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Project building is pivotal to support various program analysis tasks, such as generating intermediate rep-
resentation code for static analysis and preparing binary code for vulnerability reproduction. However,
automating the building process for C/C++ projects is a highly complex endeavor, involving tremendous
technical challenges, such as intricate dependency management, diverse build systems, varied toolchains, and
multifaceted error handling mechanisms. Consequently, building C/C++ projects often proves to be difficult
in practice, hindering the progress of downstream applications. Unfortunately, research on facilitating the
building of C/C++ projects remains to be inadequate. The emergence of Large Language Models (LLMs) offers
promising solutions to automated software building. Trained on extensive corpora, LLMs can help unify
diverse build systems through their comprehension capabilities and address complex errors by leveraging
tacit knowledge storage. Moreover, LLM-based agents can be systematically designed to dynamically interact
with the environment, effectively managing dynamic building issues. Motivated by these opportunities, we
first conduct an empirical study to systematically analyze the current challenges in the C/C++ project building
process. Particularly, we observe that most popular C/C++ projects encounter an average of five errors when
relying solely on the default build systems. Based on our study, we develop an automated build system
called CXXCrafter to specifically address the above-mentioned challenges, such as dependency resolution.
Our evaluation on open-source software demonstrates that CXXCrafter achieves a success rate of 78% in
project building. Specifically, among the Top100 dataset, 72 projects are built successfully by both CXXCrafter
and manual efforts, 3 by CXXCrafter only, and 14 manually only. Despite the slightly lower performance,
CXXCrafter can save tremendous manual efforts and can also be easily applied to a wider range of applications
automatically.
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1 Introduction
Open Source Software (OSS) is extensively used across various sectors and plays a critical role in
powering modern technological systems, from critical infrastructure to innovative applications.
Many foundational software systems, such as operating systems and database management systems,
are written in C/C++ [35]. Vulnerabilities in these systems can cause significant damage [47](e.g.,
the Heartbleed bug in OpenSSL [6]), making automated vulnerability detection for C/C++ OSS
essential. Additionally, automated analysis of C/C++ OSS is crucial for areas like vulnerability
management, quality assurance, and performance optimization.

Building C/C++ software [53] involves compiling, resolving dependencies, linking libraries,
configuring environments, and managing platform-specific challenges. These processes are critical
for performing automated program analysis, especially for dynamic analysis. Such tasks require
the project to be built into a binary beforehand. However, a significant gap remains in the realm
of automated analysis of C/C++ OSS [15]: the absence of a standardized, automated method for
building repositories from C/C++ source code. Bridging this gap is essential for enhancing the
efficiency and effectiveness of program analyses.The significance of automatically building software
from source code for automated analysis can be summarized from two key aspects: (1) Facilitation
of Static Program Analysis: Many static analysis tasks rely on intermediate representations (IR),
such as LLVM IR [29]. This typically requires that the project successfully installs dependencies and
can be compiled. (2) Enablement of Dynamic Program Analysis: Dynamic program analysis
like fuzzing, also requires that the program be compilable from source code, particularly when
source-level instrumentation is needed. Automatically built projects can also assist with several
downstream tasks, such as automated vulnerability reproduction tasks.

Existing research efforts [16, 18, 20, 36, 59, 60] mainly focus on Java/Python, while C/C++ remains
underexplored due to its higher complexity. Unlike the relatively unified and automated build and
package management tools in Java (e.g., Maven [2], Gradle [13]) and JavaScript (e.g., NPM [38]),
or Python’s convenient pip [48], the C/C++ ecosystem contains over 20 distinct build systems [7],
with lower levels of standardization and automation, posing significant challenges.

To better understand the automation of C/C++ project builds, we investigate the build systems
of 100 popular open-source C/C++ projects across 10 different categories, using their default build
commands and settings. The study shows that more than 70% of these projects fail to be built
successfully without manual intervention, suggesting that most C/C++ projects require additional
configuration, such as downloading dependencies or setting compilation parameters. To further
investigate the root causes of these failures, we manually fix the errors encountered during the
build process guided by the failure messages iteratively until successful completion. In total, we
encounter 384 errors across 79 projects, and spend over 153 man-hours to resolve them. This
underscores the significant challenges in automating the C/C++ build process.
Challenges. Drawing from the root causes and insights gathered in our study, we summarize

the following challenges associated with C/C++ build automation:

• Challenge 1: Complexity of Dependency Management. C/C++ projects often rely on
substantial external libraries and tools, which require careful management and configuration
of dependencies. Although package management tools like Conan [23] and vcpkg [33] are
available, they support different sets of libraries and have distinct usage patterns, which
makes dependency management a complex task.

