [14]) based on the
following criteria: (1) Considering the importance of dataset reli-
ability and representativeness, each selected application has been
widely evaluated in previous studies [26, 34, 43, 48, 56, 58]. (2) To
ensure their popularity, we require that the selected applications
should have over 100 stars on GitHub. (3) Additionally, to demon-
strate that BACScan is programming language-independent, the
selected applications include multiple programming languages.
Consequently, our testing set comprises 7 PHP-based applica-
tions and 7 Java-based applications, among which 13 applications
have over 1,000 stars, and 1 application has over 100 stars.
• Ground-truth Set. We collected applications containing known
BAC vulnerabilities to serve as the ground truth set. Given that
many known CVEs lack detailed vulnerability information, and
constructing vulnerability proof-of-concept (PoC) through code

Table 1: Breakdown of our evaluation dataset, including their
names, popularity (i.e., stars), the number of established ID-
DEs, detected BAC vulns, and assigned CVEs.

Testing Set # CVEs / Vulns1 # IDDEs # Stars # Language

Mall-swarm 0 + 1 / 1 + 1 49 11,988 Java
Newbee_mall 2 + 2 / 2 + 3 25 10,972 Java
Invoiceninja 1 + 0 / 2 + 0 150 8,192 PHP
PrestaShop 0 + 0 / 0 + 0 49 8,139 PHP

XMall 5 + 4 / 6 + 4 26 7,135 Java
SpringBlade 0 + 0 / 0 + 0 6 6,298 Java

Ruoyi 0 + 0 / 0 + 0 71 6,124 Java
Joomla 0 + 0 / 0 + 0 21 4,785 PHP

Ampache 1 + 0 / 2 + 0 181 3,500 PHP
OpenEMR 4 + 2 / 5 + 6 92 3,140 PHP

Supermarket 5 + 2 / 6 + 3 13 2,006 Java
PhpBB 0 + 0 / 0 + 0 32 1,836 PHP

Apache_inlong 2 + 0 / 4 + 2 143 1,370 Java
Webid 2 + 2 / 5 + 2 59 114 PHP

Total 22 + 13 / 34 + 22 917 / /

Ground Truth Set # Known Vulns2 # IDDEs # Stars # Language

Memos-0.9.0 4 + 5 27 34,380 Go
WordPress_SPM-4.57 6 + 1 44 19,453 PHP

Snipe_it-5.0.3 0 + 3 57 11,152 PHP
Lunary-1.2.7 6 + 6 16 1,085 TypeScript

MyBloggie-2.1.4 2 + 0 15 281 PHP
Collabtive-2.1 6 + 5 59 215 PHP

Total 24 + 20 218 / /

1The number of 0-day BAC vulnerabilities discovered by BACScan and the
assigned CVEs. For example, ‘22 + 13 / 33 + 21’ means 33 MBAC and 21
RBAC vulnerabilities, with 22 MBAC and 13 RBAC CVEs assigned.
2The number of known BAC vulnerabilities in the application. For example,
‘24 + 20’ means 24 MBAC and 20 RBAC vulnerabilities.

review requires significant manual effort, we prioritized in gath-
ering BAC vulnerabilities from sources such as Huntr [7], Ex-
ploitDB [6], and existing studies [43, 58] that provide PoCs. Specif-
ically, the collection was based on keywords (e.g., broken access
control, missing authorization) and CWEs (e.g., CWE-200 [3],
CWE-284 [4]). The vulnerability disclosure dates were restricted
to January 2022 to January 2024. Additionally, to reduce the
manual effort involved in setting up runtime environments, we
preferred to include applications with multiple known vulnera-
bilities in the ground-truth set. In the end, our ground-truth set
consists of 44 validated BAC vulnerabilities from 6 applications,
including 24 MBAC vulnerabilities and 20 RBAC vulnerabilities.
Table 1 presents a detailed breakdown showing the distribution
of these 44 vulnerabilities.

