
Component Security Ten Years Later: An Empirical Study of
Cross-Layer Threats in Real-World Mobile Applications
KEKE LIAN, Fudan University, China
LEI ZHANG, Fudan University, China
GUANGLIANG YANG, Fudan University, China
SHUO MAO, Fudan University, China
XINJIE WANG, Fudan University, China
YUAN ZHANG, Fudan University, China
MIN YANG, Fudan University, China

Nowadays, mobile apps have greatly facilitated our daily work and lives. They are often designed to work
closely and interact with each other through app components for data and functionality sharing. The security of
app components has been extensively studied and various component attacks have been proposed. Meanwhile,
Android system vendors and app developers have introduced a series of defense measures to mitigate these
security threats. However, we have discovered that as apps evolve and develop, existing app component
defenses have become inadequate to address the emerging security requirements. This latency in adaptation
has given rise to the feasibility of cross-layer exploitation, where attackers can indirectly manipulate app
internal functionalities by polluting their dependent data. To assess the security risks of cross-layer exploitation
in real-world apps, we design and implement a novel vulnerability analysis approach, called CLDroid, which
addresses two non-trivial challenges. Our experiments revealed that 1,215 (8.8%) popular apps are potentially
vulnerable to cross-layer exploitation, with a total of more than 18 billion installs. We verified that through
cross-layer exploitation, an unprivileged app could achieve various severe security consequences, such as
arbitrary code execution, click hijacking, content spoofing, and persistent DoS. We ethically reported verified
vulnerabilities to the developers, who acknowledged and rewarded us with bug bounties. As a result, 56 CVE
IDs have been assigned, with 22 of them rated as ‘critical’ or ‘high’ severity.

CCS Concepts: • Security and privacy→ Domain-specific security and privacy architectures; Software
security engineering.

Additional Key Words and Phrases: Android, APP Component, Cross-Layer Threat

ACM Reference Format:
Keke Lian, Lei Zhang, Guangliang Yang, Shuo Mao, Xinjie Wang, Yuan Zhang, and Min Yang. 2024. Component
Security Ten Years Later: An Empirical Study of Cross-Layer Threats in Real-World Mobile Applications. Proc.
ACM Softw. Eng. 1, FSE, Article 4 (July 2024), 22 pages. https://doi.org/10.1145/3643730

1 INTRODUCTION
Mobile applications (apps) have become an integral part of modern daily life, offering users a broad
spectrum of services and functionalities. They are typically crafted to interact and collaborate with

Authors’ addresses: Keke Lian, Fudan University, Shanghai, China, kklian20@fudan.edu.cn; Lei Zhang, Fudan University,
Shanghai, China, zxl@fudan.edu.cn; Guangliang Yang, Fudan University, Shanghai, China, yanggl@fudan.edu.cn; Shuo Mao,
Fudan University, Shanghai, China, smao20@fudan.edu.cn; Xinjie Wang, Fudan University, Shanghai, China, xinjiewang21@
fudan.edu.cn; Yuan Zhang, Fudan University, Shanghai, China, yuanxzhang@fudan.edu.cn; Min Yang, Fudan University,
Shanghai, China, m_yang@fudan.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2994-970X/2024/7-ART4
https://doi.org/10.1145/3643730

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

HTTPS://ORCID.ORG/0009-0005-9026-8995
HTTPS://ORCID.ORG/0000-0002-9298-2536
HTTPS://ORCID.ORG/0000-0001-7066-0109
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/0000-0003-0726-9996
HTTPS://ORCID.ORG/0000-0001-9714-5545
https://doi.org/10.1145/3643730
https://orcid.org/0009-0005-9026-8995
https://orcid.org/0000-0002-9298-2536
https://orcid.org/0000-0001-7066-0109
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0003-0726-9996
https://orcid.org/0000-0001-9714-5545
https://doi.org/10.1145/3643730

4:2 Keke Lian, Lei Zhang, Guangliang Yang, Shuo Mao, Xinjie Wang, Yuan Zhang, and Min Yang

one another, creating a dynamic and integrated ecosystem. As the foundational infrastructure of
inter-app communication, app components are required to be exposed and play a pivotal role. Over
a prolonged period, the security of app components has garnered significant attention. Extensive
security research [16, 19, 22, 25, 34, 36, 37] has identified vulnerabilities in app components that
can lead to various component hijacking attacks. Specifically, app attackers can exploit exported
components to execute critical operations (e.g., privileged system APIs) within the apps, and cause
serious security consequences, including permission redelegation and leakage [18, 25], intent
spoofing [7], and cross-app scripting [23].
After knowing these security vulnerabilities, app developers and system vendors have made

diligent efforts to enhance the security of app components. They have proposed a series of code-
layer measures to prevent the abuse of sensitive operations by external apps. For example, the
Android security team has continuously improved and restricted access to app components since
Android 4 (2011). Also, app developers deployed strict security checks (e.g. input validation and
permission checks) against external requests in their app components. Certainly, these defensive
protections prove efficacious in mitigating conventional component hijacking attacks. Nevertheless,
with the expansion of app size and the proliferation of app functionalities and services, app
development practices are also undergoing evolution. Consequently, a critical question arises: Do
existing defensive mechanisms still retain their robustness against component security threats?

We first investigate modern app architectures and uncover an exploitation method that current
defenses struggle to address. Specifically, following official recommendations [14], modern apps are
progressively embracing a persistent data layer design for robustness and maintainability. This data
layer employs data pools (e.g., databases, shared preferences, and files) to centrally manage data
from various components. As a result, data with varying sensitivities may be stored within the same
data pool, accessible by different components, including exported components and isolated internal
ones. If the internal components retrieve data from the data pool for security-critical purposes,
there may be a risk of app functionality abuse. As illustrated in Figure 1, app attackers can corrupt
some app internal data through an exported component to indirectly manipulate the internal
functionalities that use these polluted data, referred to as cross-layer exploitation in this paper.
The data items within the data pool require different levels of protection, contingent upon their
app-specific purposes, to strike a balance between usability and security. Nevertheless, existing app
component safeguards encounter difficulties in addressing the fine-grained and diverse protection
demands (detailed in §2.1).

Code Layer

Exported
Components

Internal Functionalities

Data Layer

Databases FilesShared Preferences

APP Attacker

Fig. 1. APP Cross-Layer Exploitation.

Then we study the practicality of cross-layer exploitation by assessing the security risks in
real-world Android apps. While numerous tools [26, 28, 30, 34, 35, 50, 51, 55, 58, 59] have been
proposed for detecting app component vulnerabilities, they do not adequately consider the data
flows crossing the code and data layers, making them hardly applied to cross-layer threat detection.
Technically, there are two major challenges that should be carefully dealt with. (i) Fine-grained

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

Component Security Ten Years Later: An Empirical Study of Cross-Layer Threats in Real-World Mobile Applications 4:3

data item-level flow tracking. A data pool often stores a multitude of data items but not all of
them can be corrupted by external apps. Even worse, all these data items are accessed through a
unified set of data pool access APIs, making it challenging to correlate a data injection point with
its corresponding readout points. Treating the data pool as a black box without tracing the data
item flow will cause unacceptably high false positives. (ii) App-specific critical data usage scenario
identifying. The corrupted data can be used in various app internal functionalities, but it is uncertain
which of these functionalities can be exploited to cause security hazards. In contrast to traditional
component attacks that often target clearly defined privileged system APIs, the sensitivity of app
internal functionalities depends on their app-specific business logic implementation, lacking a
universal indicator. To address the above challenges, we design and implement a novel app cross-
layer threat detection approach, named CLDroid. By applying CLDroid on 13,824 popular apps
collected from Google Play, we find 1,714 (12.4%) apps have opened data sharing channels that
result in the sharing of over 10,000 data pools and more than 200,000 data items. CLDroid assesses
their security and identifies 1,215 (8.8%) apps as potentially vulnerable to cross-layer exploitation
with a total of more than 18 billion installs.

Furthermore, we delve deeper into understanding the severe security hazards that cross-layer
exploitation can cause in real-world scenarios. Specifically, we randomly select 60 vulnerable apps
for manual verification and confirm that at least 32 of them can be successfully exploited. By
exploiting these vulnerabilities, an unprivileged app can achieve various attack consequences,
including arbitrary code execution, click hijacking, UI spoofing, and persistent DoS.1 We have
responsibly disclosed the verified vulnerabilities to respective developers and received several
confirmations, along with bug bounties awarded by Alibaba and Tencent. A total of 56 CVE IDs
have been assigned for these vulnerabilities, with 22 of them rated as ‘critical’ and ‘high’ severity.
Contributions. The contributions of our work are summarized below.
• We revisited Android app component security in the context of modern app architectures and dis-
covered that state-of-the-art defenses have not caught up with the fast app development. Through
a form of attack referred to as cross-layer exploitation, attackers can indirectly manipulate app
internal functionalities by polluting their dependent app data.

• We studied the security risks of cross-layer exploitation in real-world apps. To achieve this, we
design and implement a novel vulnerability detection tool named CLDroid which addresses two
non-trivial challenges. Our experiments revealed that 1,215 (8.8%) popular apps may suffer from
cross-layer exploitation, with a total of more than 18 billion installs.

• We verified that an unprivileged app attacker could achieve significant security consequences
through cross-layer exploitation, including content spoofing, privilege escalation, and persistent
DoS attacks. We responsibly disclosed the verified vulnerabilities to respective developers, who
confirmed and rewarded bug bounties to us, with 56 CVE IDs assigned.

2 UNDERSTANDING APP CROSS-LAYER EXPLOITATION
In this section, we first analyze why cross-layer exploitation is practical against existing defenses.
Then we introduce their security implications and threat model. Finally, we present a real-world
example found by us to show how exploitation occurs and its security consequences.