• Challenge 2: Diversity of Build Systems and Compilation Options. C/C++ projects
adopt at least 20 different build systems (such as Makefile [10], CMake [22], Autotools [11],
and SCons [52]), each with unique syntax and configuration requirements. Additionally,
these projects employ a wide array of compilers (such as GCC [9] and Clang [39]) and
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toolchains, each with its own options and configuration methods. Such diverse build systems
and toolchains would trigger substantial errors when building large-scale real projects.

• Challenge 3: Complexity of Error Diagnosis andDebugging.Thediverse build process in
C/C++ projects often generate many error messages at multiple levels, such as pre-processing,
compilation, and linking, which often vary greatly across different projects.

Our System. Large Language Models (LLMs) are renowned for their strong capabilities in
understanding complex documentations [19, 62], generating structured instructions [24, 50], and
resolving errors [14, 49]. Inspired by such abilities, we investigate whether LLMs can extend their
effectiveness to the domain of build systems and error resolution. In particular, we apply LLMs
(i.e., GPT4o) to solve specific build issues identified in our empirical study and observe that it
can successfully address several of them (as demonstrated in the experiment in Section 5.1). For
instance, during GCC builds, the LLM can automatically install dependencies like GMP,MPFR,MPC,
and Flex, and prompts 64-bit compilation, thus avoiding errors from the default build instructions
and simplifying dependency management. Such results demonstrate LLM’s potential capability
in this domain. At the same time, it also indicates that for complex project builds, which involve
multi-step processes, the effectiveness of standalone LLMs is limited. Relying solely on LLMs can
only address a small fraction of errors, highlighting the need for more refined strategies capable of
continuously addressing build failures.

To address the above challenges, we propose an LLM-based agent system named CXXCrafter
that leverages LLMs to dynamically manage complex build processes. The system consists of three
modules: the Parser Module, the Generator Module, and the Executor Module. Specifically,
the Parser Module automatically extracts and parses relevant information from the repositories,
such as dependencies and build system configurations. The Generator Module utilizes LLMs
to generate candidate build solutions (i.e., Dockerfiles, which include shell scripts for the entire
software build process) based on the parsed information. Additionally, the Generator is responsible
for modifying the candidate build solutions in response to error feedback from the Executor. The
Executor Module oversees the build process in the Docker container where the build is performed,
capturing error messages and determining whether the build is successful. The Generator and
Executor form a dynamic interaction loop, continuously addressing build issues until the process
completes successfully. Our design effectively addresses the three challenges as mentioned above.
In particular, the Parser can identify the required dependencies to avoid potential dependency
errors. Besides, CXXCrafter also employs an automated, iterative feedback process powered by
LLMs to dynamically identify and install dependencies, thus effectively addressing issues such
as uncertain dependencies or version conflicts (Challenge 1). Furthermore, CXXCrafter leverages
LLMs’ rich domain knowledge via nested prompt templates to unify different build systems and
compilation options (Challenge 2). For the Challenge 3, CXXCrafter captures real-time feedback
during the build process, enabling efficient error diagnosis and debugging by adapting to both
known and new errors arising during the build.

We evaluate CXXCrafter on both the aforementioned 100 popular C/C++ projects and the larger
Awesome-CPP dataset [7], which includes 652 projects across various categories. Specifically,
CXXCrafter successfully builds 587 out of the 752 projects, achieving a success rate of 78%. This
significantly outperforms other heuristic approaches (39.01%) and bare LLM (34.22%). Though its
overall performance does not surpass the build success rate achieved by humans, CXXCrafter
resolves three projects that cannot be successfully built through human efforts. Our analysis for
these three projects shows that CXXCrafter leverages the implicit build knowledge embedded in the
LLM and the powerful retrieval capabilities of its parser module, offering unique advantages even
compared to human efforts in project builds. Additionally, a component analysis demonstrates its
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effectiveness in designing agents capable of handling complex tasks. Finally, we assess the efficiency
and cost, and the results show that it takes 875 seconds together with a financial cost of $0.41 per
successful build. These evaluation experiments underscore the practical value of CXXCrafter.