BACScan Setup. For each application, we set up two victim users
and one attacker user for BACScan. Among the two victim users,
one shares the same role as the attacker user (e.g., a regular user),
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Table 2: The effectiveness of BACScan in BAC vulnerability detection (RQ1).

Dataset
MBAC Vulnerability RBAC Vulnerability

TP FP FN Prec (%) Recall (%) TP FP FN Prec (%) Recall (%)

Ground Truth Set 20 0 4 100.00% 83.33% 15 3 5 83.33% 75.00%
Testing Set 33 0 / 100.00% / 21 5 / 80.77% /

Total 53 0 / 100.00% / 36 8 / 81.82% /

while the other has a higher role (e.g., an administrator). Then,
BACScan constructs the IDDG for each victim user and replays
requests using the attacker’s cookie to detect BAC vulnerabilities.

5.2 RQ1: Effectiveness
We evaluated the effectiveness of BACScan in detecting BAC vul-
nerabilities on two separate datasets: the ground-truth set and the
testing set.
Result Overview. Table 2 provides the detailed results. In total,
BACScan detected 89 BAC vulnerabilities within the ground-truth
and testing sets, of which 54 are potential 0-day BAC vulnerabilities
and 35 are known BAC vulnerabilities.

Specifically, for MBAC vulnerabilities, within the ground-truth
dataset, BACScan successfully detected 20 MBAC vulnerabilities,
with 0 false positives and 4 false negatives. The precision and re-
call rates were notably high at 100.00% and 83.33%, respectively.
Additionally, in the testing set, BACScan reported 33 potential 0-
day MBAC vulnerabilities. Owing to BACScan’s ability to directly
provide URLs and parameters associated with the vulnerabilities,
we could efficiently check the vulnerability reports. Ultimately,
we verified that all 33 MBAC vulnerabilities are truly exploitable
within the testing set. For RBAC vulnerabilities, BACScan achieved
a precision rate of 83.33% and a recall rate of 75.00% on the ground
truth set. On the testing set, BACScan detected 21 zero-day RBAC
vulnerabilities with an accuracy of 80.77%.
Vulnerability Disclosure. Attackers can exploit these vulnerabili-
ties to leak private user data or even delete data stored within the
application, thereby severely compromising data confidentiality and
integrity. For example, a vulnerability identified in OpenEMR [8]
allows attackers to modify any patient’s diagnosis or medications,
posing a serious threat to patient’s privacy, health, and even life.
These security breaches underscore the urgent need for effective
BAC vulnerability detection mechanisms to safeguard both data
privacy and integrity in critical web applications.

Therefore, we promptly reached out to the corresponding devel-
opers to report all confirmed vulnerabilities through their dedicated
email addresses and vulnerability reporting forms. Adhering to re-
sponsible disclosure practices, we will refrain from publicly releas-
ing any unresolved vulnerabilities until they have been addressed.
To date, 39 vulnerabilities have been confirmed by the develop-
ers, and we have received 35 CVE identifiers in acknowledgment,
including 22 MBAC and 13 RBAC ones.
False Positives. For all 8 false positives of BAC vulnerabilities,
we conducted a detailed analysis and found that they are mainly
caused by the limited response similarity algorithm. Although the

response similarity algorithm is highly effective for RBAC vul-
nerability detection, it can also produce false positives in certain
scenarios. These false positives arise from the highly flexible and
diverse page content and HTML structures across different appli-
cations, which make the predefined fixed similarity threshold less
effective in handling these variations, resulting in false positives.
False Negatives. For 9 false negatives, the primary causes can be
attributed to two main aspects. Firstly, 2 false negatives resulted
from incomplete construction of the IDDG. For example, consider
the missed vulnerability in WeBid [17]. By passing an auction ID in
the HTTP request parameters (e.g., auction=1), an attacker can
exploit this vulnerability to relist any closed auction without autho-
rization. However, since this HTTP request only contains an integer
parameter, BACScan cannot replace it with unique string tokens,
which is essential for establishing inter-page data dependencies.
Consequently, BACScan failed to detect this vulnerability. Secondly,
7 false negatives were caused by the crawler’s limited code coverage.
Achieving comprehensive exploration of all web pages through
automated crawlers remains a widely recognized challenge. Al-
though we utilized state-of-the-art crawler technology, consistent
with numerous existing studies that rely on crawler-based explo-
ration, certain pages inevitably remained unexplored [32, 39]. This
coverage limitation subsequently led to undetected vulnerabilities
on those pages.