2.1 Root Cause Analysis
Modern apps are becoming increasingly complex and larger in size, resulting in a wealth of data in
apps. To enhance app robustness and maintainability, there is a growing trend towards coupling
business functionality with app data. In other words, the management of app data is shifting from
1All attack consequences have been manually verified with PoCs.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

4:4 Keke Lian, Lei Zhang, Guangliang Yang, Shuo Mao, Xinjie Wang, Yuan Zhang, and Min Yang

decentralized handling across various components towards centralized management. Specifically,
modern apps employ a persistent data layer including various data pools to manage data originating
from different components within the app. However, there is no common guideline or best practices
on how to manage the diverse app-specific data. Consequently, data with various purposes may be
mixed and stored in the same data pool. When a need arises to share some of these data with external
apps, it can potentially lead to excessive exposure of data used for other sensitive functionalities,
thereby creating the potential for cross-layer exploitation.

To prevent app functionalities abuse through exported components, a series of app component
safeguards have been proposed and implemented over the years [4, 5, 12, 15, 18, 28, 44, 55]. Due to
prior research predominantly focusing on component attacks limited to code-layer exploitation,
existing defenses primarily concentrate on addressing security threats at the code-layer level.
The core principle of these defenses is to ensure that the privileged operations in apps can only
be invoked by authorized requesters with legitimate inputs. Specifically, app permission and
identity-based checks can help restrict functionalities of varying sensitivities to be accessible only
by requesters that meet corresponding identity conditions. The Android system has categorized
the sensitivity of system operations that apps can invoke and allows apps to define customized
protections based on their own implementation. Furthermore, for authorized requesters, developers
can enforce input validations to prevent privileged operations from being executed with untrusted
inputs. For instance, Android provides parameterized database access APIs [15] to prevent external
malicious inputs from being interpreted as executable SQL code, effectively mitigating the risk of
SQL injection.

As shown in Table 1, while these defenses can effectively mitigate traditional component attacks
at the code layer, such as capability leak and code injection, they are inadequate against cross-layer
exploitation. On one hand, defenses around requesters are enforced at the component level, which
is too coarse-grained to protect the diverse app-specific data. In particular, a singular component
can access multiple data pools, maintaining an extensive collection of data items. These data
items serve various functionalities and possess varying degrees of sensitivity, thus warranting
different levels of protection. Component-level access control is insufficient to address the fine-
grained data protection requirements, potentially resulting in unintended data exposure. On the
other hand, input validations are also limited in their efficacy. Techniquely, they are designed to
prevent critical functions from being executed in unexpected ways due to illegitimate external
inputs. However, cross-layer exploitation injects poisonous data into data pools leveraging the
intended app functionalities in the expected manner. Hence, the request inputs appear legitimate
and lack identifiable problematic patterns. Furthermore, when the poisoned data is retrieved from
the internal data pools and used, it loses its external input identity and is automatically trusted due
to the inherent trust in the isolation provided by the underlying Android system.

Table 1. Existing defenses against app component attacks.

Defenses Target Code-Layer Exploitation Cross-Layer
Capability Leak Intent Proxy Code Injection Buffer Overflow Exploitation

APP Permissions Requester ✔ ✔ ✘ ✘ ✘
APP Identity Whitelist Requester ✔ ✔ ✘ ✘ ✘

Input Validation Input ✘ ✘ ✔ ✔ ✘

2.2 Security Implications
In this subsection, we analyze the security implications when poisonous data enters the victim
app’s data layer. Broadly speaking, cross-layer exploitation shares similarities with second-order

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

Component Security Ten Years Later: An Empirical Study of Cross-Layer Threats in Real-World Mobile Applications 4:5

web attacks [9, 42, 52, 53] and code reuse attacks [10, 49]. Therefore, we scrutinize two attack
vectors: data loading and consuming.

2.2.1 Data Loading-Based Attack. The memory hierarchy in computer architecture implies that the
size of local storage is typically greater than the size of memory. Thus, apps should be careful when
loading data from local storage to memory. Specifically, apps should avoid loading vast amounts of
data into memory simultaneously.
However, our analysis indicates that while loading local data to memory, apps usually do not

perform due diligence to verify the data size. The reason for such oversight is a belief by developers
that data loaded from the app’s internal storage is controlled by themselves and always falls within
expected data intervals. Thus, if an attacker injects sufficient data into the data pool of an app, an
Out-of-Memory (OOM) error or Application-Not-Responding (ANR) error will be triggered when
the app loads these injected data. (See more details in §4.2.)

2.2.2 Data Consuming-Based Attack. In general, apps can contain numerous strictly-protected
critical functionalities. Cross-layer exploitation allows attackers to indirectly abuse these sensitive
functionalities by tampering with their dependent data. Specifically, we find two ways to achieve
the goals: 1) function parameter manipulation and 2) execution switch.

For the first scenario of function parameter manipulation, the poisoned data may flow to a critical
API as its parameters. In such a case, an attacker can control the API’s execution by feeding it
malicious inputs. For example, a popular weather app (*.weather, 1,000,000+ downloads) reads URL
data from its database and renders the content inside the app through WebView. By manipulating
the URL parameter of WebView.loadURL(), the attacker can load arbitrary malicious content within
the victim app’s embedded web browser for phishing. Even worse, the attacker can further stealthily
obtain private user data, such as geographical location, by calling the corresponding JavaScript
interfaces customized and supported by the WebView component.
For the other attack scenario of execution switch, the poisoned data can be used as a function

controller, determining whether a critical API is enabled or disabled for execution. This is because
there exist control-flow dependencies between the poisoned data and critical functions. By tam-
pering with these data items, attackers can disable some key features of the app. For example, to
ensure the user experience of new users, an app (*.security, 10,000,000+ downloads) only starts
advertising to users after a certain time of app installation. This depends on a time interval saved in
a shared preference file. By exploiting the developer-configured time interval, the app’s ads-pushing
functionality can be disabled permanently, resulting in the app developer’s economic loss.

2.3 Threat Model
Similar with existing security work [1, 3, 16, 19, 22, 25, 34, 57, 60], we consider the adversary is a
mobile app attacker, whose goal is to attack benign apps on the victim’s device. One important
assumption in our threat model is that the attacker is unprivileged and does not require any
sensitive permissions. Regularly, all mobile apps are sandboxed and isolated from each other. An
app attacker is not allowed to directly touch the isolated data pools in other apps. Instead, it can
send crafted inter-process communication (IPC) messages to the ‘exported’ (i.e., callable by other
apps) components in the victim app. As shown in previous studies, the attacker can send local
messages through controlled apps [25] or remote messages via WebView or third-party ads [34].

2.4 Real-World Example
Action Launcher (*.playstore) is a high-profile launcher app with more than 10 million downloads
on Google Play and is ranked as one of the “Best Android launchers of 2022” [8]. This app helps
users manage home screen (desktop) and apps, e.g., opening the corresponding app when an app

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

4:6 Keke Lian, Lei Zhang, Guangliang Yang, Shuo Mao, Xinjie Wang, Yuan Zhang, and Min Yang

icon is clicked. We find this popular app suffers cross-layer exploitation, causing serious security
hazards. We verify that by exploiting these vulnerabilities, an attacker can perform persistent device
freezing (DoS) and UI spoofing attacks. We have reported these vulnerabilities to the developers,
which have been confirmed and assigned with two CVE IDs.

Figure 2 illustrates its simplified code implementation. There are three important components
(e.g., 𝐶𝑒 , 𝐶𝑠1, and 𝐶𝑠2) in the victim app, which are linked together by a persistent data layer. The
entry component𝐶𝑒 is designed for app-to-app communication. When receiving data in runtime, it
saves poisonous data into a database, through the data-accessing API insert() at Line 11. Then, the
sensitive component 𝐶𝑠1 blindly trusts all data saved in the database and reads the poisonous data
from the database through another data-accessing API query() at Line 20. It loads all poisonous data
in memory (binding to app widgets) for further use, i.e., calling the function bindBubbleViews(), and
starting another sensitive component 𝐶𝑠2. The attacker can exploit this victim app from two attack
vectors. To exploit the data-loading attack vector, the attacker can inject excessive poisonous data
into the database. We find that the victim app loads and stores all poisonous data in the memory
to prepare the desktop, thus causing overflow and crashes. Since the launcher app is the first
app to be started (similar to ‘desktop’), this attack persistently freezes the victim device. For the
data-consuming attack vector, the attacker can manipulate the intent string corresponding to a
certain app (e.g., Facebook) in the database through another access API update(). When the app
icon is clicked, the fake intent is consumed and the app-launching process is hijacked by starting a
fake activity (startActivity() at Line 33 in 𝐶𝑠2), resulting in UI spoofing.