Contributions. This paper makes the following main contributions:

• Originality: To our best knowledge, we are the first to explore the idea of utilizing LLM
agent to automate C/C++ build process, and our study demonstrates promising results.

• Empirical Study: We conduct an empirical study on the build processes of 100 popular
open-source C/C++ projects to understand the current state of build tools. By identifying
and categorizing 384 build errors, we provide a comprehensive analysis of the challenges to
automate C/C++ builds, offering key findings to the root causes of such failures.

• Approach: We propose CXXCrafter, an LLM-based agent system designed to automate
the build process for large-scale C/C++ repositories. In particular, CXXCrafter dynamically
manages dependencies, resolves build issues, and diagnoses errors, effectively addressing the
challenges such as handling various build systems and installing dependencies.

• Evaluation: Through extensive evaluations on 752 projects, CXXCrafter achieves an im-
pressive build success rate of 78%, demonstrating its pioneering effectiveness in C/C++ build
automation. Our research has the potential to support downstream program analysis efforts.

2 Background & Related Work
Software Building. Software building [53] converts code into executables or libraries, involving
tasks like dependency resolution, compilation, and linking. For large projects, automated build
systems become essential, as manual handling becomes impractical. These systems streamline the
process, managing tasks efficiently. Different programming languages have specific build systems:
Java uses Apache Ant [1], Maven [2], and Gradle, while JavaScript relies on NPM [38], and Python
uses setuptools [40]. In C/C++ projects, tools like CMake, Make, Ninja, and Bazel are frequently
used. Additionally, building differs from compiling, which is just one part of the broader building
process, and Continuous Integration (CI), where building is a prerequisite for integration.

Several studies focus on automating software builds, mostly for languages like Java, with fewer
addressing C/C++ projects. Hassan et al. [16] investigate Java build failures, revealing that 86 out of
200 projects fail to build automatically using default commands. Other studies have explored build
[18, 36, 59, 60] and CI failures [58]. For example, Lou et al. [30] analyzed 1,080 build issues from
Stack Overflow related to Maven, Ant, and Gradle, finding that 67.96% of the issues were resolved
by modifying build scripts for plugins and dependencies. Similarly, Olivier et al. [37] analyzed over
1.2 million build logs from Google’s OSS-Fuzz service to identify common failure patterns. In the
context of C/C++, we only found CPPBuild [15] for automating the build process. But it is limited
to CMake, Make, and Autotools, resulting in lower accuracy for open-source projects with other
build systems. Furthermore, while some works focus on containerization techniques and Dockerfile
generation [17, 32, 43], they typically do not address building software from source.
LLMs and Agents. LLMs have shown outstanding performance across multiple dimensions,

including semantic understanding [46], code generation [21], and implicit knowledge storage [57].
However, they still face several limitations [28, 42], such as solving complex tasks, maintaining
context over long interactions, executing actions in real-world environments, and engaging in
dynamic, multi-turn dialogues. LLM-based agents, designed to address these challenges, integrate
more advanced functionalities. They are increasingly used in a variety of scenarios [3], including
code generation [12, 51] and security tasks [5], showing significant promise for future advancements.
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Table 1. The Top 100 Projects and Their Categories

Field Projects

Kernel and System Programming Tools GCC, 8CC, Codon, Mold, Clang, LLVM-project, Gdb, Linux, Reactos, RT-Thread
Game Development Godot, GamePlay, raylib, DOOM, Entt, Stockfish, Cocos2d-x, Rpcs3, OpenRCT2, Minetest
Image Processing Guetzli, Openalpr, Openpose, Aseprite, Tesseract, Mozjpeg, Libfacedetection, Libjpeg-turbo, Libjxl, Simd
AI Frameworks and Tools Tensorflow, Mediapipe, LocalAI, XGBoost, OpenCV, GPT4All, Llama.cpp, Caffe, Paddle, Mxnet
Database Development Rethinkdb, Mongo, Leveldb, Rocksdb, Sqlitebrowser, Duckdb, Foundationdb, Arangodb, Scylladb, Kvrocks
Video Processing Srs, FFmpeg, Libvpx, Openh264, Vireo, Theora, X265, Blender, Shotcut, Libde265
Audio Systems Sonic-pi, OpenFrameworks, Rnnoise, Soloud, Aubio, Libsndfile, MuseScore, Wav2letter, Libsoundio, AudioFlux
Web Frameworks Treefrog-framework, Civetweb, Pistache, Cpprestsdk, Crow, Drogon, Facil.io, Lwan, Oatpp, Userver
GUI NanoGUI, RmlUi, Elements, Libui, Xtd, Flameshot, Qv2ray, Polybar, DearPyGui, Webui
IDEs Geany, Code::Blocks, Jucipp, Color_coded, CodeLite, rtags, serenity, qt-creator, cquery, Irony-mode