5.3 RQ2: Comparison
In this part, we compare the effectiveness of BACScan with two
baselines. For a thorough evaluation, we use the 54 (33 MBAC +
21 RBAC) verified 0-day vulnerabilities reported by BACScan and
44 known BAC vulnerabilities as the vulnerability ground truth
set, assessing the precision and recall rates of the two baseline
approaches across the entire dataset.
Baseline Setup. We first describe the setup of these two baselines,
i.e., EvoCrawl [35] and BurpSuite [12].

• EvoCrawl is the state-of-the-art approach to BAC vulnerability
detection andwill be presented at NDSS 2025 [35]. Its code is avail-
able as open source on GitHub [5]. Given that EvoCrawl itself
includes a crawling module and an oracle specifically designed
for detecting BAC vulnerabilities, we only needed to provide the
target URL and user login credentials to initiate detection. To
prevent the crawler from exceeding runtime limits, the crawling
process was restricted to a maximum of 8 hours.
• BurpSuite is a comprehensive commercial black-box scanner
that supports enhanced vulnerability detection through various
extensions. We installed the Autorize extension from BurpSuite’s
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Table 3: Comparison between BACScan and baselines in BAC vulnerability detection (RQ2).

Baselines
MBAC Vulnerability RBAC Vulnerability

TP FP FN Prec (%) Recall (%) TP FP FN Prec (%) Recall (%)

EvoCrawl 17 16 40 51.52% 29.82% 23 9 18 71.88% 56.10%
BurpSuite 31 19 26 62.00% 54.39% 35 15 6 70.00% 85.37%
BACScan 53 0 4 100.00% 92.98% 36 8 5 81.82% 87.80%

BApp Store [13], enabling effective detection of BAC vulnera-
bilities. Next, we configured the login credentials in BurpSuite’s
Dashboard module and initiated the vulnerability detection by
clicking the “New Scan” button.

False Positives.As shown in Table 3, BACScan surpasses EvoCrawl
and BurpSuite by 94.12% and 61.29% in the precision rate of MBAC
vulnerability detection, respectively. We conducted an in-depth
analysis of all the false positives reported by EvoCrawl and BurpSuite.
Apart from the false positive causes in BACScan (i.e., insensitive
resources and response similarity algorithm), we found that the
primary reason for these false positives is the inherent defect in
their response-based oracle, as described in §2.3. This origin of false
positives is understandable, as many MBAC vulnerabilities do not
include indicators of successful operations in their direct responses.
For example, in Supermarket [11], the response to an order deletion
operation always returns a 302 status code, regardless of whether
the deletion succeeds. Such outcome-independent responses render
the response-based oracle ineffective, leading to false positives in
these baseline tools.
False Negatives. The recall rates of EvoCrawl and BurpSuite for
MBAC vulnerability detection result are 29.82% and 54.39%, re-
spectively. Our comprehensive analysis of all these false negatives
revealed that, beyond those caused by limited code coverage in the
crawlers, additional false negatives primarily stem from two factors.
Firstly, most of the false negatives in EvoCrawl and BurpSuite arise
from inherent limitations in the response-based oracle. For instance,
in OpenEMR [8], responses to modification requests are linked to
the identity of the request sender. Specifically, when an attacker
submits a request to modify a victim’s data, the response reflects
only data associated with the attacker, regardless of whether the
modification succeeds, and excludes any of the victim’s data. This
account-specific response leads to low similarity between attacker
and victim responses, causing these baselines to mistakenly assume
no vulnerability, resulting in false negatives. Secondly, 21 false neg-
atives in EvoCrawl stem from its user-specific data filtering strategy.
As outlined in Section III.C of the EvoCrawl’s paper [35], this strat-
egy filters out user-specific elements (e.g., username) based on page
similarity. However, this approach inadvertently excludes substan-
tial amounts of user-specific and sensitive data, such as individual
user orders, resulting in numerous false negatives.

