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Nowadays, mobile apps have greatly facilitated our daily work and lives. They are often designed to work

closely and interact with each other through app components for data and functionality sharing. The security of

app components has been extensively studied and various component attacks have been proposed. Meanwhile,

Android system vendors and app developers have introduced a series of defense measures to mitigate these

security threats. However, we have discovered that as apps evolve and develop, existing app component

defenses have become inadequate to address the emerging security requirements. This latency in adaptation

has given rise to the feasibility of cross-layer exploitation, where attackers can indirectly manipulate app

internal functionalities by polluting their dependent data. To assess the security risks of cross-layer exploitation

in real-world apps, we design and implement a novel vulnerability analysis approach, called CLDroid, which

addresses two non-trivial challenges. Our experiments revealed that 1,215 (8.8%) popular apps are potentially

vulnerable to cross-layer exploitation, with a total of more than 18 billion installs. We veri�ed that through

cross-layer exploitation, an unprivileged app could achieve various severe security consequences, such as

arbitrary code execution, click hijacking, content spoo�ng, and persistent DoS. We ethically reported veri�ed

vulnerabilities to the developers, who acknowledged and rewarded us with bug bounties. As a result, 56 CVE

IDs have been assigned, with 22 of them rated as ‘critical’ or ‘high’ severity.
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security engineering.
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1 INTRODUCTION

Mobile applications (apps) have become an integral part of modern daily life, o�ering users a broad
spectrum of services and functionalities. They are typically crafted to interact and collaborate with
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one another, creating a dynamic and integrated ecosystem. As the foundational infrastructure of
inter-app communication, app components are required to be exposed and play a pivotal role. Over
a prolonged period, the security of app components has garnered signi�cant attention. Extensive
security research [16, 19, 22, 25, 34, 36, 37] has identi�ed vulnerabilities in app components that
can lead to various component hijacking attacks. Speci�cally, app attackers can exploit exported
components to execute critical operations (e.g., privileged system APIs) within the apps, and cause
serious security consequences, including permission redelegation and leakage [18, 25], intent
spoo�ng [7], and cross-app scripting [23].
After knowing these security vulnerabilities, app developers and system vendors have made

diligent e�orts to enhance the security of app components. They have proposed a series of code-
layer measures to prevent the abuse of sensitive operations by external apps. For example, the
Android security team has continuously improved and restricted access to app components since
Android 4 (2011). Also, app developers deployed strict security checks (e.g. input validation and
permission checks) against external requests in their app components. Certainly, these defensive
protections prove e�cacious in mitigating conventional component hijacking attacks. Nevertheless,
with the expansion of app size and the proliferation of app functionalities and services, app
development practices are also undergoing evolution. Consequently, a critical question arises: Do
existing defensive mechanisms still retain their robustness against component security threats?

We �rst investigate modern app architectures and uncover an exploitation method that current
defenses struggle to address. Speci�cally, following o�cial recommendations [14], modern apps are
progressively embracing a persistent data layer design for robustness and maintainability. This data
layer employs data pools (e.g., databases, shared preferences, and �les) to centrally manage data
from various components. As a result, data with varying sensitivities may be stored within the same
data pool, accessible by di�erent components, including exported components and isolated internal
ones. If the internal components retrieve data from the data pool for security-critical purposes,
there may be a risk of app functionality abuse. As illustrated in Figure 1, app attackers can corrupt
some app internal data through an exported component to indirectly manipulate the internal
functionalities that use these polluted data, referred to as cross-layer exploitation in this paper.
The data items within the data pool require di�erent levels of protection, contingent upon their
app-speci�c purposes, to strike a balance between usability and security. Nevertheless, existing app
component safeguards encounter di�culties in addressing the �ne-grained and diverse protection
demands (detailed in §2.1).

Code Layer

Exported 
Components

Internal Functionalities

Data Layer

Databases FilesShared Preferences

APP Attacker

Fig. 1. APP Cross-Layer Exploitation.

Then we study the practicality of cross-layer exploitation by assessing the security risks in
real-world Android apps. While numerous tools [26, 28, 30, 34, 35, 50, 51, 55, 58, 59] have been
proposed for detecting app component vulnerabilities, they do not adequately consider the data
�ows crossing the code and data layers, making them hardly applied to cross-layer threat detection.
Technically, there are two major challenges that should be carefully dealt with. (i) Fine-grained
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data item-level �ow tracking. A data pool often stores a multitude of data items but not all of
them can be corrupted by external apps. Even worse, all these data items are accessed through a
uni�ed set of data pool access APIs, making it challenging to correlate a data injection point with
its corresponding readout points. Treating the data pool as a black box without tracing the data
item �ow will cause unacceptably high false positives. (ii) App-speci�c critical data usage scenario
identifying. The corrupted data can be used in various app internal functionalities, but it is uncertain
which of these functionalities can be exploited to cause security hazards. In contrast to traditional
component attacks that often target clearly de�ned privileged system APIs, the sensitivity of app
internal functionalities depends on their app-speci�c business logic implementation, lacking a
universal indicator. To address the above challenges, we design and implement a novel app cross-
layer threat detection approach, named CLDroid. By applying CLDroid on 13,824 popular apps
collected from Google Play, we �nd 1,714 (12.4%) apps have opened data sharing channels that
result in the sharing of over 10,000 data pools and more than 200,000 data items. CLDroid assesses
their security and identi�es 1,215 (8.8%) apps as potentially vulnerable to cross-layer exploitation
with a total of more than 18 billion installs.

Furthermore, we delve deeper into understanding the severe security hazards that cross-layer
exploitation can cause in real-world scenarios. Speci�cally, we randomly select 60 vulnerable apps
for manual veri�cation and con�rm that at least 32 of them can be successfully exploited. By
exploiting these vulnerabilities, an unprivileged app can achieve various attack consequences,
including arbitrary code execution, click hijacking, UI spoo�ng, and persistent DoS.1 We have
responsibly disclosed the veri�ed vulnerabilities to respective developers and received several
con�rmations, along with bug bounties awarded by Alibaba and Tencent. A total of 56 CVE IDs
have been assigned for these vulnerabilities, with 22 of them rated as ‘critical’ and ‘high’ severity.
Contributions. The contributions of our work are summarized below.

• We revisited Android app component security in the context of modern app architectures and dis-
covered that state-of-the-art defenses have not caught up with the fast app development. Through
a form of attack referred to as cross-layer exploitation, attackers can indirectly manipulate app
internal functionalities by polluting their dependent app data.

• We studied the security risks of cross-layer exploitation in real-world apps. To achieve this, we
design and implement a novel vulnerability detection tool named CLDroid which addresses two
non-trivial challenges. Our experiments revealed that 1,215 (8.8%) popular apps may su�er from
cross-layer exploitation, with a total of more than 18 billion installs.

• We veri�ed that an unprivileged app attacker could achieve signi�cant security consequences
through cross-layer exploitation, including content spoo�ng, privilege escalation, and persistent
DoS attacks. We responsibly disclosed the veri�ed vulnerabilities to respective developers, who
con�rmed and rewarded bug bounties to us, with 56 CVE IDs assigned.

2 UNDERSTANDING APP CROSS-LAYER EXPLOITATION

In this section, we �rst analyze why cross-layer exploitation is practical against existing defenses.
Then we introduce their security implications and threat model. Finally, we present a real-world
example found by us to show how exploitation occurs and its security consequences.