3 Empirical Study
In this section, we conduct an empirical study to assess the current status of building C/C++
projects, aiming to determine how effectively existing build systems can handle the complexities
and challenges of real-world projects. Our research team consists of 4 programmers, each with
extensive experience in C/C++ development and building. Specifically, we manually attempt to
build 100 widely-used C/C++ projects, devoting approximately 153 man-hours to resolving the
generated build failures. Out of the 100 projects, 86 have been built successfully, while the remaining
projects either require excessive time budget or encounter unresolved issues. Additionally, we
analyze the errors encountered during the building process and summarize the root causes. The
research questions, datasets, and study results are presented in detail as follows.

Research Questions. Referring to a recent study [16], which investigates the build mechanism
and ecosystem of Java, we design the following research questions for the study on C/C++ OSS:

• RQ1 (Default Build Success Rate): What proportion of popular C/C++ projects can be
successfully built using their respective build systems and default build commands?

• RQ2 (Build Failure Causes): What are the major root causes of the observed build failures
among these projects?

Fig. 1. The Statistics of Build Tools used in the Top 100 and Awesome-CPP Datasets (introduced in Section 5).

Dataset. For our empirical study, we construct a dataset (hereinafter referred to as Top100) via
selecting the top 100 most popular open-source C/C++ projects from GitHub, spanning 10 distinct
categories to ensure diversity and comprehensiveness. These categories include foundational
projects such as operating systems, database management systems, as well as emerging projects
like AI frameworks. The projects, as summarized in Table 1, are mostly the top 10 in their respective
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fields based on star ratings, except for those that do not meet the following requirements. Since our
builds are conducted on a Linux system, we exclude any projects that are incompatible with Linux
builds (e.g., CnC_Remastered_Collection). Additionally, repositories that are not fully open-source
(e.g., AppCode, Cvelop) or do not qualify as complete projects (e.g., 3d-game-shaders-for-beginners,
minimp3) are also excluded. We focus on these repositories because they are frequently analyzed
and studied in downstream applications such as program analysis, making them ideal candidates
for our research. Additionally, as popular projects, they exemplify common practices and challenges
in building C/C++ projects within the open-source community.

Table 2. Results of Executing Default Build Commands on the Top100 Dataset

Category #Success Successfully Built Projects

Kernel and System Programming Tools 2 8CC (Make), Mold (CMake)
Game Development 1 Entt (CMake)
Image Processing 5 Guetzli (Bazel), Libfacedetection (CMake), Libjpeg-turbo (CMake), Libjxl (CMake), Simd (CMake)
AI Frameworks and Tools 3 XGboost (CMake), OpenCV (CMake), Llama.cpp (CMake)
Database Development 3 Leveldb (CMake), Duckdb (CMake), Kvrocks (CMake)
Video Processing 1 X265 (CMake)
Audio Systems 2 Libsndfile (CMake), Libsoundio (CMake)
Web Application Frameworks 3 Civetweb (Make), Facil.io (CMake), Oatpp (CMake)
GUI 1 Webui (CMake)
IDE 0 None

Sum 21 N/A

3.1 Success Rate of Default Build Commands (RQ1)
To answer RQ1, we employ a three-phase process to apply default build commands to each C/C++
project. In the first phase, we gather the most commonly used build commands for popular build
tools through an extensive review of online tutorials and documentation. For example, we choose
‘make’ for Makefile-based projects, ‘mkdir build && cmake .. && make’ for CMake combined
with make, and ‘./configure && make’ for Autotools. A complete list of build systems and their
corresponding default commands is provided in the appendix [56]. In the second phase, we select
the build systems used by the 100 projects. We manually inspect the project’s source code directory
to identify the build system. For projects that support multiple build systems, we determine the
primary system and entry files (the files used to initiate the build process) based on the official
documentation. If the documentation does not offer a clear recommendation, we randomly select
one to proceed with. In cases where the selected build system fails in the subsequent steps, we
switch to another one. If the chosen system succeeds, the process completes. In the third phase, we
apply the appropriate build commands to each project. To ensure consistency, all builds are executed
separately within a newly installed Ubuntu 22.04 Docker environment, without any pre-installed
dependencies. If a project has specific OS requirements, we switch to the required system.