5.4 RQ3: Efficiency
Evaluation Setup. In this part, we evaluated the performance of
BACScan in analyzing the entire dataset, focusing on its efficiency
in detecting vulnerabilities. To ensure the robustness of our results,
each web application was tested in two rounds. The average time

taken for vulnerability detection was then calculated, allowing us
to accurately assess the performance of BACScan.

Additionally, to evaluate the improvement in performance pro-
vided by the hierarchical traversal strategy, we created a variant
of BACScan, named BACScan-Random. This variant disables the hi-
erarchical strategy and instead randomly selects pages from the
navigation graph. We set an 8-hour timeout for this variant to limit
its execution time. By comparing the results of both versions, we
can evaluate the specific contribution of the hierarchical traversal
strategy to the overall performance.
Result Analysis. Figure 5 shows the time taken by BACScan and
BACScan-Random to analyze the entire dataset. On average, BACScan
requires 1.1 hours to complete the task of detecting BAC vulnera-
bilities in a given application. This analysis time encompasses both
the IDDG construction and the vulnerability detection phases. Com-
pared to other dynamic testing approaches that rely on crawlers [31,
32, 35, 56], we consider BACScan’s performance to be acceptable.

In comparison, BACScan-Random requires an average of 2.3 hours
for vulnerability detection, representing a performance decrease of
109.10% relative to BACScan. In some applications (e.g., OpenEMR),
BACScan-Random’s performance dropped by as much as 153.24%, ul-
timately leading to a timeout. This indicates that BACScan-Random
spends significantly more time searching for the inserted token
within the navigation graph, while BACScan avoids this overhead
by employing the hierarchical traversal strategy. Moreover, as the
scale of the applications increases, the performance degradation
of BACScan-Random becomes more pronounced. This is because, as
the size of the application grows, the navigation graph expands,
leading to longer traversal times. These experimental results high-
light the significant performance improvements achieved by the
hierarchical traversal strategy in BACScan.

5.5 RQ4: IDDG
The IDDG is crucial to our feedback-driven oracle, making its preci-
sion vital for effective MBAC vulnerability detection. To ensure its
reliability, we manually evaluate the correctness of the constructed
IDDG and break down the detailed data of the IDDE, thereby demon-
strating its importance in vulnerability detection.
Result Analysis. As shown in Table 1, we present the breakdown
of the 1,135 IDDEs constructed by BACScan across all evaluated
applications. Given the considerable manual effort required to ver-
ify correctness, we randomly selected 10% (113) of the total 1,135
IDDEs to assess their precision. Our evaluation revealed that only 4
(3.54%) of the sampled IDDEs were incorrectly generated. A detailed
analysis of these false positives indicates that they were all caused
by GET-type modification pages. As described in §4.1.1, BACScan as-
sumes that only POST requests modify data. Consequently, during
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Figure 5: Time consumption comparison between BACScan and BACScan-Random.

// PoC send to Modification Page

POST /interface/patient_file/add_transaction.php

Cookie: Attacker's Cookie

form_date=2024-01-01&form_note=${token}

1
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// Response from Status Page

GET /interface/patient_file/transactions.php

Cookie: Victim's Cookie

<html> 

    <titiel>Patient Transactions</title>

    ... <td>${token}</td> ...

</html>

Figure 6: Arbitrary Patient Note Update vulnerability in
OpenEMR application (over 3k stars on Github).

the IDDG construction, some GET-type modification pages inadver-
tently modified the tokens inserted by BACScan. When revisiting
the corresponding status page, BACScan detected unexpected to-
ken modifications, leading to the incorrect connection of IDDEs.
Experimental results show that developers mostly (96.43%) adhere
to the definitions in the RFC, avoiding the use of GET requests
for data modification operations. Moreover, these four incorrect
IDDEs did not result in any false negatives or false positives, further
confirming the reliability of our IDDG.