2.1 Root Cause Analysis

Modern apps are becoming increasingly complex and larger in size, resulting in a wealth of data in
apps. To enhance app robustness and maintainability, there is a growing trend towards coupling
business functionality with app data. In other words, the management of app data is shifting from

1All attack consequences have been manually veri�ed with PoCs.
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decentralized handling across various components towards centralized management. Speci�cally,
modern apps employ a persistent data layer including various data pools to manage data originating
from di�erent components within the app. However, there is no common guideline or best practices
on how to manage the diverse app-speci�c data. Consequently, data with various purposes may be
mixed and stored in the same data pool. When a need arises to share some of these data with external
apps, it can potentially lead to excessive exposure of data used for other sensitive functionalities,
thereby creating the potential for cross-layer exploitation.

To prevent app functionalities abuse through exported components, a series of app component
safeguards have been proposed and implemented over the years [4, 5, 12, 15, 18, 28, 44, 55]. Due to
prior research predominantly focusing on component attacks limited to code-layer exploitation,
existing defenses primarily concentrate on addressing security threats at the code-layer level.
The core principle of these defenses is to ensure that the privileged operations in apps can only
be invoked by authorized requesters with legitimate inputs. Speci�cally, app permission and
identity-based checks can help restrict functionalities of varying sensitivities to be accessible only
by requesters that meet corresponding identity conditions. The Android system has categorized
the sensitivity of system operations that apps can invoke and allows apps to de�ne customized
protections based on their own implementation. Furthermore, for authorized requesters, developers
can enforce input validations to prevent privileged operations from being executed with untrusted
inputs. For instance, Android provides parameterized database access APIs [15] to prevent external
malicious inputs from being interpreted as executable SQL code, e�ectively mitigating the risk of
SQL injection.

As shown in Table 1, while these defenses can e�ectively mitigate traditional component attacks
at the code layer, such as capability leak and code injection, they are inadequate against cross-layer
exploitation. On one hand, defenses around requesters are enforced at the component level, which
is too coarse-grained to protect the diverse app-speci�c data. In particular, a singular component
can access multiple data pools, maintaining an extensive collection of data items. These data
items serve various functionalities and possess varying degrees of sensitivity, thus warranting
di�erent levels of protection. Component-level access control is insu�cient to address the �ne-
grained data protection requirements, potentially resulting in unintended data exposure. On the
other hand, input validations are also limited in their e�cacy. Techniquely, they are designed to
prevent critical functions from being executed in unexpected ways due to illegitimate external
inputs. However, cross-layer exploitation injects poisonous data into data pools leveraging the
intended app functionalities in the expected manner. Hence, the request inputs appear legitimate
and lack identi�able problematic patterns. Furthermore, when the poisoned data is retrieved from
the internal data pools and used, it loses its external input identity and is automatically trusted due
to the inherent trust in the isolation provided by the underlying Android system.

Table 1. Existing defenses against app component a�acks.

Defenses Target
Code-Layer Exploitation Cross-Layer

Capability Leak Intent Proxy Code Injection Bu�er Over�ow Exploitation

APP Permissions Requester ✔ ✔ ✘ ✘ ✘

APP Identity Whitelist Requester ✔ ✔ ✘ ✘ ✘

Input Validation Input ✘ ✘ ✔ ✔ ✘

2.2 Security Implications

In this subsection, we analyze the security implications when poisonous data enters the victim
app’s data layer. Broadly speaking, cross-layer exploitation shares similarities with second-order
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web attacks [9, 42, 52, 53] and code reuse attacks [10, 49]. Therefore, we scrutinize two attack
vectors: data loading and consuming.

2.2.1 Data Loading-Based A�ack. The memory hierarchy in computer architecture implies that the
size of local storage is typically greater than the size of memory. Thus, apps should be careful when
loading data from local storage to memory. Speci�cally, apps should avoid loading vast amounts of
data into memory simultaneously.
However, our analysis indicates that while loading local data to memory, apps usually do not

perform due diligence to verify the data size. The reason for such oversight is a belief by developers
that data loaded from the app’s internal storage is controlled by themselves and always falls within
expected data intervals. Thus, if an attacker injects su�cient data into the data pool of an app, an
Out-of-Memory (OOM) error or Application-Not-Responding (ANR) error will be triggered when
the app loads these injected data. (See more details in §4.2.)

2.2.2 Data Consuming-Based A�ack. In general, apps can contain numerous strictly-protected
critical functionalities. Cross-layer exploitation allows attackers to indirectly abuse these sensitive
functionalities by tampering with their dependent data. Speci�cally, we �nd two ways to achieve
the goals: 1) function parameter manipulation and 2) execution switch.

For the �rst scenario of function parameter manipulation, the poisoned data may �ow to a critical
API as its parameters. In such a case, an attacker can control the API’s execution by feeding it
malicious inputs. For example, a popular weather app (*.weather, 1,000,000+ downloads) reads URL
data from its database and renders the content inside the app through WebView. By manipulating
the URL parameter of WebView.loadURL(), the attacker can load arbitrary malicious content within
the victim app’s embedded web browser for phishing. Even worse, the attacker can further stealthily
obtain private user data, such as geographical location, by calling the corresponding JavaScript
interfaces customized and supported by the WebView component.
For the other attack scenario of execution switch, the poisoned data can be used as a function

controller, determining whether a critical API is enabled or disabled for execution. This is because
there exist control-�ow dependencies between the poisoned data and critical functions. By tam-
pering with these data items, attackers can disable some key features of the app. For example, to
ensure the user experience of new users, an app (*.security, 10,000,000+ downloads) only starts
advertising to users after a certain time of app installation. This depends on a time interval saved in
a shared preference �le. By exploiting the developer-con�gured time interval, the app’s ads-pushing
functionality can be disabled permanently, resulting in the app developer’s economic loss.

2.3 Threat Model

Similar with existing security work [1, 3, 16, 19, 22, 25, 34, 57, 60], we consider the adversary is a
mobile app attacker, whose goal is to attack benign apps on the victim’s device. One important
assumption in our threat model is that the attacker is unprivileged and does not require any
sensitive permissions. Regularly, all mobile apps are sandboxed and isolated from each other. An
app attacker is not allowed to directly touch the isolated data pools in other apps. Instead, it can
send crafted inter-process communication (IPC) messages to the ‘exported’ (i.e., callable by other
apps) components in the victim app. As shown in previous studies, the attacker can send local
messages through controlled apps [25] or remote messages via WebView or third-party ads [34].

2.4 Real-World Example

Action Launcher (*.playstore) is a high-pro�le launcher app with more than 10 million downloads
on Google Play and is ranked as one of the “Best Android launchers of 2022” [8]. This app helps
users manage home screen (desktop) and apps, e.g., opening the corresponding app when an app
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icon is clicked. We �nd this popular app su�ers cross-layer exploitation, causing serious security
hazards. We verify that by exploiting these vulnerabilities, an attacker can perform persistent device
freezing (DoS) and UI spoo�ng attacks. We have reported these vulnerabilities to the developers,
which have been con�rmed and assigned with two CVE IDs.

Figure 2 illustrates its simpli�ed code implementation. There are three important components
(e.g., �4 , �B1, and �B2) in the victim app, which are linked together by a persistent data layer. The
entry component�4 is designed for app-to-app communication. When receiving data in runtime, it
saves poisonous data into a database, through the data-accessing API insert() at Line 11. Then, the
sensitive component �B1 blindly trusts all data saved in the database and reads the poisonous data
from the database through another data-accessing API query() at Line 20. It loads all poisonous data
in memory (binding to app widgets) for further use, i.e., calling the function bindBubbleViews(), and
starting another sensitive component �B2. The attacker can exploit this victim app from two attack
vectors. To exploit the data-loading attack vector, the attacker can inject excessive poisonous data
into the database. We �nd that the victim app loads and stores all poisonous data in the memory
to prepare the desktop, thus causing over�ow and crashes. Since the launcher app is the �rst
app to be started (similar to ‘desktop’), this attack persistently freezes the victim device. For the
data-consuming attack vector, the attacker can manipulate the intent string corresponding to a
certain app (e.g., Facebook) in the database through another access API update(). When the app
icon is clicked, the fake intent is consumed and the app-launching process is hijacked by starting a
fake activity (startActivity() at Line 33 in �B2), resulting in UI spoo�ng.