During the build process, we document the build systems used in the 100 projects, as shown
in Figure 1. The statistics reveal significant variability in the build systems employed by popular
projects. In particular, most projects support CMake and Make, with these two systems often being
used in combination. The results of applying the default build commands to the Top100 dataset are
presented in Table 2. As shown in the table, only 21 projects are successfully built, highlighting
that even well-known and actively maintained projects demonstrate low compatibility with default
configurations. For the remaining 79 projects, we observe the failure reasons can be attributed to a
lack of specific setups, which can be mainly categorized into 3 types. First, 51 projects encounter
dependency-related errors, where required dependencies, such as libpng when building mozjpeg,
are missing and not automatically installed. For projects with missing dependencies, we manually
review the project’s documentation, including files like “README”, “Contribution”, “Compile”,
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and “Building”, to check for any information on dependencies required before building. Out of the
51 projects, 28 have missing dependencies that are not mentioned in their documentation. Many
projects do not clearly specify which dependencies are required, forcing developers to spend extra
time addressing these issues. Second, 17 projects face issues related to incompatible build system
versions or missing tools. For example, the bazel version required for building mediapipe does not
meet the requirements. Third, 11 projects fail due to incorrect build commands, such as needing to
specify the target as ‘build’ when running ‘make’ for LocalAI. In total, resolving these issues for
the 79 failed projects requires additional, non-default configurations across all three categories.

Finding1: The build systems of C/C++ projects vary significantly, yet the level of automa-
tion among existing systems remains relatively low. Furthermore, many projects often require
additional specific setup steps to build successfully.

Table 3. Results of the Build Process by Humans on the Top100 Dataset

Category #Success Not Successfully Built Projects

Kernel and System Programming Tools 8 Codon, RT-Thread
Game Development 8 DOOM, Cocos2d-x
Image Processing 10 None
AI Frameworks and Tools 8 LocalAI, Paddle
Database Development 7 FoundationDB, ArangoDB, Scylladb
Video Processing 10 None
Audio Systems 7 OpenFramework, MuseScore, Wav2letter
Web Frameworks 10 None
GUI 9 Qv2ray
IDEs 9 Cquery

Sum 86 N/A

3.2 Root Causes of Build Failures in Actual Build Processes (RQ2)
To answer RQ2, we continue building the 79 C/C++ projects that initially failed with the default
build commands by systematically investigating each build failure. Leveraging expert knowledge
and online resources, 4 programmers resolve errors one by one, documenting each issue and
verifying the resolution by ensuring the error no longer occurs. In total, we have successfully built
65 out of the 79 projects. However, 14 projects cannot be built for two reasons: unresolved source
code errors and exceeding the four-hour build time limit. Among these 14 projects, 9 encounter errors
that cannot be resolved (e.g., the “Unknown CMake command ‘harfbuzz_Populate’ ” in MuseScore).
We determine that these errors are unlikely to be fixed because similar issues have been reported by
other developers in the official GitHub repositories, yet the project maintainers have not provided
effective solutions. By searching the official GitHub issues using keywords from the error messages,
we find that, of the 9 issues, 7 are still open and 2 are closed. However, even for the closed issues,
the proposed solutions do not resolve our build problems. Additionally, 5 out of 14 projects fail
due to timeouts. Based on our observation, projects that exceed 4 hours typically do not resolve
independently. Compiling large projects, such as the Linux kernel, takes less than 20 minutes on
our server, and the four-hour window allows sufficient attempts to address any issues. Therefore,
we consider projects that exceed this time limit as failures to avoid unnecessary time expenditure.