01: public Uri insert(Uri uri, ContentValues values) {
02: // URI is controlled by the attacker
03: ...
04: // Parsing URI with UriMatcher
05: int type = uriMatcher.match(uri);
06: switch (type) {
07: case 1:
08: ...
09: // Accessing low-level database
10: SQLiteDatabase db = opener.
 getWritableDatabase();
11: db.insert(table,null,contentValues);
12: ...
13: }
14: ...
15: }

Database

Entry Component Ce Sensitive Component Cs1

Table 1 Table 2 Table 3 Table 4

Accessible

Table 5 Table 6

Accessible with critical data

Table 7

 Inject poisonous data

16: public void onCreate(Bundle bundle){
17: ...
18: // load all icon information from database
19: Uri uri = Uri.parse(“content://xxx/favorites”);
20: Cursor cursor = getContentResolver().
 query(uri, null, null, null, null);
21: ...
22: // save all icon info to UI widgets for future use
23: bindBubbleViews(cursor);
24: ...
25: }

 Load poisonous data into memory

26: public void onClick(View view){
27: ...
28: Object tag = view.getTag();
29: ...
30: Intent intent = tag.intent;
31: ...
32: // use polluted intent string
33: startActivity(intent)
34: }

Sensitive Component Cs2

 Consume poisonous data3

1

2

Fig. 2. Simplified code of a real-world case, which can be exploited for device freezing and UI Spoofing

3 CLDROID DESIGN
To assess the real-world security risks of cross-layer exploitation, we design an automated and
effective security-vetting approach for Android apps. The high-level idea is to track the injected
data items and figure out whether they are used in some security-critical scenarios. However, as
discussed in § 1, two major challenges should be carefully dealt with.
1) Fine-grained Data Pool Aware Analysis: In practice, various different types of data items
are often mixedly saved together in a data pool. As illustrated by the example shown in Figure 2,
there are seven tables in the local database. However, not all of them are exploitable for external
apps. Only two of them can be potentially touched by app attackers. Within these two insecure
tables, only seven columns out of 28 columns correspond to critical internal functionalities, e.g.,
determining which app to be launched. Furthermore, these data items are managed and accessed
through the same set of database APIs, e.g., insert() (Line 11) and query() (Line 20).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

Component Security Ten Years Later: An Empirical Study of Cross-Layer Threats in Real-World Mobile Applications 4:7

Determining
Security Hazards

Detecting Insecure
Data Consuming

Detecting Insecure
Data Loading

Cross-Layer
Threats

Discovering Shared
Data Pools

Understanding
Data Access Semantics

Extracting
Data Identifiers

Modeling
 Data Identifiers

Propagating Data Flow Through
Data Pools

Fig. 3. The overall architecture of CLDroid.

Data flow analysis is suitable in such an analysis scenario. However, existing techniques are
hardly applied or extended to handle the crucial data flow through data pools. For dynamic
techniques [17, 38, 54, 56], they suffered from coverage issues, which may cause false negatives,
i.e., missing some data access behaviors. For static data flow-based techniques, prior approaches
[3, 21, 32, 57] did not consider data pools. Treating them as ‘black boxes’ and directly applying
prior approaches on the entire data pool will cause high false positives.
2) Universal Security Hazard Vetting Approach: The security hazards caused by insecure app-
specific data items are hardly determined, which stems from the fact that there is no documentation
to tell us which data-use scenarios are security-critical. These data items are designed for customized
app-specific functionalities, whose purpose and sensitivity depend on the app’s business logic. It is
inherently challenging to automate the understanding of an app’s business logic, thus making it
difficult to assess the potential security risks posed by tampering with these data items. In addition,
these functionalities are typically internal and inaccessible to external apps, thus lacking indicators
such as permission checks. Worse still, unlike data with explicit purposes, e.g., user privacy data,
these app-specific data items lack sufficient semantic information to infer their sensitivity.
Our Solution: To address the above challenges, we propose a novel end-to-end vulnerability
detection approach, called CLDroid, against app cross-layer threats. Figure 3 illustrates the overall
architecture of CLDroid, which comprises three stages. Given a mobile app, CLDroid first identifies
the data pools that may be injected by external apps through exported components. Second, CLDroid
employs data identifier-based analysis to track the data flow of data items that traverse through the
target data pool. Third, CLDroid learns app-specific data use semantics and universally assesses
their security risks (from the perspectives of two attack vectors). Below we present more details
for each stage.

3.1 Discovering Shared Data Pools
In this step, CLDroid locates data pools that are potentially used in app-to-app data sharing and
can be injected by third-party apps, which are susceptible to cross-layer exploitation.
To gain insights into the utilization of data pools in real-world scenarios, we first conduct an

empirical study on the 300 most popular Android apps from Google Play. We observe that apps
usually create data pools and prepare initial data after their first startup but before users interact
with the core functionalities. Thus, we install and run each app on a Oneplus 9 (Android 12) with
Monkey [13] for two minutes. Then, we extract data pools from their private storage space (e.g.,
Context.getFilesDir()). As a result, we successfully obtained 16,348 unique files with 218 distinct
types of file name extensions. Table 2 shows more details of the data pool type distribution.
Then, according to the study results, we conclude related instructions (i.e., APIs) for accessing

data pools, e.g. opening data pool and reading/writing data items, based on the Android developer
documentation. These APIs are further used for detecting shared data pools for which attack
payloads can be injected. Here we focus on the official Android built-in APIs. As summarized by
Table 3, we totally collected 244 APIs, including 55 opening, 107 reading, and 82 writing APIs.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

4:8 Keke Lian, Lei Zhang, Guangliang Yang, Shuo Mao, Xinjie Wang, Yuan Zhang, and Min Yang

Table 2. The distribution of data pools extracted from 300 popular apps.

File Type # Unique File Examples

SharedPreference 2186 .xml
Picture 1742 .png, .webp
Database 1091 .db, .sqlite
JSON 836 .json

File Type # Unique File Examples

Layout & Format 441 .html, .css
Code 305 .js, .so, dex
Others 2993 .tmp, .crc, .pb
Total 16,348 –

Table 3. Summary of 244 data pool access APIs.

Data Pool # Open/Read/Write APIs Examples

Shared Preference 4/7/6 SharedPreferences.getString(), SharedPreferences$Editor.putString()
Database 12/14/12 SQLiteDatabase.query(), SQLiteDatabase.insert()
JSON 31/60/35 JSONObject.getString(), JSONObject.put()
Others 39/26/29 FileReader.read(), FileWriter.write()

Upon the above API list, CLDroid applies static program analysis on the target app to identify
the potentially injectable data pools. Specifically, CLDroid first parses the AndroidManifest file to
learn the app-to-app communication channels, i.e., exported components, which are responsible
for managing and processing the data injection process. Then, CLDroid models the life cycle of
found components and sets up entry points for our further analysis. After that, we apply control
flow and data flow analysis starting from the entry points. The control flow analysis is helpful to
check if there is a path from an entry point to the data pool access API. The data flow analysis
can provide information and tips for which data items may be shared. During analysis, CLDroid
checks its required access permissions. Only the components without permission protection or
just protected by normal-level and undefined permissions are picked by CLDroid. Finally, CLDroid
obtains the potentially shared data pools and the data flow information related to the internal data
items, which is further analyzed in the next stage.

3.2 Understanding Data Access Semantics
After discovering shared data pools, we aim to figure out the data flow paths traversing the data
pools. It is essential to 1) learn data access semantics, especially data pool reading and writing
behaviors, and 2) infer the internal organization of data pools and track each data item. Therefore,
wemodel data pool access and conduct a data item-level analysis. Specifically, CLDroid first searches
for all pieces of code containing data pool reading and writing operations, and precisely analyzes
what data items are being accessed by each code unit. Then, CLDroid can link the corresponding
data reading and writing code units that operate on the same data item. In this way, CLDroid
facilitates the propagation of data flows traversing the data pools.

3.2.1 Modeling Data Identifiers. We model the access operation of data pools based on how
related APIs are used in practice. When a data item is accessed through a unified access API (e.g.,
ContentResolver.insert()), the API needs to first learn the data pool to be accessed (e.g., database), and
then check the detailed position (e.g., table and column information) where the data item is saved
in the target data pool. The detailed position information where data is saved plays an important
role in data operations. Thus, we can use the position information, i.e., data identifier, to model
data item access. We define the data identifier as follows:

Data Pool Identifier (DPI) = <Type, URI | Name>
Data Item Identifier (DII) = <DPI, IP>

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

Component Security Ten Years Later: An Empirical Study of Cross-Layer Threats in Real-World Mobile Applications 4:9

Type = DataBase | Shared Preference | JSON | Regular File | ...
URI = String, Name = String

Internal position (IP) in data pool:
Type = DataBase => IP = <Table, Column>, Type = Shard Preference => IP = <Key, Value>
Type = JSON => IP = <Key, Value>, Type = Regular File => IP = <Raw Data>

Around the above definition, we model data pool operations. More details are presented below.
DataBase Identifier. The identifier of a database data item can be abstracted as [<URI, Name>,
<Table, Column>]. For database operations, e.g., ‘query’ and ‘insert’, their workflows are quite
similar. As Figure 2-❶ shows, when a database API ‘insert’ is called, it first parses the URI content
with a parser ‘UriMatcher’, a hashmap-like collection of resource information. Then, the resource
type is retrieved at Line 5 and dispatched to the essential corresponding operation (Line 11). In this
line, there is an important dependency chain: uri → type → opener → db.
To discover such a URI dependency relationship and the URI value space, CLDroid applies

data flow analysis to track the URI object. When reaching a parser, CLDroid computes the inside
of the parser to gather URI values. There are usually different cases for the parser. For the first
case, URI is parsed by a prepared ‘UriMatcher’ object via UriMatcher.match(Uri), and then the
operation request is dispatched based on the parsing results. CLDroid obtains the URI value by
backwardly tracking the UriMatcher initialization. The UriMatcher object stores various URIs with
corresponding types as key-value pairs, and its match() method returns the stored type of the
matched URI. The relationship between the URI (key) and type (value) is typically registered during
the initialization of UriMatcher object through UriMatcher.addURI(authority, path, code), which
constructs the URI by concatenating the authority and path. Thus, CLDroid obtains the URI string
by analyzing the authority and path parameters through string value analysis (detailed in § 3.2.2).
The second situation is that concrete values in the URI are directly parsed to determine the resource
to operate, e.g., the target table. Specially, the target app directly reads parameters from the URI
class, e.g., path segment, and uses it as the table name to be accessed. In this case, based on the
parsing process, CLDroid constructs the final URL string value by linking the obtained information
together, e.g., content://@authority/@tableName. Note that the authority information is resolved
from AndroidManifest and the possible table names can be retrieved later.

To obtain the database name, CLDroid continues data flow analysis and reaches the dispatched
code (Line 9-11), which calls the database operating instruction, e.g., db.insert(). CLDroid backwardly
tracks the essential initialization of the caller object db and searches the database opener, which
may be an instance of DBOpener, a child class of SQLiteOpenHelper. After that, CLDroid continues
backwardly pinpointing the constructor functions of DBOpener, where the name of the target
database may be defined. We also find some cases that directly initialize the database name as the
value of a field. Thus, CLDroid also checks the initialization of all fields.