01: public Uri insert(Uri uri, ContentValues values) {
02:     // URI is controlled by the attacker
03:     ...
04:     // Parsing URI with UriMatcher
05:     int type = uriMatcher.match(uri);
06:     switch (type) {
07:         case 1:
08:             ...
09:             // Accessing low-level database
10:             SQLiteDatabase db = opener.
                                getWritableDatabase();
11:             db.insert(table,null,contentValues); 
12:         ...
13:     }
14:     ...
15: }

Database

Entry Component Ce Sensitive Component Cs1

Table 1 Table 2 Table 3 Table 4

Accessible

Table 5 Table 6

Accessible with critical data

Table 7

        Inject poisonous data

16: public void onCreate(Bundle bundle){
17:     ...
18:     // load all icon information from database
19:     Uri uri = Uri.parse(“content://xxx/favorites”);
20:     Cursor cursor = getContentResolver().
                           query(uri, null, null, null, null);
21:     ...
22:     // save all icon info to UI widgets for future use
23:     bindBubbleViews(cursor);
24:     ...
25: } 

         Load poisonous data into memory

26: public void onClick(View view){
27:    ...
28:    Object tag = view.getTag();
29:    ...
30:    Intent intent = tag.intent;
31:    ...
32:    // use polluted intent string 
33:    startActivity(intent)
34: } 

Sensitive Component Cs2

         Consume poisonous data3

1

2

Fig. 2. Simplified code of a real-world case, which can be exploited for device freezing and UI Spoofing

3 CLDROID DESIGN

To assess the real-world security risks of cross-layer exploitation, we design an automated and
e�ective security-vetting approach for Android apps. The high-level idea is to track the injected
data items and �gure out whether they are used in some security-critical scenarios. However, as
discussed in § 1, two major challenges should be carefully dealt with.

1) Fine-grained Data Pool Aware Analysis: In practice, various di�erent types of data items
are often mixedly saved together in a data pool. As illustrated by the example shown in Figure 2,
there are seven tables in the local database. However, not all of them are exploitable for external
apps. Only two of them can be potentially touched by app attackers. Within these two insecure
tables, only seven columns out of 28 columns correspond to critical internal functionalities, e.g.,
determining which app to be launched. Furthermore, these data items are managed and accessed
through the same set of database APIs, e.g., insert() (Line 11) and query() (Line 20).
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Determining 
Security Hazards
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Data Loading
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Threats

Discovering Shared 
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Data Access Semantics

Extracting 
Data Identifiers

Modeling
 Data Identifiers

Propagating Data Flow Through 
Data Pools

Fig. 3. The overall architecture of CLDroid.

Data �ow analysis is suitable in such an analysis scenario. However, existing techniques are
hardly applied or extended to handle the crucial data �ow through data pools. For dynamic
techniques [17, 38, 54, 56], they su�ered from coverage issues, which may cause false negatives,
i.e., missing some data access behaviors. For static data �ow-based techniques, prior approaches
[3, 21, 32, 57] did not consider data pools. Treating them as ‘black boxes’ and directly applying
prior approaches on the entire data pool will cause high false positives.

2) Universal Security Hazard Vetting Approach: The security hazards caused by insecure app-
speci�c data items are hardly determined, which stems from the fact that there is no documentation
to tell us which data-use scenarios are security-critical. These data items are designed for customized
app-speci�c functionalities, whose purpose and sensitivity depend on the app’s business logic. It is
inherently challenging to automate the understanding of an app’s business logic, thus making it
di�cult to assess the potential security risks posed by tampering with these data items. In addition,
these functionalities are typically internal and inaccessible to external apps, thus lacking indicators
such as permission checks. Worse still, unlike data with explicit purposes, e.g., user privacy data,
these app-speci�c data items lack su�cient semantic information to infer their sensitivity.

Our Solution: To address the above challenges, we propose a novel end-to-end vulnerability
detection approach, called CLDroid, against app cross-layer threats. Figure 3 illustrates the overall
architecture of CLDroid, which comprises three stages. Given a mobile app, CLDroid �rst identi�es
the data pools that may be injected by external apps through exported components. Second, CLDroid
employs data identi�er-based analysis to track the data �ow of data items that traverse through the
target data pool. Third, CLDroid learns app-speci�c data use semantics and universally assesses
their security risks (from the perspectives of two attack vectors). Below we present more details
for each stage.

3.1 Discovering Shared Data Pools

In this step, CLDroid locates data pools that are potentially used in app-to-app data sharing and
can be injected by third-party apps, which are susceptible to cross-layer exploitation.
To gain insights into the utilization of data pools in real-world scenarios, we �rst conduct an

empirical study on the 300 most popular Android apps from Google Play. We observe that apps
usually create data pools and prepare initial data after their �rst startup but before users interact
with the core functionalities. Thus, we install and run each app on a Oneplus 9 (Android 12) with
Monkey [13] for two minutes. Then, we extract data pools from their private storage space (e.g.,
Context.getFilesDir()). As a result, we successfully obtained 16,348 unique �les with 218 distinct
types of �le name extensions. Table 2 shows more details of the data pool type distribution.
Then, according to the study results, we conclude related instructions (i.e., APIs) for accessing

data pools, e.g. opening data pool and reading/writing data items, based on the Android developer
documentation. These APIs are further used for detecting shared data pools for which attack
payloads can be injected. Here we focus on the o�cial Android built-in APIs. As summarized by
Table 3, we totally collected 244 APIs, including 55 opening, 107 reading, and 82 writing APIs.
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Table 2. The distribution of data pools extracted from 300 popular apps.

File Type # Unique File Examples

SharedPreference 2186 .xml

Picture 1742 .png, .webp

Database 1091 .db, .sqlite

JSON 836 .json

File Type # Unique File Examples

Layout & Format 441 .html, .css

Code 305 .js, .so, dex

Others 2993 .tmp, .crc, .pb

Total 16,348 –

Table 3. Summary of 244 data pool access APIs.

Data Pool # Open/Read/Write APIs Examples

Shared Preference 4/7/6 SharedPreferences.getString(), SharedPreferences$Editor.putString()

Database 12/14/12 SQLiteDatabase.query(), SQLiteDatabase.insert()

JSON 31/60/35 JSONObject.getString(), JSONObject.put()

Others 39/26/29 FileReader.read(), FileWriter.write()

Upon the above API list, CLDroid applies static program analysis on the target app to identify
the potentially injectable data pools. Speci�cally, CLDroid �rst parses the AndroidManifest �le to
learn the app-to-app communication channels, i.e., exported components, which are responsible
for managing and processing the data injection process. Then, CLDroid models the life cycle of
found components and sets up entry points for our further analysis. After that, we apply control
�ow and data �ow analysis starting from the entry points. The control �ow analysis is helpful to
check if there is a path from an entry point to the data pool access API. The data �ow analysis
can provide information and tips for which data items may be shared. During analysis, CLDroid
checks its required access permissions. Only the components without permission protection or
just protected by normal-level and unde�ned permissions are picked by CLDroid. Finally, CLDroid
obtains the potentially shared data pools and the data �ow information related to the internal data
items, which is further analyzed in the next stage.