We then analyzed the distribution of the 1,135 IDDEs by type,
with 331 for INSERT, 452 for UPDATE, and 352 for DELETE. Inter-
estingly, while DELETE-type IDDEs accounted for 31.40%, DELETE-
type MBAC comprised 48.89% of the total detected vulnerabilities.
Upon further source code analysis, we found that developers of-
ten implement DELETE operations directly via data indices (e.g.,
deleting data by ID). In contrast, UPDATE and INSERT operations
typically involve binding data to a specific user, unintentionally
performing authorization checks. This finding also highlights the
importance of BACScan’s replay strategy for DELETE requests.

5.6 Case Study
We now showcase two BAC vulnerabilities detected by BACScan
and missed by existing tools in highly popular applications, further
illustrating the high risk posed by these vulnerabilities and demon-
strating the practical utility of BACScan in real-world scenarios.
Arbitrary Patient Note Update in OpenEMR. The OpenEMR
is an open-source and widely used hospital management system

// Response from Status Page before Attack

GET /member/orderDetail

Cookie: Victim's Cookie

<html> <titiel>Order Detail</title>

    <div class="id">1</div>

    <div class="addr">${token}</div>

    <div class="phone">xxx</div>

    ...

</html>
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// PoC send to Modification Page

POST /member/delOrder

Cookie: Attacker's Cookie

addressId=1

// Response from Status Page after Attack

GET /member/orderDetail

Cookie: Victim's Cookie

<html><titiel>Order Detail</title>

</html>

8

9

10

11

12

13

14

Figure 7: Arbitrary Order Deletion vulnerability in XMall
application (over 7k stars on Github).

with over 3,000 stars on GitHub. As shown in Figure 6, BACScan
successfully detected a BAC vulnerability within the application
that could lead to arbitrary updates of patient notes. Specifically,
during the vulnerability detection process, BACScan replayed the
modification request (i.e., /add_transaction.php) and inserted
a random token into the form_note parameter ($token in line 3).
Subsequently, BACScan replayed this request using the attacker’s
cookie. Finally, leveraging the constructed IDDG, BACScan located
the corresponding status page (i.e., /transaction.php) and iden-
tified the inserted token ($token in line 8) on the page. Conse-
quently, BACScan reported the presence of an MBAC vulnerability.
Attackers could exploit this vulnerability to modify any patient’s
diagnosis or medications, which poses a severe threat to patient
safety. Given the extensive potential damage posed by this vulner-
ability, we promptly reported this critical issue to the developers
and were issued a CVE (CVE-2024-46**1).
Arbitrary Order Deletion in XMall. The XMall application is
a highly popular e-commerce application with over 7,000 stars
on GitHub. Figure 7 illustrates a BAC vulnerability identified by
BACScan within this application, which allows deleting arbitrary
order. Lines 8–10 showcase the modification page where the vul-
nerability resides. BACScan replayed the request and subsequently
revisited the corresponding status page (i.e., /member/order-Detail).
Lines 1–7 and 11–14 present the content of the status page be-
fore and after the replay of the modification request, respectively.
BACScan identified that the token originally present (line 5) disap-
peared following the modification request, indicating an MBAC
vulnerability. Attackers can exploit this vulnerability to delete any
user’s orders, posing significant risks to user privacy and poten-
tially resulting in financial losses. We immediately reported it to
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the developers of the vulnerable application. As a result, we were
granted a CVE identifier, i.e., CVE-2024-36**0.

6 Discussion
Limitations and Future works.While BACScan worked well in
the evaluations, we see several potential improvements.