Furthermore, for obtaining the table and column information, CLDroid can directly analyze data-
base reading and writing APIs. For instance, the first parameter of db.insert(table,null,ContentValues)
(Line 11) is the table name to be accessed, while the third parameter contains the columns to write.
Typically, the columns are determined by requesters. CLDroid needs to extract all potential values.
Specifically, CLDroid analyzes the table creation instructions and parses the SQL statements, which
are usually defined in the constructors of DBOpenner objects.
Besides, some apps do not directly provide SQL wrapper functions. Instead, all database access

requests are handled by directly calling the low-level function SQLiteDatabase.execSQL(String sql).
For these cases, CLDroid directly parses the SQL request string to understand the table and column
information through regular expressions.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

4:10 Keke Lian, Lei Zhang, Guangliang Yang, Shuo Mao, Xinjie Wang, Yuan Zhang, and Min Yang

SharedPreference Identifier. A shared preference file is used to save primitive data in key-value
pairs. For a data item (i.e., <key, value>), the key field provides enough information for its position.
The following code snippet shows a classic example to access the shared preference file:

// Opening file
SharedPreferences sp = Context.getSharedPreferences(filename,mode);
SharedPreferences$Editor editor = sp.edit();
// Reading data
String value = sp.getString(key);
// Writing data
editor.putString(key,value);

To obtain the file name, CLDroid locates the open functions of shared preference files, e.g.,
getSharedPreferences(filename,mode), and directly analyzes the file name parameter via string value
analysis. Besides, there exist some special interfaces without parameters, e.g., getDefaultShared-
Preferences(). The name of the opened file depends on the app context, i.e., the app package name.
CLDroid computes its value with the help of information from AndrodManifest.
To obtain the key value, CLDroid directly analyzes the related reading and writing APIs. For

instance, the first parameter of the reading APIs (e.g., SharedPreferences.getString()) and the writing
APIs (e.g., SharedPreferences$Editor.putString()) is the key value of the data item to be accessed.
JSON Identifier. JSON file is designed to store structured data based on the JavaScript object
syntax. Its internal structure is organized as (nested) key-value pairs.

To retrieve data from a JSON file, an app typically first opens the file and reads the content. Then,
the app deserializes the read content to a JSONObject through JSON parsing APIs, such as JSONOb-
ject.parse(). For nested JSONObjects, the app can utilize a chain of key values to access underlying
objects by recursively calling reading APIs, e.g., JSONObject.getJSONObject(). Last, the app accesses
specific values of the underlying JSONObject via a key name, e.g., JSONObject.getString(). Note that
in addition to system APIs, we collect several JSON libraries commonly used by Java programs,
including org.json, Fastjson, GSON, and Jackson.
To obtain the file name, CLDroid starts analysis from the JSONObject serialization or deseri-

alization APIs. Taking the deserialization API ‘JSONObject.parse(string)’ for example, CLDroid
backwardly tracks the string parameter to check its initialization, which is usually read from a file
object. Then, CLDroid further analyzes the file initialization and obtains the file path by analyzing
the parameter of file open instructions, e.g., new File(). For the key information, CLDroid forwardly
tracks the deserialized JSONObject and records the access path (i.e., key chain) for each level of
nested objects by analyzing the related reading APIs, e.g., JSONObject.getJSONObject(key), until the
access to some specific values, e.g., JSONObject.put(key,value).

Unstructured Data Identifier. In addition to the above data pools with structured organization,
there exist some data pools whose internal structures are hard to parse, e.g., text and media files.
Android framework provides dedicated access APIs for them. In this case, CLDroid treats their raw
data as a whole and connects their reading-and-write access based on the URI or filename.

3.2.2 Extracting Data Identifiers. As mentioned above, during the analysis of data identifiers, many
parameters of data access APIs are not constants and are generated dynamically, which involves
many string operations. It is hard to obtain them directly. To address this challenge, we apply a string
value analysis to support the extraction of data item identifiers. Specifically, starting from a variable
of our interest, e.g., SQLiteDatabase.rawQuery(query), we backwardly traverse the instructions in
the CFG. If there are any variables that contribute to the computation of the target variable (e.g.,
data flow dependency), we record the involved instructions and variables in a string computation
stack. We keep iterating in the same way until the definitions of all dependent variables are found.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

Component Security Ten Years Later: An Empirical Study of Cross-Layer Threats in Real-World Mobile Applications 4:11

Then, we compute the final string value of our interest with the string computation stack. We
execute the involved string operations in a forward simulation based on the string operation API
summaries. For example, if the involved instruction is a string append API, we perform the string
append operation. Note that the string-related APIs belong to system-defined classes, which are
typically not obfuscated. The computed string values may still need to be further parsed to extract
related data identifiers. For example, we parse the SQL query statement through regular expressions
to extract the table and column information. It is worth noting that if some variables are entirely
decided by the requester apps and cannot calculate exact values, we consider they can be any value.
Finally, we parse the concrete values collected from a total of 244 APIs (Table 3).

3.2.3 Propagating Data Flow Through Data Pools. After understanding what data item (i.e., data
identifier) is being tracked, CLDroid links the corresponding reading and writing code units together
so as to track the data flow through data pools. Given the specific identifier of a data item, CLDroid
first scans the code space to find the related reading and writing code units layer by layer. Take
shared preference for example. Its data item identifier can be [<File Name>, <key>]. First, CLDroid
locates all opening instructions for the specified data pool type. Then CLDroid extracts and compares
the data pool identifiers, e.g., file name. For instructions with the same file name, CLDroid further
tracks the file objects to find all their data reading instructions, e.g., SharedPreferences.getString(key).
Next, starting from the data reading APIs, CLDroid extracts the data item identifiers, i.e., key name,
through string value analysis. If the data item identifier is the same as the target data item, CLDroid
connects them and achieves the data item tracking through the data pool.

3.3 Determining Security Hazards
After understanding data propagation through data pools, we can check whether there is a vulner-
able data flow from external apps to critical internal functionalities. Following such a data flow,
an app attacker can launch cross-layer exploitation. However, it is still difficult to determine the
security hazards that may be caused. This is because the app internal functionalities are diverse
and app-specific. To mitigate this problem, we universally measure their security impacts from
the perspectives of two attack vectors we found, i.e., data loading and consuming, which can
compromise the target app’s availability and integrity respectively. Below we first present the
details of how to detect data loading and consuming-based vulnerabilities, and then we discuss
how to determine caused security consequences.

3.3.1 Detecting Insecure Data Loading. To detect insecure data loading, CLDroid analyzes whether
an external app can inject a large amount of data into the target data pool and if the injected data
will be loaded into memory. First, CLDroid checks the injection possibility by analyzing the data
flow from requesters to the writing APIs of the target data pool. Then, based on the semantics of
the writing APIs, CLDroid can determine whether the volume of data pools can be unexpectedly
increased (according to the tracked parameters). For example, if there is a data flow to the first
parameter of SharedPreferences$Editor.putString(key,value), it indicates that the attacker can inject
large amounts of data by inputting different key names, which results in the file size increase.
Last, CLDroid detects if the injected data can be loaded into memory. Specifically, we consider two
scenarios: (i) loading all data from a data pool into memory and (ii) continuously reading data into a
size-extensible variable (e.g., hashset). For the former case, some data pools, e.g., shared preference,
need to load all data into memory before reading any value inside the file. Any instruction to read
data from the data pool is considered a possible DoS risk. Thus, CLDroid checks the data identifiers
corresponding to data pool reading operations by verifying the data pool type. For the latter case,
some data pools, e.g., databases, use buffering to progressively load data, and memory overflow
only occurs if the data is continuously stored in memory without being released. Thus, CLDroid

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

4:12 Keke Lian, Lei Zhang, Guangliang Yang, Shuo Mao, Xinjie Wang, Yuan Zhang, and Min Yang

detects if there is a data flow from data pool reading APIs to the storing APIs of size-extensible
objects. Furthermore, CLDroid detects if the reading is continuously executed. For example, if the
data storing instructions are executed in a loop, while the loop termination condition is determined
by the data read from the data pool, an insecure data loading is reported.

3.3.2 Detecting Insecure Data Consuming. For data consuming-based vulnerability, CLDroid detects
if the poisoned data items can impact critical app functionalities. A question arises here: what
functionalities are security-critical? In practice, we find app functionalities are quite diverse and
many of them are specific to their corresponding apps. For example, the launcher app (shown in
§ 2.4) contains an important functionality of determining the app to be launched. We mitigate the
problem based on the observation that the essential implementation of an app functionality is still
delivered with Android system APIs or popular library APIs. For example, the launcher app uses
Intent to open and manage apps. But different from prior work, which mainly focused on privileged
system APIs, we consider a much boarder set of development APIs. These APIs may be insensitive
for security, but more important for app business logic and the integrity of app behaviors. Following
this, we build an extensive API list to help us understand data consuming-based attacks. For the
API extraction, more details are shown in § 3.3.3 and Table 4.

Specifically, CLDroid considers two ways for abusing and manipulating internal functionalities:
parameter manipulation and execution switch. For the former case, CLDroid conducts a data
flow analysis to track the use of data items and check if there exist flows between the (potentially
malicious) data item and parameters of the critical APIs. For execution switch, CLDroid first extracts
related condition instructions that have data dependencies with the polluted data items. Then, for
each condition instruction, CLDroid constructs sub-call graphs for its two branches and compares
their invocations to critical APIs. The data item is considered critical if one branch calls the critical
APIs while the other does not.