3.2 Understanding Data Access Semantics

After discovering shared data pools, we aim to �gure out the data �ow paths traversing the data
pools. It is essential to 1) learn data access semantics, especially data pool reading and writing
behaviors, and 2) infer the internal organization of data pools and track each data item. Therefore,
wemodel data pool access and conduct a data item-level analysis. Speci�cally, CLDroid �rst searches
for all pieces of code containing data pool reading and writing operations, and precisely analyzes
what data items are being accessed by each code unit. Then, CLDroid can link the corresponding
data reading and writing code units that operate on the same data item. In this way, CLDroid
facilitates the propagation of data �ows traversing the data pools.

3.2.1 Modeling Data Identifiers. We model the access operation of data pools based on how
related APIs are used in practice. When a data item is accessed through a uni�ed access API (e.g.,
ContentResolver.insert()), the API needs to �rst learn the data pool to be accessed (e.g., database), and
then check the detailed position (e.g., table and column information) where the data item is saved
in the target data pool. The detailed position information where data is saved plays an important
role in data operations. Thus, we can use the position information, i.e., data identi�er, to model
data item access. We de�ne the data identi�er as follows:

Data Pool Identifier (DPI) = <Type, URI | Name>

Data Item Identifier (DII) = <DPI, IP>
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Type = DataBase | Shared Preference | JSON | Regular File | ...

URI = String, Name = String

Internal position (IP) in data pool:

Type = DataBase => IP = <Table, Column>, Type = Shard Preference => IP = <Key, Value>

Type = JSON => IP = <Key, Value>, Type = Regular File => IP = <Raw Data>

Around the above de�nition, we model data pool operations. More details are presented below.

DataBase Identi�er. The identi�er of a database data item can be abstracted as [<URI, Name>,
<Table, Column>]. For database operations, e.g., ‘query’ and ‘insert’, their work�ows are quite
similar. As Figure 2-❶ shows, when a database API ‘insert’ is called, it �rst parses the URI content
with a parser ‘UriMatcher’, a hashmap-like collection of resource information. Then, the resource
type is retrieved at Line 5 and dispatched to the essential corresponding operation (Line 11). In this
line, there is an important dependency chain: uri → type → opener → db.
To discover such a URI dependency relationship and the URI value space, CLDroid applies

data �ow analysis to track the URI object. When reaching a parser, CLDroid computes the inside
of the parser to gather URI values. There are usually di�erent cases for the parser. For the �rst
case, URI is parsed by a prepared ‘UriMatcher’ object via UriMatcher.match(Uri), and then the
operation request is dispatched based on the parsing results. CLDroid obtains the URI value by
backwardly tracking the UriMatcher initialization. The UriMatcher object stores various URIs with
corresponding types as key-value pairs, and its match() method returns the stored type of the
matched URI. The relationship between the URI (key) and type (value) is typically registered during
the initialization of UriMatcher object through UriMatcher.addURI(authority, path, code), which
constructs the URI by concatenating the authority and path. Thus, CLDroid obtains the URI string
by analyzing the authority and path parameters through string value analysis (detailed in § 3.2.2).
The second situation is that concrete values in the URI are directly parsed to determine the resource
to operate, e.g., the target table. Specially, the target app directly reads parameters from the URI
class, e.g., path segment, and uses it as the table name to be accessed. In this case, based on the
parsing process, CLDroid constructs the �nal URL string value by linking the obtained information
together, e.g., content://@authority/@tableName. Note that the authority information is resolved
from AndroidManifest and the possible table names can be retrieved later.

To obtain the database name, CLDroid continues data �ow analysis and reaches the dispatched
code (Line 9-11), which calls the database operating instruction, e.g., db.insert(). CLDroid backwardly
tracks the essential initialization of the caller object db and searches the database opener, which
may be an instance of DBOpener, a child class of SQLiteOpenHelper. After that, CLDroid continues
backwardly pinpointing the constructor functions of DBOpener, where the name of the target
database may be de�ned. We also �nd some cases that directly initialize the database name as the
value of a �eld. Thus, CLDroid also checks the initialization of all �elds.

Furthermore, for obtaining the table and column information, CLDroid can directly analyze data-
base reading and writing APIs. For instance, the �rst parameter of db.insert(table,null,ContentValues)
(Line 11) is the table name to be accessed, while the third parameter contains the columns to write.
Typically, the columns are determined by requesters. CLDroid needs to extract all potential values.
Speci�cally, CLDroid analyzes the table creation instructions and parses the SQL statements, which
are usually de�ned in the constructors of DBOpenner objects.
Besides, some apps do not directly provide SQL wrapper functions. Instead, all database access

requests are handled by directly calling the low-level function SQLiteDatabase.execSQL(String sql).
For these cases, CLDroid directly parses the SQL request string to understand the table and column
information through regular expressions.
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SharedPreference Identi�er. A shared preference �le is used to save primitive data in key-value
pairs. For a data item (i.e., <key, value>), the key �eld provides enough information for its position.
The following code snippet shows a classic example to access the shared preference �le:

// Opening file

SharedPreferences sp = Context.getSharedPreferences(filename,mode);

SharedPreferences$Editor editor = sp.edit();

// Reading data

String value = sp.getString(key);

// Writing data

editor.putString(key,value);

To obtain the �le name, CLDroid locates the open functions of shared preference �les, e.g.,
getSharedPreferences(�lename,mode), and directly analyzes the �le name parameter via string value
analysis. Besides, there exist some special interfaces without parameters, e.g., getDefaultShared-
Preferences(). The name of the opened �le depends on the app context, i.e., the app package name.
CLDroid computes its value with the help of information from AndrodManifest.
To obtain the key value, CLDroid directly analyzes the related reading and writing APIs. For

instance, the �rst parameter of the reading APIs (e.g., SharedPreferences.getString()) and the writing
APIs (e.g., SharedPreferences$Editor.putString()) is the key value of the data item to be accessed.

JSON Identi�er. JSON �le is designed to store structured data based on the JavaScript object
syntax. Its internal structure is organized as (nested) key-value pairs.

To retrieve data from a JSON �le, an app typically �rst opens the �le and reads the content. Then,
the app deserializes the read content to a JSONObject through JSON parsing APIs, such as JSONOb-
ject.parse(). For nested JSONObjects, the app can utilize a chain of key values to access underlying
objects by recursively calling reading APIs, e.g., JSONObject.getJSONObject(). Last, the app accesses
speci�c values of the underlying JSONObject via a key name, e.g., JSONObject.getString(). Note that
in addition to system APIs, we collect several JSON libraries commonly used by Java programs,
including org.json, Fastjson, GSON, and Jackson.
To obtain the �le name, CLDroid starts analysis from the JSONObject serialization or deseri-

alization APIs. Taking the deserialization API ‘JSONObject.parse(string)’ for example, CLDroid
backwardly tracks the string parameter to check its initialization, which is usually read from a �le
object. Then, CLDroid further analyzes the �le initialization and obtains the �le path by analyzing
the parameter of �le open instructions, e.g., new File(). For the key information, CLDroid forwardly
tracks the deserialized JSONObject and records the access path (i.e., key chain) for each level of
nested objects by analyzing the related reading APIs, e.g., JSONObject.getJSONObject(key), until the
access to some speci�c values, e.g., JSONObject.put(key,value).

Unstructured Data Identi�er. In addition to the above data pools with structured organization,
there exist some data pools whose internal structures are hard to parse, e.g., text and media �les.
Android framework provides dedicated access APIs for them. In this case, CLDroid treats their raw
data as a whole and connects their reading-and-write access based on the URI or �lename.