• Web Crawler. For a long time, the question of how to enable
crawlers to fully explore web applications has been a popular
research topic. In practice, we have observed that state-of-the-art
crawlers (e.g., BlackWidow [32]) are indeed capable of effectively
exploring themajority of web pages. However, there are still some
web pages that remain insufficiently explored, which leads to
false negatives in BACScan. In the future, as crawling technologies
continue to advance, we believe that the performance of BACScan
will be further improved.
• Performance Trade-off. As described in §4.1.2, BACScan assumes
that tokens are only inserted into POST requests triggered dur-
ing the page exploration process. It is important to note that
excluding token insertion for GET requests is primarily a perfor-
mance trade-off. While intercepting GET requests and inserting
tokens would be effective, it would also significantly increase the
analysis time required by BACScan. Hooking database operations
to determine which database actions are triggered by HTTP re-
quests is a highly effective approach. However, in the context of
black-box testing, we do not have access to the database. There-
fore, we can only make every effort to infer the triggered database
actions from the evidence in HTTP requests and responses.

Ethics Consideration. This study has not presented any legal
or ethical issues. We obtained the source code for local analysis
and responsibly reported all detected vulnerabilities in open-source
applications to the CVE Numbering Authority (CNA) [2]. Addi-
tionally, we have contacted all the developers regarding the BAC
vulnerabilities found in §5.2, and will continue to communicate
with them throughout the vulnerability disclosure process.

7 Related Work
BAC Vulnerability Detection. There are numerous studies [28,
35, 37, 40–44, 46, 49, 50, 52–55, 58, 60–62] that have employed var-
ious techniques to detect BAC vulnerabilities. These studies are
commonly categorized into two main types: dynamic approaches
and static approaches. The dynamic approaches [28, 35, 37, 40–
42, 49, 50, 62] typically simulate multiple users through login ses-
sions and use cross-user forced browsing combined with response-
based oracles to detect vulnerabilities. However, these oracles are
inadequate for detecting MBAC vulnerabilities due to their inability
to capture data dependencies, affecting precision and recall. Static
approaches [43, 44, 46, 52–55, 58, 60, 61] model user credentials (e.g.,
$_SESSION in PHP) and use predefined rules to identify permission
checks. While effective in some cases, they still present notable lim-
itations. On one hand, they suffer from high false positives due to
the lack of runtime context to validate vulnerability reports. On the
other hand, they require static analysis of the source code, limiting
their applicability to programs developed in specific programming
languages. Unlike these previous efforts, BACScan eliminates the

need for additional input and leverages a novel IDDG-based ap-
proach to accurately detect BAC vulnerabilities, addressing the
limitations of both static and dynamic methods.
Web Vulnerability Detection. In recent years, the techniques
for automatically detecting vulnerabilities within web applications
have been extensively studied. These techniques also can be catego-
rized into static and dynamic approaches. The static approaches [25,
27, 36, 38, 45, 57] identify user inputs as sources and predefined
security-sensitive operations as sinks. They then analyze whether a
data flow path exists from the source to the sink, indicating a poten-
tial vulnerability. The dynamic approaches [23, 29, 32, 34, 47, 51, 56]
design oracles specifically tailored to the security-sensitive oper-
ations relevant to different types of vulnerabilities. For example,
an exception thrown by an SQL execution function may serve as
an oracle to detect SQL injection vulnerabilities. These approaches
detect vulnerabilities by monitoring runtime behavior and deter-
mining whether the corresponding oracle is triggered during the
execution of the application. However, these approaches mainly
focus on taint-style vulnerabilities, which rely on well-defined se-
curity operations for modeling. In contrast, BAC vulnerabilities
are tied to business logic and cannot be effectively modeled. This
fundamental difference leads to false positives and false negatives
when these methods are applied to BAC vulnerability detection.

8 Conclusion
In this paper, we propose BACScan, a novel black-box approach
for detecting Broken-Access-Control (BAC) vulnerabilities in web
applications. By introducing a feedback-driven oracle based on
inter-page data dependency, BACScan addresses the limitations of
existing detection methods, particularly for modification-based
BAC vulnerabilities. We evaluate BACScan on 20 open-source web
applications, discovering 89 BAC vulnerabilities, including 54 previ-
ously unknown high-risk 0-day vulnerabilities and the assignment
of 35 new CVE IDs. These findings demonstrate the practical utility
of BACScan in BAC vulnerability detection. We hope our work can
assist the community in addressing the growing threats posed by
BAC vulnerabilities.
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