3.3.3 Understanding Security Hazards. To support the determination of security hazards, we
construct an extensive list of critical APIs. These APIs help CLDroid understand the characteristics
of data loading and consuming-based attacks. Although previous works [3, 32, 43] have provided
an extensive set of sinks, they do not cover the sensitive APIs of the recent Android versions. Thus,
we manually reconstruct a new list of sensitive APIs. Constructing such an API list involves much
painstaking manual work, but the effort is one-time and can be reused and extended with ease.
Specifically, we collect APIs from Android SDK and popular third-party libraries from AppBrain [2].
Finally, 1542 APIs are included (Table 4). These APIs are gathered from the perspectives of two
attack vectors. For data loading, two attack manners about reading data are considered (i.e., L1 and
L2): loading all data from data pools into memory and storing data into size-extensible variables.
For data consuming, we mainly consider the functionality-critical APIs. Specifically, on account of
the integrity of content shown to the user and communication with other entities, we summarize
the APIs of C1-C4. Besides, considering the security of app-specific capabilities and resources, we
collect APIs of C5-C6. Note that some APIs are commonly used in apps whose execution is not
sensitive, e.g., TextView.setText(). We only care about the content they operate. Hence, CLDroid only
checks if their parameters can be manipulated by attackers. While for other APIs whose execution
can determine some app key features, e.g., WindowManager.addView(), we further analyze if their
execution can be decided by injected data (execution switch).

4 EVALUATION AND SECURITY IMPACT
In this section, we apply CLDroid on a large set of popular apps to assess the security risks of
cross-layer exploitation in the real world and then break down their security hazards.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

Component Security Ten Years Later: An Empirical Study of Cross-Layer Threats in Real-World Mobile Applications 4:13

Table 4. The summarized critical APIs that may cause security hazards if the dependent data are exposed.

Phase Type Critical API Description # Num Example

Loading L1 Loading all data from data pools into memory. 47 SharedPreferences.getAll()
L2 Storing data into size-extensible variables. 100 HashSet.add()

Consuming

C1 Determining the content displayed on the screen. 101 ImageView.setImageURI()
C2 Determining sensor output to apps. 65 MediaPlayer.setDataSource()
C3 Communicating with local app components. 39 Context.startActivity()
C4 Communicating with servers and presenting content to users. 118 WebView.loadUrl()

C5 Privileged system APIs that are used to access protected system
functions and resources. 421 WindowManager.addView()

C6 System APIs that do not require permissions but are only al-
lowed to manipulate the caller app’s own resources. 651 NotificationManager.cancel()

Data Set.We build the dataset by collecting the top 500 apps from 33 categories on Google Play. As
a result, we successfully downloaded and gathered 14,349 unique apps as our experiment dataset.

Test Bed and Performance.We implement CLDroid in 12K-SLOCs of Java on the top of static
analysis framework ‘Soot’ [29]. CLDroid analyzes the apps on a Ubuntu 18.04 LTS 64-bit server
with 64 CPU cores (2.30GHz) and 212GB memory. The analysis is performed in parallel and has a
timeout of 5 minutes for each app. On average, the analysis needs 44.4 seconds for each app. Finally,
13,824 apps have been successfully analyzed in total. The remaining apps either exceed the time
limit or cannot be parsed by Soot.

4.1 Prevalence of Cross-Layer Threats
CLDroid successfully analyzes 13,824 apps and the detection results are shown in Table 5. Overall,
CLDroid finds 10,839 data pools are shared and involved in 2,074 app-to-app data sharing channels,
spanning over 1,714 (12.4% of 13,824) apps. In the discovered data pools, CLDroid successfully
recovers 223,878 data item identifiers. In security-oriented experiments, CLDroid identifies 70.9%
(1,215 of 1,714) apps are potentially vulnerable to cross-layer exploitation, with more than 18 billion
installs in total. To be specific, 925 apps suffer from data loading-based attacks involving 3,507 data
pools, and 947 apps are vulnerable to data consuming-based attacks involving 1,409 data items. We
randomly select 60 potentially vulnerable apps and manually verify their detection results.

Table 5. Overall results of cross-layer threats discovered by CLDroid

Data Pool Type Involved
APPs

Exported
Channels

Shared
Data Pools

Data
Items

Insecure Data Loading Insecure Data Consuming
Data Pools Unsafe APPs Data Items Unsafe APPs

Shared Preference 1075 1327 8874 205416 2576 261 813 400
Database 798 855 1684 18181 870 684 596 567
Others 193 201 281 281 61 17 0 0

Total 1714 2074 10839 223878 3507 925 1409 947

Identifying Data Sharing and Protection. For these 60 apps, CLDroid discovers 92 data sharing
channels that could be abused for injecting malicious data. 59 of them are successfully injected
by manual verification. There are several reasons for verification failures. First, 4 of them enforce
security checks on the caller app’s identity. For instance, the Samsung Internet Browser [48] checks
the caller app’s signature and only allows access from apps that are signed with the same certificate.
Second, 4 components have hard-to-satisfy path constraints, e.g., a condition check that depends
on the app run-time behaviors. Third, 16 are false positives introduced by the over-approximation
of static analysis. Last, 9 fail to be manually analyzed due to code obfuscation.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

4:14 Keke Lian, Lei Zhang, Guangliang Yang, Shuo Mao, Xinjie Wang, Yuan Zhang, and Min Yang

Identifying Data Items.With manual verification, we confirm that these 60 apps expose 9,569
data items in their data pools, and CLDroid successfully identifies 9,275 (96.9%) data identifiers for
them. The main reason for the failure is that many of the unresolved values need to be retrieved
from function calls which are hardly analyzed via static analysis, e.g., system functions.

Identifying Cross-Layer Threats. We conduct a security analysis of these 60 apps, 41 of which
are potentially vulnerable to insecure data loading and 38 to insecure data consuming. Specifically,
we construct data poisoning requests from an unprivileged app and manually trigger the vulnerable
data loading and consuming instructions in the victim app. Note that triggering their consequences
can be difficult due to the manual efforts required which often involve various UI events. CLDroid
facilitates this by precisely identifying vulnerable data loading and consuming operations in
respective components. As a result, we confirm at least 32 (53.3%) apps can be successfully exploited
and the overall results are shown in the Table 6. In detail, 28 of them are verified to suffer from data
loading-based attacks and 27 of them contain insecure data consuming, which can affect critical
functionalities inside the victim apps. There may exist cases (in the remaining 28 apps) that are
difficult to trigger but can be exploitable with more effort. Therefore, our estimate of exploitable
apps is only a lower bound. We responsibly disclosed the verified vulnerabilities to corresponding
developers, and so far 56 CVE IDs have been assigned. Since CLDroid is the first to detect app
cross-layer threats and there is no ground truth of all vulnerabilities, we lack a good way to predict
false negatives.

4.2 Breakdown of Security Hazards
After verifying the exploitable apps, we break down their security consequences. Table 7 presents
the overall results. Exploiting insecure data loading can lead to persistent app and functionality
DoS, and exploiting insecure data consuming can achieve content spoofing and privilege escalation,
which demonstrate the high severity of cross-layer exploitation. Below we present more details.

Persistent DoS Attacks. DoS is mainly caused by data loading-based attacks. If the size of a data
pool can be controlled by an unauthorized app, a malicious app can inject large amounts of crafted
data into it. This will cause the victim app to load excessive data into the memory, thus leading
to DoS attacks. Since the injected data are persisted on the device and will not disappear after
the app or device restart, the attack consequence (DoS) is persistent. Typically, executing such
attacks requires over 500 app calls, as Android imposes a maximum limit of 512MB for app process
memory, and the data transferred per inter-app call must not exceed 1MB. However, the impact on
user experience during an attack can be mitigated to imperceptible levels. This is attributed to the
persistent consequences of data injection from each call, enabling attacker apps to flexibly control
the attack frequency at a low rate, thereby avoiding noticeable disruptions to users’ regular usage.
• App DoS. When the injected data pool is essential for app initialization, it will be automatically
loaded during app startup and trigger OOM. Thus, the victim app cannot be successfully launched
anymore. A real case is our motivating example described in § 2.4.

• Functionality DoS.When the injected data is loaded only when the user visits a specific activity
or uses a specific app feature, a functionality DoS occurs. For instance, the highlight feature, e.g.,
sound effect customization, of Poweramp (50,000,000+ downloads) can be disabled by injecting a
large amount of data into its preset database.

Content Spoofing Attacks. Some vulnerable data determines the content presented to users.
Attackers can tamper with the content to spoof users and further launch more sophisticated attacks.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

Component Security Ten Years Later: An Empirical Study of Cross-Layer Threats in Real-World Mobile Applications 4:15

Table 6. Examples of exploitable apps detected by CLDroid. Specifically, DoS stands for denial of service
attacks in data loading. CS and PE represent content spoofing and privilege escalation attacks in data
consuming respectively. Symbol ● means it is vulnerable to our attack. CVE with symbol ✔ means the
vulnerabilities have been assigned with CVE IDs.

#ID Package Name Category Downloads Security Consequences CVE DescriptionDoS CS PE

01 *.launcher Personalization 100M+ ● ● ● ✔ Replace app font files with malicious files.
02 *.yandexnavi Travel&Local 100M+ ● ● ✔ Modify critical app settings, e.g., app notification.
03 *.simejikeyboard Personalization 100M+ ● ● ✔ Modify critical app settings, e.g., keyboard layout.
04 *.audioplayer Music&Audio 50M+ ● ● ● ✔ Manipulate sound effect and displayed UI content.
05 *.meetings Business 50M+ ● Inject excessive data into a shared preference file.
06 *.edjingdjturntable Music&Audio 50M+ ● ✔ Inject excessive data into the playlist database.

07 *.security Tools 10M+ ● ● ✔
Manipulate virus scan whitelist, block in-app ad-
vertising and modify wifi security setting.

08 *.superlock Tools 10M+ ● ● ✔ Change app lock password and protected app list.
09 *.xsuperclean Tools 10M+ ● ● ✔ Block in-app advertising.