3.2.2 Extracting Data Identifiers. As mentioned above, during the analysis of data identi�ers, many
parameters of data access APIs are not constants and are generated dynamically, which involves
many string operations. It is hard to obtain them directly. To address this challenge, we apply a string
value analysis to support the extraction of data item identi�ers. Speci�cally, starting from a variable
of our interest, e.g., SQLiteDatabase.rawQuery(query), we backwardly traverse the instructions in
the CFG. If there are any variables that contribute to the computation of the target variable (e.g.,
data �ow dependency), we record the involved instructions and variables in a string computation
stack. We keep iterating in the same way until the de�nitions of all dependent variables are found.
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Then, we compute the �nal string value of our interest with the string computation stack. We
execute the involved string operations in a forward simulation based on the string operation API
summaries. For example, if the involved instruction is a string append API, we perform the string
append operation. Note that the string-related APIs belong to system-de�ned classes, which are
typically not obfuscated. The computed string values may still need to be further parsed to extract
related data identi�ers. For example, we parse the SQL query statement through regular expressions
to extract the table and column information. It is worth noting that if some variables are entirely
decided by the requester apps and cannot calculate exact values, we consider they can be any value.
Finally, we parse the concrete values collected from a total of 244 APIs (Table 3).

3.2.3 Propagating Data Flow Through Data Pools. After understanding what data item (i.e., data
identi�er) is being tracked, CLDroid links the corresponding reading and writing code units together
so as to track the data �ow through data pools. Given the speci�c identi�er of a data item, CLDroid
�rst scans the code space to �nd the related reading and writing code units layer by layer. Take
shared preference for example. Its data item identi�er can be [<File Name>, <key>]. First, CLDroid
locates all opening instructions for the speci�ed data pool type. Then CLDroid extracts and compares
the data pool identi�ers, e.g., �le name. For instructions with the same �le name, CLDroid further
tracks the �le objects to �nd all their data reading instructions, e.g., SharedPreferences.getString(key).
Next, starting from the data reading APIs, CLDroid extracts the data item identi�ers, i.e., key name,
through string value analysis. If the data item identi�er is the same as the target data item, CLDroid
connects them and achieves the data item tracking through the data pool.

3.3 Determining Security Hazards

After understanding data propagation through data pools, we can check whether there is a vulner-
able data �ow from external apps to critical internal functionalities. Following such a data �ow,
an app attacker can launch cross-layer exploitation. However, it is still di�cult to determine the
security hazards that may be caused. This is because the app internal functionalities are diverse
and app-speci�c. To mitigate this problem, we universally measure their security impacts from
the perspectives of two attack vectors we found, i.e., data loading and consuming, which can
compromise the target app’s availability and integrity respectively. Below we �rst present the
details of how to detect data loading and consuming-based vulnerabilities, and then we discuss
how to determine caused security consequences.

3.3.1 Detecting Insecure Data Loading. To detect insecure data loading, CLDroid analyzes whether
an external app can inject a large amount of data into the target data pool and if the injected data
will be loaded into memory. First, CLDroid checks the injection possibility by analyzing the data
�ow from requesters to the writing APIs of the target data pool. Then, based on the semantics of
the writing APIs, CLDroid can determine whether the volume of data pools can be unexpectedly
increased (according to the tracked parameters). For example, if there is a data �ow to the �rst
parameter of SharedPreferences$Editor.putString(key,value), it indicates that the attacker can inject
large amounts of data by inputting di�erent key names, which results in the �le size increase.
Last, CLDroid detects if the injected data can be loaded into memory. Speci�cally, we consider two
scenarios: (i) loading all data from a data pool into memory and (ii) continuously reading data into a
size-extensible variable (e.g., hashset). For the former case, some data pools, e.g., shared preference,
need to load all data into memory before reading any value inside the �le. Any instruction to read
data from the data pool is considered a possible DoS risk. Thus, CLDroid checks the data identi�ers
corresponding to data pool reading operations by verifying the data pool type. For the latter case,
some data pools, e.g., databases, use bu�ering to progressively load data, and memory over�ow
only occurs if the data is continuously stored in memory without being released. Thus, CLDroid
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detects if there is a data �ow from data pool reading APIs to the storing APIs of size-extensible
objects. Furthermore, CLDroid detects if the reading is continuously executed. For example, if the
data storing instructions are executed in a loop, while the loop termination condition is determined
by the data read from the data pool, an insecure data loading is reported.

3.3.2 Detecting Insecure Data Consuming. For data consuming-based vulnerability, CLDroid detects
if the poisoned data items can impact critical app functionalities. A question arises here: what
functionalities are security-critical? In practice, we �nd app functionalities are quite diverse and
many of them are speci�c to their corresponding apps. For example, the launcher app (shown in
§ 2.4) contains an important functionality of determining the app to be launched. We mitigate the
problem based on the observation that the essential implementation of an app functionality is still
delivered with Android system APIs or popular library APIs. For example, the launcher app uses
Intent to open and manage apps. But di�erent from prior work, which mainly focused on privileged
system APIs, we consider a much boarder set of development APIs. These APIs may be insensitive
for security, but more important for app business logic and the integrity of app behaviors. Following
this, we build an extensive API list to help us understand data consuming-based attacks. For the
API extraction, more details are shown in § 3.3.3 and Table 4.

Speci�cally, CLDroid considers two ways for abusing and manipulating internal functionalities:
parameter manipulation and execution switch. For the former case, CLDroid conducts a data
�ow analysis to track the use of data items and check if there exist �ows between the (potentially
malicious) data item and parameters of the critical APIs. For execution switch, CLDroid �rst extracts
related condition instructions that have data dependencies with the polluted data items. Then, for
each condition instruction, CLDroid constructs sub-call graphs for its two branches and compares
their invocations to critical APIs. The data item is considered critical if one branch calls the critical
APIs while the other does not.

3.3.3 Understanding Security Hazards. To support the determination of security hazards, we
construct an extensive list of critical APIs. These APIs help CLDroid understand the characteristics
of data loading and consuming-based attacks. Although previous works [3, 32, 43] have provided
an extensive set of sinks, they do not cover the sensitive APIs of the recent Android versions. Thus,
we manually reconstruct a new list of sensitive APIs. Constructing such an API list involves much
painstaking manual work, but the e�ort is one-time and can be reused and extended with ease.
Speci�cally, we collect APIs from Android SDK and popular third-party libraries from AppBrain [2].
Finally, 1542 APIs are included (Table 4). These APIs are gathered from the perspectives of two
attack vectors. For data loading, two attack manners about reading data are considered (i.e., L1 and
L2): loading all data from data pools into memory and storing data into size-extensible variables.
For data consuming, we mainly consider the functionality-critical APIs. Speci�cally, on account of
the integrity of content shown to the user and communication with other entities, we summarize
the APIs of C1-C4. Besides, considering the security of app-speci�c capabilities and resources, we
collect APIs of C5-C6. Note that some APIs are commonly used in apps whose execution is not
sensitive, e.g., TextView.setText(). We only care about the content they operate. Hence, CLDroid only
checks if their parameters can be manipulated by attackers. While for other APIs whose execution
can determine some app key features, e.g., WindowManager.addView(), we further analyze if their
execution can be decided by injected data (execution switch).

4 EVALUATION AND SECURITY IMPACT

In this section, we apply CLDroid on a large set of popular apps to assess the security risks of
cross-layer exploitation in the real world and then break down their security hazards.
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Table 4. The summarized critical APIs that may cause security hazards if the dependent data are exposed.

Phase Type Critical API Description # Num Example

Loading
L1 Loading all data from data pools into memory. 47 SharedPreferences.getAll()
L2 Storing data into size-extensible variables. 100 HashSet.add()

Consuming

C1 Determining the content displayed on the screen. 101 ImageView.setImageURI()
C2 Determining sensor output to apps. 65 MediaPlayer.setDataSource()
C3 Communicating with local app components. 39 Context.startActivity()
C4 Communicating with servers and presenting content to users. 118 WebView.loadUrl()

C5
Privileged system APIs that are used to access protected system
functions and resources.