10 *.mp3player Music&Audio 10M+ ● ✔
Disable the search functionality in this app by in-
jecting excessive data into search history database.

11 *.fasttyping Personalization 10M+ ● ✔ Arbitrary file overwrite and code execution.
12 *.who Social 10M+ ● ● ✔ Control the advertisements display settings.
13 *.solive Social 10M+ ● ● ✔ Manipulate the profiles of login users.

14 *.playstore Personalization 10M+ ● ● ● ✔
Manipulate app icons displayed on the phone screen
and hijack inter-app communications.

15 *.lux Health&Fitness 10M+ ● ● ✔
Change app settings and system’s display bright-
ness.

16 *.bluelightfilter Health&Fitness 10M+ ● ● ✔ Change app settings and the system’s display color.

17 *.liveFlightTracker Travel&Local 10M+ ● ● ✔
Manipulate the airport and airline information
shown to users.

18 *.themeforandroid Personalization 10M+ ● ✔ Arbitrary file overwrite and code execution.
19 *.sleep Lifestyle 10M+ ● ● ✔ Modify UI settings and the audio file played for.
20 *.textme Social 10M+ ● ✔ Modify the audio file played for ringtone.
21 *.keyboard Personalization 10M+ ● ● ✔ Modify the urls for downloading language packs.

22 *.clean Tools 1M+ ● ● ● ✔
Manipulate app update settings and hijack the up-
date to install malware.

23 *.blockCalls Communication 1M+ ● ● ✔
Manipulate the blacklist and whitelist of blocked
phone calls.

24 *.amdroid Productivity 1M+ ● ● ✔ Modify the settings of phone’s alarm clocks.

25 *.weather Weather 1M+ ● ● ● ✔
Manipulate the cached web content to launch con-
tent spoofing.

26 *.phone Video Players 1M+ ● Inject excessive data into a shared preference file
27 *.truck Transportation 1M+ ● ✔ Inject excessive data into local file
28 *.crossx Health&Fitness 500K+ ● ● ✔ Manipulate user profiles.
29 *.byrk Tools 500K+ ● ● ✔ Modify the advertisement display settings.
30 *.unicornwallpaper Art&Design 100K+ ● ● ✔ Modify the URLs to load images.
31 *.wallpaperoffline Art&Design 100K+ ● ● ✔ Modify the URLs to load images.
32 *.android News&Magazines 10K+ ● ✔ Modify the URLs to fetch news.

Table 7. Breakdown of security consequences of 32 apps.

Attack Vector Consequences #APPs Examples

Data Loading Persistent APP DoS 21 SoLive
Persistent Functionality DoS 7 Poweramp

Data Consuming Content Spoofing 11 TextMe
Privilege Escalation 21 BestWeather

• UI Spoofing. Due to the trust in used apps, the information presented on the UI is also trusted
by users by default, which can be abused by attackers to deceive users. For instance, the tips on
pop-up windows can be abused to trick users into downloading malicious apps (§ 5 Case#3).

• Voice Command Injection. Inspired by studies [45, 46, 61, 62] on voice assistants, manipulating
the played audio files can open the gate for attacks through speakers. Specifically, a carefully-
forged audio file can inject voice commands into the speech recognition systems adopted by IoT
devices and smart vehicles. For example, by exploiting the insecure data consuming in TextMe
(10,000,000+ downloads), the audio file played for ringtones can be replaced stealthily.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

4:16 Keke Lian, Lei Zhang, Guangliang Yang, Shuo Mao, Xinjie Wang, Yuan Zhang, and Min Yang

Privilege Escalation Attacks. Normally, the app’s code is isolated and protected from other
apps by the Android application sandbox. However, by controlling the exposed app-specific data,
attackers can bypass the sandbox protection and indirectly affect the relevant code execution.
• Functionality Manipulation. The app behaviors may rely on some local settings. By tampering
with these data, a third-party app can manipulate a victim app’s key functionalities. For example,
we find that a security app with 10,000,000+ downloads maintains a whitelist for virus scanning.
A malicious app can add its own package name to the whitelist and evade virus detection.

• Communication Hijacking. An attacker may totally control who the victim app communicates
with and also the communication content. The communication here includes not only local
inter-app communication but also communication with remote servers. For instance, we find
an attacker can control the server URL the victim app is going to access. Thus, the attacker can
launch a phishing attack and steal user privacy data by replacing it with a malicious website.

• Code Execution. The app-specific data can open the way for attackers to execute code in the
victim app’s context. For example, by tampering with the path of a zip file to extract, an attacker
can overwrite the dex files pre-saved in the app’s internal storage and inject malicious code
(detailed in § 5 Case#2).

5 REAL-WORLD CASE STUDIES
We now choose a subset of our results to demonstrate cross-layer exploitation in real-world
scenarios. Note that all attacks are initiated by unprivileged apps and have been verified by us.

Case#1: Bypassing App Lock Protection. Lock Master (*.superlock, 10,000,000+ downloads) is
a privileged security management app, which can help users enforce access lock on target apps.
Its background service monitors and enforces password security validation when an app in its
protection list comes to the foreground. Thus, it can protect sensitive apps, e.g., social or illness
tracker apps, from being accessed by snoopers.
The app lock feature is strictly protected to be exclusively controlled by users and cannot be

invoked by external apps. However, CLDroid discovers this functionality is vulnerable to cross-layer
exploitation, which can bypass its strict protection and even block the original user’s access to all
apps. In particular, we find its critical dependent data (protected-app list and access password) is
stored in a shared preference file with some trivial app data and is not properly protected. As a result,
a malicious app can indirectly gain access to the protected apps by manipulating its protected-app
list, and even block the original user’s access to all apps by tampering with the user-set access
password. This severely breaks the integrity and confidentiality of the app. CLDroid unveils this
vulnerability by analyzing that the saved protected-app list and password determine the execution
of privileged system APIs, i.e., WindowManager.addView() and removeView(), respectively. This
vulnerability is rated as high severity and confirmed as CVE-2023-29733.

Case#2: Arbitrary Code Execution. Fast Typing Keyboard (*.fasttyping, 10,000,000+ downloads)
is a customizable keyboard app. Mobile users can set it as the default keyboard of the phone. It
allows users to select and download theme packs from various sources, including network and
Google Play. However, we verify that through cross-layer exploitation, an adversary can stealthily
overwrite arbitrary files in this app’s isolated private storage by tampering with the path pointing
to downloaded theme files, resulting in arbitrary code execution.
Specifically, CLDroid discovers a vulnerable data flow through a shared preference data pool to

an arbitrary file write API. Our analysis shows this app stores the file paths (i.e., go_res_zip_path)
of downloaded theme packs in a data pool. Unfortunately, the go_res_zip_path is not well protected
and can be manipulated by unauthorized apps through a broadcast receiver. Even worse, this app

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

Component Security Ten Years Later: An Empirical Study of Cross-Layer Threats in Real-World Mobile Applications 4:17

enforces no security checks when decompressing the theme packs and a path traversal vulnerability
exists. Thus, an attacker can first let go_res_zip_path point to a crafted theme pack that contains a
malicious dex file. Next, impacted by this data item, this app decompresses the crafted file. The
malicious dex file is placed into this app’s internal storage (overwriting the original benign dex
file) and later executed. Note that, every time the app starts up, it automatically decompresses and
installs the theme pack if the file pointed by go_res_zip_path exists in storage. Thus, the whole
attack procedure is stealthy and does not require user interaction, which could be hardly noticed by
victim users. This vulnerability has been rated as critical severity and confirmed as CVE-2022-47027.

Case#3: APP Update Hijacking. Super Clean (*.clean, 1,000,000+ downloads) is a powerful phone
cleaner app for cleaning junk files and optimizing memory usage. In order to ensure that the app is
updated in a timely manner, it will check the current app version each time the app is started and
force users to update it once the app is outdated. However, through cross-layer exploitation, this
process can be hijacked by attackers to trick users into downloading malicious apps.
Specifically, when the app is launched, it loads and checks the local app version record. If it

needs to be updated, the app pops up a dialog with some update tips. The dialog guides users
with an update button jumping to the new app page in app markets (e.g., Google Play). CLDroid
discovers many critical data, e.g., app version, update tips, and link address of new app, are stored
mixed with some harmless app configuration data in a shared preference file and are erroneously
exposed in app-to-app data sharing. Thus, a third-party app could manipulate these data to form
an attack chain and induce users to install a malicious app. First, by lowering the app version, the
adversary can actively trigger the target app to pop up the update dialog. Then, the shown tips
could be crafted to deceive the user, such as ‘This app is no longer updated and maintained, please
download our new app!’. After the user clicks the update button, the jump destination is hijacked by
modifying the new app’s link address to update. Finally, malware could be installed on the victim’s
device. This vulnerability has been rated as high severity and confirmed as CVE-2023-27193.

6 MITIGATION, LIMITATION, AND DISCUSSION
Mitigation. To mitigate app cross-layer threats, we propose several mitigation strategies for app
developers based on our analysis of the two attack vectors.

To prevent data loading-based attacks, apps can restrict requester access frequency by recording
the source and timestamp of requests to increase the attack time cost. Furthermore, apps can set
quantity restrictions for each external app when storing external data in the internal data pools. In
case the limit is exceeded, the app can employ a FIFO strategy to clear out old data. In addition,
when loading data from the data pool, it is advisable to use a streamlined approach where data
is loaded and checked for size simultaneously or check the file size before loading it entirely into
memory to ensure current available memory is sufficient.