421 WindowManager.addView()

C6
System APIs that do not require permissions but are only al-
lowed to manipulate the caller app’s own resources.

651 Noti�cationManager.cancel()

Data Set.We build the dataset by collecting the top 500 apps from 33 categories on Google Play. As
a result, we successfully downloaded and gathered 14,349 unique apps as our experiment dataset.

Test Bed and Performance.We implement CLDroid in 12K-SLOCs of Java on the top of static
analysis framework ‘Soot’ [29]. CLDroid analyzes the apps on a Ubuntu 18.04 LTS 64-bit server
with 64 CPU cores (2.30GHz) and 212GB memory. The analysis is performed in parallel and has a
timeout of 5 minutes for each app. On average, the analysis needs 44.4 seconds for each app. Finally,
13,824 apps have been successfully analyzed in total. The remaining apps either exceed the time
limit or cannot be parsed by Soot.

4.1 Prevalence of Cross-Layer Threats

CLDroid successfully analyzes 13,824 apps and the detection results are shown in Table 5. Overall,
CLDroid �nds 10,839 data pools are shared and involved in 2,074 app-to-app data sharing channels,
spanning over 1,714 (12.4% of 13,824) apps. In the discovered data pools, CLDroid successfully
recovers 223,878 data item identi�ers. In security-oriented experiments, CLDroid identi�es 70.9%
(1,215 of 1,714) apps are potentially vulnerable to cross-layer exploitation, with more than 18 billion
installs in total. To be speci�c, 925 apps su�er from data loading-based attacks involving 3,507 data
pools, and 947 apps are vulnerable to data consuming-based attacks involving 1,409 data items. We
randomly select 60 potentially vulnerable apps and manually verify their detection results.

Table 5. Overall results of cross-layer threats discovered by CLDroid

Data Pool Type
Involved
APPs

Exported
Channels

Shared
Data Pools

Data
Items

Insecure Data Loading Insecure Data Consuming
Data Pools Unsafe APPs Data Items Unsafe APPs

Shared Preference 1075 1327 8874 205416 2576 261 813 400
Database 798 855 1684 18181 870 684 596 567
Others 193 201 281 281 61 17 0 0

Total 1714 2074 10839 223878 3507 925 1409 947

Identifying Data Sharing and Protection. For these 60 apps, CLDroid discovers 92 data sharing
channels that could be abused for injecting malicious data. 59 of them are successfully injected
by manual veri�cation. There are several reasons for veri�cation failures. First, 4 of them enforce
security checks on the caller app’s identity. For instance, the Samsung Internet Browser [48] checks
the caller app’s signature and only allows access from apps that are signed with the same certi�cate.
Second, 4 components have hard-to-satisfy path constraints, e.g., a condition check that depends
on the app run-time behaviors. Third, 16 are false positives introduced by the over-approximation
of static analysis. Last, 9 fail to be manually analyzed due to code obfuscation.
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Identifying Data Items.With manual veri�cation, we con�rm that these 60 apps expose 9,569
data items in their data pools, and CLDroid successfully identi�es 9,275 (96.9%) data identi�ers for
them. The main reason for the failure is that many of the unresolved values need to be retrieved
from function calls which are hardly analyzed via static analysis, e.g., system functions.

Identifying Cross-Layer Threats. We conduct a security analysis of these 60 apps, 41 of which
are potentially vulnerable to insecure data loading and 38 to insecure data consuming. Speci�cally,
we construct data poisoning requests from an unprivileged app and manually trigger the vulnerable
data loading and consuming instructions in the victim app. Note that triggering their consequences
can be di�cult due to the manual e�orts required which often involve various UI events. CLDroid
facilitates this by precisely identifying vulnerable data loading and consuming operations in
respective components. As a result, we con�rm at least 32 (53.3%) apps can be successfully exploited
and the overall results are shown in the Table 6. In detail, 28 of them are veri�ed to su�er from data
loading-based attacks and 27 of them contain insecure data consuming, which can a�ect critical
functionalities inside the victim apps. There may exist cases (in the remaining 28 apps) that are
di�cult to trigger but can be exploitable with more e�ort. Therefore, our estimate of exploitable
apps is only a lower bound. We responsibly disclosed the veri�ed vulnerabilities to corresponding
developers, and so far 56 CVE IDs have been assigned. Since CLDroid is the �rst to detect app
cross-layer threats and there is no ground truth of all vulnerabilities, we lack a good way to predict
false negatives.

4.2 Breakdown of Security Hazards

After verifying the exploitable apps, we break down their security consequences. Table 7 presents
the overall results. Exploiting insecure data loading can lead to persistent app and functionality
DoS, and exploiting insecure data consuming can achieve content spoo�ng and privilege escalation,
which demonstrate the high severity of cross-layer exploitation. Below we present more details.

Persistent DoS Attacks. DoS is mainly caused by data loading-based attacks. If the size of a data
pool can be controlled by an unauthorized app, a malicious app can inject large amounts of crafted
data into it. This will cause the victim app to load excessive data into the memory, thus leading
to DoS attacks. Since the injected data are persisted on the device and will not disappear after
the app or device restart, the attack consequence (DoS) is persistent. Typically, executing such
attacks requires over 500 app calls, as Android imposes a maximum limit of 512MB for app process
memory, and the data transferred per inter-app call must not exceed 1MB. However, the impact on
user experience during an attack can be mitigated to imperceptible levels. This is attributed to the
persistent consequences of data injection from each call, enabling attacker apps to �exibly control
the attack frequency at a low rate, thereby avoiding noticeable disruptions to users’ regular usage.

• App DoS. When the injected data pool is essential for app initialization, it will be automatically
loaded during app startup and trigger OOM. Thus, the victim app cannot be successfully launched
anymore. A real case is our motivating example described in § 2.4.

• Functionality DoS.When the injected data is loaded only when the user visits a speci�c activity
or uses a speci�c app feature, a functionality DoS occurs. For instance, the highlight feature, e.g.,
sound e�ect customization, of Poweramp (50,000,000+ downloads) can be disabled by injecting a
large amount of data into its preset database.

Content Spoo�ng Attacks. Some vulnerable data determines the content presented to users.
Attackers can tamper with the content to spoof users and further launch more sophisticated attacks.
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Table 6. Examples of exploitable apps detected by CLDroid. Specifically, DoS stands for denial of service

a�acks in data loading. CS and PE represent content spoofing and privilege escalation a�acks in data

consuming respectively. Symbol ● means it is vulnerable to our a�ack. CVE with symbol ✔ means the

vulnerabilities have been assigned with CVE IDs.

#ID Package Name Category Downloads
Security Consequences

CVE Description
DoS CS PE

01 *.launcher Personalization 100M+ ● ● ● ✔ Replace app font �les with malicious �les.
02 *.yandexnavi Travel&Local 100M+ ● ● ✔ Modify critical app settings, e.g., app noti�cation.
03 *.simejikeyboard Personalization 100M+ ● ● ✔ Modify critical app settings, e.g., keyboard layout.
04 *.audioplayer Music&Audio 50M+ ● ● ● ✔ Manipulate sound e�ect and displayed UI content.
05 *.meetings Business 50M+ ● Inject excessive data into a shared preference �le.
06 *.edjingdjturntable Music&Audio 50M+ ● ✔ Inject excessive data into the playlist database.

07 *.security Tools 10M+ ● ● ✔
Manipulate virus scan whitelist, block in-app ad-
vertising and modify wi� security setting.

08 *.superlock Tools 10M+ ● ● ✔ Change app lock password and protected app list.
09 *.xsuperclean Tools 10M+ ● ● ✔ Block in-app advertising.

10 *.mp3player Music&Audio 10M+ ● ✔
Disable the search functionality in this app by in-
jecting excessive data into search history database.

11 *.fasttyping Personalization 10M+ ● ✔ Arbitrary �le overwrite and code execution.
12 *.who Social 10M+ ● ● ✔ Control the advertisements display settings.
13 *.solive Social 10M+ ● ● ✔ Manipulate the pro�les of login users.

14 *.playstore Personalization 10M+ ● ● ● ✔
Manipulate app icons displayed on the phone screen
and hijack inter-app communications.

15 *.lux Health&Fitness 10M+ ● ● ✔
Change app settings and system’s display bright-
ness.

16 *.bluelight�lter Health&Fitness 10M+ ● ● ✔ Change app settings and the system’s display color.

17 *.liveFlightTracker Travel&Local 10M+ ● ● ✔
Manipulate the airport and airline information
shown to users.

18 *.themeforandroid Personalization 10M+ ● ✔ Arbitrary �le overwrite and code execution.
19 *.sleep Lifestyle 10M+ ● ● ✔ Modify UI settings and the audio �le played for.
20 *.textme Social 10M+ ● ✔ Modify the audio �le played for ringtone.
21 *.keyboard Personalization 10M+ ● ● ✔ Modify the urls for downloading language packs.

22 *.clean Tools 1M+ ● ● ● ✔
Manipulate app update settings and hijack the up-
date to install malware.

23 *.blockCalls Communication 1M+ ● ● ✔
Manipulate the blacklist and whitelist of blocked
phone calls.

24 *.amdroid Productivity 1M+ ● ● ✔ Modify the settings of phone’s alarm clocks.

25 *.weather Weather 1M+ ● ● ● ✔
Manipulate the cached web content to launch con-
tent spoo�ng.

26 *.phone Video Players 1M+ ● Inject excessive data into a shared preference �le
27 *.truck Transportation 1M+ ● ✔ Inject excessive data into local �le
28 *.crossx Health&Fitness 500K+ ● ● ✔ Manipulate user pro�les.
29 *.byrk Tools 500K+ ● ● ✔ Modify the advertisement display settings.
30 *.unicornwallpaper Art&Design 100K+ ● ● ✔ Modify the URLs to load images.
31 *.wallpapero�ine Art&Design 100K+ ● ● ✔ Modify the URLs to load images.
32 *.android News&Magazines 10K+ ● ✔ Modify the URLs to fetch news.

Table 7. Breakdown of security consequences of 32 apps.

Attack Vector Consequences #APPs Examples

Data Loading
Persistent APP DoS 21 SoLive

Persistent Functionality DoS 7 Poweramp

Data Consuming
Content Spoo�ng 11 TextMe

Privilege Escalation 21 BestWeather

• UI Spoo�ng. Due to the trust in used apps, the information presented on the UI is also trusted
by users by default, which can be abused by attackers to deceive users. For instance, the tips on
pop-up windows can be abused to trick users into downloading malicious apps (§ 5 Case#3).

• Voice Command Injection. Inspired by studies [45, 46, 61, 62] on voice assistants, manipulating
the played audio �les can open the gate for attacks through speakers. Speci�cally, a carefully-
forged audio �le can inject voice commands into the speech recognition systems adopted by IoT
devices and smart vehicles. For example, by exploiting the insecure data consuming in TextMe
(10,000,000+ downloads), the audio �le played for ringtones can be replaced stealthily.
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Privilege Escalation Attacks. Normally, the app’s code is isolated and protected from other
apps by the Android application sandbox. However, by controlling the exposed app-speci�c data,
attackers can bypass the sandbox protection and indirectly a�ect the relevant code execution.

• Functionality Manipulation. The app behaviors may rely on some local settings. By tampering
with these data, a third-party app can manipulate a victim app’s key functionalities. For example,
we �nd that a security app with 10,000,000+ downloads maintains a whitelist for virus scanning.
A malicious app can add its own package name to the whitelist and evade virus detection.

• Communication Hijacking. An attacker may totally control who the victim app communicates
with and also the communication content. The communication here includes not only local
inter-app communication but also communication with remote servers. For instance, we �nd
an attacker can control the server URL the victim app is going to access. Thus, the attacker can
launch a phishing attack and steal user privacy data by replacing it with a malicious website.

• Code Execution. The app-speci�c data can open the way for attackers to execute code in the
victim app’s context. For example, by tampering with the path of a zip �le to extract, an attacker
can overwrite the dex �les pre-saved in the app’s internal storage and inject malicious code
(detailed in § 5 Case#2).

5 REAL-WORLD CASE STUDIES

We now choose a subset of our results to demonstrate cross-layer exploitation in real-world
scenarios. Note that all attacks are initiated by unprivileged apps and have been veri�ed by us.

Case#1: Bypassing App Lock Protection. Lock Master (*.superlock, 10,000,000+ downloads) is
a privileged security management app, which can help users enforce access lock on target apps.
Its background service monitors and enforces password security validation when an app in its
protection list comes to the foreground. Thus, it can protect sensitive apps, e.g., social or illness
tracker apps, from being accessed by snoopers.
The app lock feature is strictly protected to be exclusively controlled by users and cannot be

invoked by external apps. However, CLDroid discovers this functionality is vulnerable to cross-layer
exploitation, which can bypass its strict protection and even block the original user’s access to all
apps. In particular, we �nd its critical dependent data (protected-app list and access password) is
stored in a shared preference �le with some trivial app data and is not properly protected. As a result,
a malicious app can indirectly gain access to the protected apps by manipulating its protected-app
list, and even block the original user’s access to all apps by tampering with the user-set access
password. This severely breaks the integrity and con�dentiality of the app. CLDroid unveils this
vulnerability by analyzing that the saved protected-app list and password determine the execution
of privileged system APIs, i.e., WindowManager.addView() and removeView(), respectively. This
vulnerability is rated as high severity and con�rmed as CVE-2023-29733.

Case#2: Arbitrary Code Execution. Fast Typing Keyboard (*.fasttyping, 10,000,000+ downloads)
is a customizable keyboard app. Mobile users can set it as the default keyboard of the phone. It
allows users to select and download theme packs from various sources, including network and
Google Play. However, we verify that through cross-layer exploitation, an adversary can stealthily
overwrite arbitrary �les in this app’s isolated private storage by tampering with the path pointing
to downloaded theme �les, resulting in arbitrary code execution.
Speci�cally, CLDroid discovers a vulnerable data �ow through a shared preference data pool to

an arbitrary �le write API. Our analysis shows this app stores the �le paths (i.e., go_res_zip_path)
of downloaded theme packs in a data pool. Unfortunately, the go_res_zip_path is not well protected
and can be manipulated by unauthorized apps through a broadcast receiver. Even worse, this app
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enforces no security checks when decompressing the theme packs and a path traversal vulnerability
exists. Thus, an attacker can �rst let go_res_zip_path point to a crafted theme pack that contains a
malicious dex �le. Next, impacted by this data item, this app decompresses the crafted �le. The
malicious dex �le is placed into this app’s internal storage (overwriting the original benign dex
�le) and later executed. Note that, every time the app starts up, it automatically decompresses and
installs the theme pack if the �le pointed by go_res_zip_path exists in storage. Thus, the whole
attack procedure is stealthy and does not require user interaction, which could be hardly noticed by
victim users. This vulnerability has been rated as critical severity and con�rmed as CVE-2022-47027.