For data consuming-based attacks, it is hard to design a one-size-fits-all protective method due
to app-specific features. Standardized and fine-grained app data security management practices are
urgently needed. First of all, to avoid unintended data exposure, app data should be stored separately
considering their functional relevance and whether there is a need for sharing. Furthermore, for
the necessary data to be shared, it is essential to carry out fine-grained sensitivity classification
according to their app-specific purposes and organize them based on their sensitivity.
Furthermore, system vendors such as Google should explicitly notify developers about cross-

layer security risks and optimize the design of best security development practices in their official
documentation.
Limitation. The goal of this study is to explore the security impact of cross-layer threats in
mobile apps. We design and implement CLDroid to identify instances that are of potential security

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

4:18 Keke Lian, Lei Zhang, Guangliang Yang, Shuo Mao, Xinjie Wang, Yuan Zhang, and Min Yang

impact, bringing them to the surface for an analyst to further investigate and verify. Automatically
reasoning about exploitability is beyond the scope of this study and is an extremely challenging
task in practice, especially since the exploitation of such vulnerabilities can be tightly linked with
app-specific business logic.
First, the analysis we performed in § 3 is conservative as we only focus on the commonly used

intent-based data injection channels and app local storage data managed by Java APIs. Note that
some app data are stored and operated in the cloud. We do not consider them since the internals of
app backend services are black-box for us and it is hard to verify their attack consequences without
affecting other users in practice. Second, CLDroid is limited in modeling non-linear data access,
e.g., serialized data of objects, as their internal structures and access operations are nonstandard
and customized. CLDroid analyzes them as a whole. Third, we implemented a simplistic version of
string value analysis for Android apps drawing inspiration from prior work [63]. More advanced
and robust string value analysis techniques [20, 31] could be applied for future extensions. Besides,
the API-based critical data-consuming scenarios detection may overlook certain sensitive data
usage in some apps due to the use of specific third-party libraries. We argue that the API list
can be easily extended to accommodate specific customized app business logic. From a practical
perspective, we believe our analysis was at an adequate level given the findings and goals of this
study.
Discussion. While Android apps have been extensively studied, they continue to evolve and
develop, with new architectures or features being introduced to enhance functionality and user
experience. These new features may weaken or even break existing security principles, giving
rise to new security demands. Therefore, their security also needs continuous improvement to
keep the right balance between security and usability. Our study highlights the inadequacy of
existing defense mechanisms when it comes to modern app-specific data management. The security
mechanisms provided by the operating system are coarse-grained and inadequate to address the
app-specific internal characteristics. The protective measures implemented by developers are
discrete and lack uniform standards and best practices. Addressing this issue requires collaborative
efforts from both developers and operating system vendors, and further research is warranted.

7 RELATEDWORK
Insecure Communication Channels. Inter-app communication (IAC) is an essential feature in
mobile apps, which supports the reuse of functionalities and data sharing across apps. However, it
also constitutes a serious attack surface [26, 28, 30, 34, 35, 50, 51, 55, 58, 59]. Numerous studies [3, 11,
16, 21, 22, 25, 27, 32, 37, 47, 57] have investigated binder-based communication channels (i.e., intent)
and discovered various vulnerabilities. For example, CHEX [37] detected component hijacking
vulnerabilities by tracking taints between externally accessible interfaces and sensitive sources or
sinks. Typically, existing work investigated code-layer attacks, which involved detecting whether
sensitive or privileged functions can be directly invoked through public interfaces. Differently, we
study cross-layer exploitation in mobile apps which is performed by polluting the dependent data
of critical app functionalities. Since IAC is a common demand in apps, injecting data into data
pools is not a strong indicator of sensitive operation and could be hardly used in vulnerability
detection. In particular, ContentScope [27] studied the security of content providers and targeted
verifying whether a content provider was exposed to other apps. However, we study which and
how data items in the exposed data pools can be exploited to abuse or manipulate the apps’
internal functionalities. With app cross-layer exploitation, even internal functionalities that cannot
be touched by external apps may be exploited by attackers. In this paper, we conduct the first
systematic study to understand their security impacts in the real world.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

Component Security Ten Years Later: An Empirical Study of Cross-Layer Threats in Real-World Mobile Applications 4:19

APPData Security.Apps commonly maintain much sensitive and private user data, whose security
has been studied by many researchers with both static [3, 6, 21, 24, 32, 33, 39–41, 57] and dynamic
approaches [17, 38, 54, 56]. For example, IccTA [32] and DroidSafe [21] resolved the Intent and
RPC calls to construct a precise inter-component model and detect privacy leaks via static taint
analysis. TaintDroid [17] labeled data from privacy-sensitive sources and tracked the data flow
in real-time. As a comparison, prior work aimed to detect privacy data leakage, while our work
focuses on poisonous data injection. Furthermore, these tools mainly traced data flows that traveled
along code execution and did not support fine-grained data flow tracking through data pools. In
this paper, we propose CLDroid, which could understand the data pool access semantics and track
data items through various data pools. Besides, privacy data can have obvious characteristics due
to its strong correlation with the user and device, while our work focuses on app-specific data,
which are tied to the diverse and customizable app functionalities, making them hard to pre-define.

8 CONCLUSION
In this paper, we revisit app component security in the context of modern app architecture and
discover existing defenses have not caught up with the fast app development, leading to the
feasibility of cross-layer exploitation. Then we design a novel vulnerability analysis tool, called
CLDroid, to assess its security risks in real-world apps. Our experiments reveal that 1,215 apps
(8.8%) are impacted, with more than 18 billion installs in total. Various serious security consequences
have been verified, such as code execution, communication hijacking, phishing, and persistent DoS.
Our findings highlight that new development practices should be designed carefully to keep the
existing security mechanisms effective.

9 DATA AVAILABILITY
We have open-sourced CLDroid, which can be accessed on Github at our public repository https:
//github.com/LianKee/CLDroid.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their insightful comments that helped
improve the quality of the paper. This work was supported in part by the National Key Research
and Development Program (2021YFB3101200), National Natural Science Foundation of China
(62172104, 62172105, 61972099, 62102093, 62102091, 62202106). Yuan Zhang was supported in part
by the Shanghai Rising-Star Program under Grant 21QA1400700 and the Shanghai Pilot Program
for Basic Research - Fudan University 21TQ1400100 (21TQ012). Min Yang is the corresponding
author, and a faculty of Shanghai Institute of Intelligent Electronics Systems and Engineering
Research Center of Cyber Security Auditing and Monitoring.

REFERENCES
[1] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng Wang, Xiaoyong Zhou, Wenliang Du,

and Michael Grace. 2015. Hare hunting in the wild android: A study on the threat of hanging attribute references. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. 1248–1259.

[2] AppBrain. 2023. Android library statistics. Retrieved April 5, 2023 from https://www.appbrain.com/stats/libraries
[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. 2014. Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[4] Michael Backes, Sven Bugiel, Sebastian Gerling, and Philipp von Styp-Rekowsky. 2014. Android security framework:
Enabling generic and extensible access control on android. arXiv preprint arXiv:1404.1395 (2014).

[5] Michael Backes, Sebastian Gerling, Christian Hammer, MatteoMaffei, and Philipp von Styp-Rekowsky. 2013. AppGuard-
Enforcing User Requirements on Android Apps.. In TACAS, Vol. 13. Springer, 543–548.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

https://github.com/LianKee/CLDroid
https://github.com/LianKee/CLDroid
https://www.appbrain.com/stats/libraries

4:20 Keke Lian, Lei Zhang, Guangliang Yang, Shuo Mao, Xinjie Wang, Yuan Zhang, and Min Yang

[6] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Giovanni Vigna, and Yan Chen.
2015. EdgeMiner: Automatically Detecting Implicit Control Flow Transitions through the Android Framework.. In
Network and Distributed Systems Security (NDSS) Symposium.

[7] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011. Analyzing inter-application commu-
nication in Android. In Proceedings of the 9th international conference on Mobile systems, applications, and services.
239–252.

[8] John Corpuz and Jordan Palmer. 2023. Best Android launchers 2022. Retrieved April 5, 2023 from https://www.
tomsguide.com/round-up/best-android-launchers

[9] Johannes Dahse and Thorsten Holz. 2014. Static detection of second-order vulnerabilities in web applications. In 23rd
{USENIX} Security Symposium ({USENIX} Security 14). 989–1003.

[10] Johannes Dahse, Nikolai Krein, and Thorsten Holz. 2014. Code reuse attacks in php: Automated pop chain generation.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. 42–53.

[11] Biniam Fisseha Demissie, Davide Ghio, Mariano Ceccato, and Andrea Avancini. 2016. Identifying android inter app
communication vulnerabilities using static and dynamic analysis. In Proceedings of the International Conference on
Mobile Software Engineering and Systems. 255–266.

[12] Android Developers. 2022. Runtime Permissions. Retrieved April 5, 2023 from https://source.android.com/docs/core/
permissions/runtime_perms

[13] Android Developers. 2023. Google MonkeyRunner. Retrieved April 5, 2023 from https://developer.android.com/studio/
test/monkeyrunner

[14] Android Developers. 2023. Guide to App Architecture. Retrieved April 5, 2023 from https://developer.android.com/
topic/architecture

[15] Android Developers. 2023. Security tips on content providers. Retrieved April 5, 2023 from https://developer.android.
com/training/articles/security-tips#ContentProviders

[16] Mohamed Elsabagh, Ryan Johnson, Angelos Stavrou, Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. 2020.
{FIRMSCOPE}: Automatic Uncovering of {Privilege-Escalation} Vulnerabilities in {Pre-Installed} Apps in Android
Firmware. In 29th USENIX Security Symposium (USENIX Security 20). 2379–2396.

[17] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N Sheth. 2014. Taintdroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014), 1–29.

[18] Adrienne Porter Felt, Helen JWang, Alexander Moshchuk, Steve Hanna, and Erika Chin. 2011. Permission re-delegation:
Attacks and defenses.. In USENIX security symposium, Vol. 30. 88.

[19] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan Tapiador, and Narseo Vallina-Rodriguez. 2020. An
analysis of pre-installed android software. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1039–1055.

[20] Indradeep Ghosh, Nastaran Shafiei, Guodong Li, and Wei-Fan Chiang. 2013. JST: An automatic test generation tool for
industrial Java applications with strings. In 2013 35th International Conference on Software Engineering (ICSE). IEEE,
992–1001.

[21] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen, and Martin C Rinard. 2015.
Information flow analysis of android applications in droidsafe.. In Network and Distributed Systems Security (NDSS)
Symposium, Vol. 15. 110.

[22] Michael C Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. 2012. Systematic detection of capability leaks in stock
android smartphones.. In Network and Distributed Systems Security (NDSS) Symposium, Vol. 14. 19.

[23] Roee Hay, Omer Tripp, and Marco Pistoia. 2015. Dynamic detection of inter-application communication vulnerabilities
in Android. In Proceedings of the 2015 International Symposium on Software Testing and Analysis. 118–128.

[24] Jianjun Huang, Xiangyu Zhang, and Lin Tan. 2016. Detecting sensitive data disclosure via bi-directional text correlation
analysis. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering.
169–180.

[25] Yuede Ji, Mohamed Elsabagh, Ryan Johnson, and Angelos Stavrou. 2021. {DEFInit}: An Analysis of Exposed Android
Init Routines. In 30th USENIX Security Symposium (USENIX Security 21). 3685–3702.

[26] Yunhan Jack Jia, Qi Alfred Chen, Yikai Lin, Chao Kong, and Z Morley Mao. 2017. Open doors for bob and mallory:
Open port usage in android apps and security implications. In 2017 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 190–203.

[27] Yajin Zhou Xuxian Jiang. 2013. Detecting passive content leaks and pollution in android applications. In Proceedings of
the 20th Network and Distributed System Security Symposium (NDSS).

[28] Xing Jin, Xunchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and Gautam Nagesh Peri. 2014. Code injection attacks
on html5-based mobile apps: Characterization, detection and mitigation. In Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security. 66–77.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

https://www.tomsguide.com/round-up/best-android-launchers
https://www.tomsguide.com/round-up/best-android-launchers
https://source.android.com/docs/core/permissions/runtime_perms
https://source.android.com/docs/core/permissions/runtime_perms
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/topic/architecture
https://developer.android.com/topic/architecture
https://developer.android.com/training/articles/security-tips#ContentProviders
https://developer.android.com/training/articles/security-tips#ContentProviders

Component Security Ten Years Later: An Empirical Study of Cross-Layer Threats in Real-World Mobile Applications 4:21

[29] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot framework for Java program analysis: a
retrospective. In Cetus Users and Compiler Infastructure Workshop (CETUS 2011), Vol. 15.

[30] Phi Tuong Lau. 2019. Static detection of event-driven races in HTML5-based mobile apps. In International Conference
on Verification and Evaluation of Computer and Communication Systems. Springer, 32–46.

[31] Ding Li, Yingjun Lyu, Mian Wan, and William GJ Halfond. 2015. String analysis for Java and Android applications. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. 661–672.

[32] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric
Bodden, Damien Octeau, and Patrick McDaniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. IEEE, 280–291.

[33] Shuai Li, Zhemin Yang, Nan Hua, Peng Liu, Xiaohan Zhang, Guangliang Yang, and Min Yang. 2022. Collect Responsibly
But Deliver Arbitrarily? A Study on Cross-User Privacy Leakage in Mobile Apps. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. 1887–1900.

[34] Tongxin Li, Xueqiang Wang, Mingming Zha, Kai Chen, XiaoFeng Wang, Luyi Xing, Xiaolong Bai, Nan Zhang, and
Xinhui Han. 2017. Unleashing the walking dead: Understanding cross-app remote infections on mobile webviews. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 829–844.

[35] Chia-Chi Lin, Hongyang Li, Xiao-yong Zhou, and XiaoFeng Wang. 2014. Screenmilker: How to Milk Your Android
Screen for Secrets.. In Network and Distributed Systems Security (NDSS) Symposium.

[36] Fang Liu, Chun Wang, Andres Pico, Danfeng Yao, and Gang Wang. 2017. Measuring the insecurity of mobile deep
links of android. In 26th USENIX Security Symposium (USENIX Security 17). 953–969.

[37] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. Chex: statically vetting android apps for
component hijacking vulnerabilities. In Proceedings of the 2012 ACM conference on Computer and communications
security. 229–240.

[38] Björn Mathis, Vitalii Avdiienko, Ezekiel O Soremekun, Marcel Böhme, and Andreas Zeller. 2017. Detecting information
flow by mutating input data. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 263–273.

[39] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and XiaoFeng Wang. 2015. {UIPicker}:{User-Input}
Privacy Identification in Mobile Applications. In 24th USENIX Security Symposium (USENIX Security 15). 993–1008.

[40] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan Zhang, Donglai Zhu, and Min Yang. 2018. Finding Clues for Your
Secrets: Semantics-Driven, Learning-Based Privacy Discovery in Mobile Apps.. In NDSS.

[41] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick McDaniel. 2015. Composite constant prop-
agation: Application to android inter-component communication analysis. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. IEEE, 77–88.

[42] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Detecting and exploiting second order denial-of-service vulnerabilities
in web applications. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
616–628.

[43] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A machine-learning approach for classifying and categorizing
android sources and sinks.. In NDSS, Vol. 14. 1125.

[44] Matthew Rossi, Dario Facchinetti, Enrico Bacis, Marco Rosa, Stefano Paraboschi, et al. 2021. SEApp: BringingMandatory
Access Control to Android Apps.. In USENIX Security Symposium. 3613–3630.

[45] Nirupam Roy, Haitham Hassanieh, and Romit Roy Choudhury. 2017. Backdoor: Making microphones hear inaudible
sounds. In Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services. 2–14.

[46] Nirupam Roy, Sheng Shen, Haitham Hassanieh, and Romit Roy Choudhury. 2018. Inaudible Voice Commands: The
{Long-Range} Attack and Defense. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). 547–560.

[47] Alireza Sadeghi, Hamid Bagheri, and Sam Malek. 2015. Analysis of android inter-app security vulnerabilities using
covert. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2. IEEE, 725–728.

[48] Samsung. 2022. Samsung Internet Browser. Retrieved November 5, 2022 from https://play.google.com/store/apps/
details?id=com.sec.android.app.sbrowser

[49] Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu. 2023. Silent spring: Prototype pollution leads to
remote code execution in Node. js. In USENIX Security Symposium 2023.

[50] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. 2016. What Mobile Ads Know About Mobile Users.. In Network and
Distributed Systems Security (NDSS) Symposium.

[51] Wei Song, Qingqing Huang, and Jeff Huang. 2018. Understanding javascript vulnerabilities in large real-world Android
applications. IEEE Transactions on Dependable and Secure Computing 17, 5 (2018), 1063–1078.

[52] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t Trust The Locals: Investigating the
Prevalence of Persistent Client-Side Cross-Site Scripting in the Wild. (2019).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

https://play.google.com/store/apps/details?id=com.sec.android.app.sbrowser
https://play.google.com/store/apps/details?id=com.sec.android.app.sbrowser

4:22 Keke Lian, Lei Zhang, Guangliang Yang, Shuo Mao, Xinjie Wang, Yuan Zhang, and Min Yang

[53] He Su, Feng Li, Lili Xu, Wenbo Hu, Yujie Sun, Qing Sun, Huina Chao, and Wei Huo. 2023. Splendor: Static Detection of
Stored XSS in Modern Web Applications. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis. 1043–1054.

[54] Mingshen Sun, Tao Wei, and John CS Lui. 2016. Taintart: A practical multi-level information-flow tracking system
for android runtime. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
331–342.

[55] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. 2013. Unauthorized origin crossing on mobile platforms:
Threats and mitigation. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security.
635–646.

[56] Xiaolei Wang, Andrea Continella, Yuexiang Yang, Yongzhong He, and Sencun Zhu. 2019. Leakdoctor: Toward
automatically diagnosing privacy leaks in mobile applications. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 3, 1 (2019), 1–25.

[57] Fengguo Wei, Sankardas Roy, and Xinming Ou. 2018. Amandroid: A precise and general inter-component data flow
analysis framework for security vetting of android apps. ACM Transactions on Privacy and Security (TOPS) 21, 3 (2018),
1–32.

[58] Daoyuan Wu and Rocky KC Chang. 2015. Indirect file leaks in mobile applications. Proc. IEEE Mobile Security
Technologies (MoST) (2015).

[59] Daoyuan Wu, Debin Gao, Rocky KC Chang, En He, Eric KT Cheng, and Robert H Deng. 2019. Understanding open
ports in Android applications: Discovery, diagnosis, and security assessment. (2019).

[60] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. 2013. The impact of vendor customizations on
android security. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security. 623–634.

[61] Qiben Yan, Kehai Liu, Qin Zhou, Hanqing Guo, and Ning Zhang. 2020. Surfingattack: Interactive hidden attack on
voice assistants using ultrasonic guided waves. In Network and Distributed Systems Security (NDSS) Symposium.

[62] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and Wenyuan Xu. 2017. Dolphinattack:
Inaudible voice commands. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security.
103–117.

[63] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. 2019. Why does your data leak? uncovering the data leakage in
cloud from mobile apps. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1296–1310.

Received 2023-09-21; accepted 2024-01-23

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 4. Publication date: July 2024.

	Abstract
	1 Introduction
	2 Understanding APP Cross-Layer Exploitation
	2.1 Root Cause Analysis
	2.2 Security Implications
	2.3 Threat Model
	2.4 Real-World Example

	3 CLDroid Design
	3.1 Discovering Shared Data Pools
	3.2 Understanding Data Access Semantics
	3.3 Determining Security Hazards

	4 Evaluation and Security Impact
	4.1 Prevalence of Cross-Layer Threats
	4.2 Breakdown of Security Hazards

	5 Real-World Case Studies
	6 Mitigation, Limitation, and Discussion
	7 Related Work
	8 Conclusion
	9 Data Availability
	Acknowledgments
	References