Case#3: APP Update Hijacking. Super Clean (*.clean, 1,000,000+ downloads) is a powerful phone
cleaner app for cleaning junk �les and optimizing memory usage. In order to ensure that the app is
updated in a timely manner, it will check the current app version each time the app is started and
force users to update it once the app is outdated. However, through cross-layer exploitation, this
process can be hijacked by attackers to trick users into downloading malicious apps.
Speci�cally, when the app is launched, it loads and checks the local app version record. If it

needs to be updated, the app pops up a dialog with some update tips. The dialog guides users
with an update button jumping to the new app page in app markets (e.g., Google Play). CLDroid
discovers many critical data, e.g., app version, update tips, and link address of new app, are stored
mixed with some harmless app con�guration data in a shared preference �le and are erroneously
exposed in app-to-app data sharing. Thus, a third-party app could manipulate these data to form
an attack chain and induce users to install a malicious app. First, by lowering the app version, the
adversary can actively trigger the target app to pop up the update dialog. Then, the shown tips
could be crafted to deceive the user, such as ‘This app is no longer updated and maintained, please
download our new app!’. After the user clicks the update button, the jump destination is hijacked by
modifying the new app’s link address to update. Finally, malware could be installed on the victim’s
device. This vulnerability has been rated as high severity and con�rmed as CVE-2023-27193.

6 MITIGATION, LIMITATION, AND DISCUSSION

Mitigation. To mitigate app cross-layer threats, we propose several mitigation strategies for app
developers based on our analysis of the two attack vectors.

To prevent data loading-based attacks, apps can restrict requester access frequency by recording
the source and timestamp of requests to increase the attack time cost. Furthermore, apps can set
quantity restrictions for each external app when storing external data in the internal data pools. In
case the limit is exceeded, the app can employ a FIFO strategy to clear out old data. In addition,
when loading data from the data pool, it is advisable to use a streamlined approach where data
is loaded and checked for size simultaneously or check the �le size before loading it entirely into
memory to ensure current available memory is su�cient.

For data consuming-based attacks, it is hard to design a one-size-�ts-all protective method due
to app-speci�c features. Standardized and �ne-grained app data security management practices are
urgently needed. First of all, to avoid unintended data exposure, app data should be stored separately
considering their functional relevance and whether there is a need for sharing. Furthermore, for
the necessary data to be shared, it is essential to carry out �ne-grained sensitivity classi�cation
according to their app-speci�c purposes and organize them based on their sensitivity.
Furthermore, system vendors such as Google should explicitly notify developers about cross-

layer security risks and optimize the design of best security development practices in their o�cial
documentation.

Limitation. The goal of this study is to explore the security impact of cross-layer threats in
mobile apps. We design and implement CLDroid to identify instances that are of potential security
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impact, bringing them to the surface for an analyst to further investigate and verify. Automatically
reasoning about exploitability is beyond the scope of this study and is an extremely challenging
task in practice, especially since the exploitation of such vulnerabilities can be tightly linked with
app-speci�c business logic.
First, the analysis we performed in § 3 is conservative as we only focus on the commonly used

intent-based data injection channels and app local storage data managed by Java APIs. Note that
some app data are stored and operated in the cloud. We do not consider them since the internals of
app backend services are black-box for us and it is hard to verify their attack consequences without
a�ecting other users in practice. Second, CLDroid is limited in modeling non-linear data access,
e.g., serialized data of objects, as their internal structures and access operations are nonstandard
and customized. CLDroid analyzes them as a whole. Third, we implemented a simplistic version of
string value analysis for Android apps drawing inspiration from prior work [63]. More advanced
and robust string value analysis techniques [20, 31] could be applied for future extensions. Besides,
the API-based critical data-consuming scenarios detection may overlook certain sensitive data
usage in some apps due to the use of speci�c third-party libraries. We argue that the API list
can be easily extended to accommodate speci�c customized app business logic. From a practical
perspective, we believe our analysis was at an adequate level given the �ndings and goals of this
study.

Discussion. While Android apps have been extensively studied, they continue to evolve and
develop, with new architectures or features being introduced to enhance functionality and user
experience. These new features may weaken or even break existing security principles, giving
rise to new security demands. Therefore, their security also needs continuous improvement to
keep the right balance between security and usability. Our study highlights the inadequacy of
existing defense mechanisms when it comes to modern app-speci�c data management. The security
mechanisms provided by the operating system are coarse-grained and inadequate to address the
app-speci�c internal characteristics. The protective measures implemented by developers are
discrete and lack uniform standards and best practices. Addressing this issue requires collaborative
e�orts from both developers and operating system vendors, and further research is warranted.

7 RELATED WORK

Insecure Communication Channels. Inter-app communication (IAC) is an essential feature in
mobile apps, which supports the reuse of functionalities and data sharing across apps. However, it
also constitutes a serious attack surface [26, 28, 30, 34, 35, 50, 51, 55, 58, 59]. Numerous studies [3, 11,
16, 21, 22, 25, 27, 32, 37, 47, 57] have investigated binder-based communication channels (i.e., intent)
and discovered various vulnerabilities. For example, CHEX [37] detected component hijacking
vulnerabilities by tracking taints between externally accessible interfaces and sensitive sources or
sinks. Typically, existing work investigated code-layer attacks, which involved detecting whether
sensitive or privileged functions can be directly invoked through public interfaces. Di�erently, we
study cross-layer exploitation in mobile apps which is performed by polluting the dependent data
of critical app functionalities. Since IAC is a common demand in apps, injecting data into data
pools is not a strong indicator of sensitive operation and could be hardly used in vulnerability
detection. In particular, ContentScope [27] studied the security of content providers and targeted
verifying whether a content provider was exposed to other apps. However, we study which and
how data items in the exposed data pools can be exploited to abuse or manipulate the apps’
internal functionalities. With app cross-layer exploitation, even internal functionalities that cannot
be touched by external apps may be exploited by attackers. In this paper, we conduct the �rst
systematic study to understand their security impacts in the real world.
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APPData Security.Apps commonly maintain much sensitive and private user data, whose security
has been studied by many researchers with both static [3, 6, 21, 24, 32, 33, 39–41, 57] and dynamic
approaches [17, 38, 54, 56]. For example, IccTA [32] and DroidSafe [21] resolved the Intent and
RPC calls to construct a precise inter-component model and detect privacy leaks via static taint
analysis. TaintDroid [17] labeled data from privacy-sensitive sources and tracked the data �ow
in real-time. As a comparison, prior work aimed to detect privacy data leakage, while our work
focuses on poisonous data injection. Furthermore, these tools mainly traced data �ows that traveled
along code execution and did not support �ne-grained data �ow tracking through data pools. In
this paper, we propose CLDroid, which could understand the data pool access semantics and track
data items through various data pools. Besides, privacy data can have obvious characteristics due
to its strong correlation with the user and device, while our work focuses on app-speci�c data,
which are tied to the diverse and customizable app functionalities, making them hard to pre-de�ne.

8 CONCLUSION

In this paper, we revisit app component security in the context of modern app architecture and
discover existing defenses have not caught up with the fast app development, leading to the
feasibility of cross-layer exploitation. Then we design a novel vulnerability analysis tool, called
CLDroid, to assess its security risks in real-world apps. Our experiments reveal that 1,215 apps
(8.8%) are impacted, with more than 18 billion installs in total. Various serious security consequences
have been veri�ed, such as code execution, communication hijacking, phishing, and persistent DoS.
Our �ndings highlight that new development practices should be designed carefully to keep the
existing security mechanisms e�ective.

9 DATA AVAILABILITY

We have open-sourced CLDroid, which can be accessed on Github at our public repository https:
//github.com/LianKee/CLDroid.
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