After completing all the build processes, we resolve a total of 384 errors, nearly 5 errors per
project on average. By conducting a systematic taxonomy, we categorize the root causes of these
failures, as summarized in Table 4. The build failures of C/C++ projects are classified into three
main categories: library issues, build toolchain issues, and configuration issues. In addition to these,
we also identified other factors that contributed to the failures, such as code errors within the
projects, which are classified as other issues. The following introduces the details.
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Table 4. Root Causes of Build Errors in the Building of the Top 100 Projects by Humans

Category Subcategory Count Description

Library Not Installed 263 Required libraries are not installed, resulting in missing dependencies
during the build.

Library Issues Library Not in Path 10 Libraries exist but are not included in the build system’s paths such as
‘LD_LIBRARY_PATH ’, so the system is not able to locate them.

Library Version Inconsistency 11 The installed library version is inconsistent with what the project re-
quires.

Sum 284

Build System Version Conflict 6 The build system, such as CMake or Make, is incompatible or outdated,
causing build failures.

Build Toolchain Issues Other Tools Missing or Conflicting 58 Build tools, excluding the build system, such as compilers and package
managers like pkgconfig and vcpkg, are either missing or have version
conflicts.

Sum 64

OS/Platform Incompatibility 7 Incompatibilities arising from the operating system or hardware archi-
tecture, including discrepancies in system versions or hardware support
for libraries such as CUDA and cuDNN.

Configuration Issues Incorrect Build Commands 10 Non-standard or incorrect build commands, including missing flags or
options.

Project Configuration Issues 13 The lack of project-specific configurations, such as a defined file struc-
ture, initialization scripts, or dependency installation scripts.

Sum 30

Memory Issues 1 Errors due to insufficient memory or memory allocation problems
during the build process.

Other Issues Source Code Issues 3 Errors in the source code, such as syntax errors, undefined references,
or incorrect logic.

Unstable Builds in Certain Branches 2 Instability in certain project branches, resulting in inconsistent build
outcomes.

Sum 6

Total 384

3.2.1 Library Issues. Library issues often occur when the required libraries are either not installed,
not placed in system environment paths, or have incompatible versions. These issues typically result
in errors such as “library not found” or “undefined reference” as the compiler or linker is unable to
resolve the symbols or functions defined in those libraries. Among open-source projects, developers
often share only the core source code and exclude the installed libraries to keep the repository
concise. However, this can lead to library-related errors when others attempt to build the project
without the necessary dependencies installed. This issue occurs a total of 284 times in our study,
making it the most frequent problem encountered during C/C++ project builds. Compared to other
build systems, such as Maven or Gradle in Java [16], we find that C/C++ build systems generally
make less effort to automatically reinstall removed libraries. To some extent, this may be due to
the more complex nature of C/C++ dependencies and the lack of a unified package management
tool like those found in higher-level languages such as Java or Python. These issues can be further
categorized into three sub-categories as follows.
Library Not Installed. In our empirical study, most library issues are attributed to missing

libraries, with 263 out of 284 cases falling into this category. These missing libraries are typically,
though not always, removed from open-source projects by developers to save space or for other
reasons. As a result, builders manually download them through methods such as using package
managers or building from source. For instance, during the build of libde265, OpenRCT2, and
minetest, SDL2 is not found and needs to be installed using apt.

Errors related to missing libraries frequently occur during the preparation phase when build
systems checking for dependencies. However, if left unresolved, they can also surface later during the
compilation or linking phases, as observed in the building processes of projects like rpcs3, aseprite,
and mxnet. While package management tools like vcpkg and Conan exist for C/C++ development,
they are not as widely adopted or standardized as those used in higher-level languages like Java.
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LibraryNot in Path.This issue arises when libraries are installed but not included in the system’s
search paths, such as ‘LD_LIBRARY_PATH ’, preventing the build system from locating them. In our
study, this occurs 10 times, causing errors during compilation or linking phase when dependencies
cannot be resolved. For example, MuseScore fails to build because the file ‘FindQt6Qml.cmake’ is
not found in ‘CMAKE_MODULE_PATH ’.
Library Version Inconsistency. This issue occurs when the installed library version is in-

consistent with what the project requires. Due to API or behavioral discrepancies, this leads to
incompatibilities during the dependency management, linking, or compilation phases. In our study,
this issue is observed 11 times in projects such as Shotcut, OpenPose, and Sonic-Pi, where these
conflicts resulted in build failures. Resolving such issues typically involves updating the project to
accommodate the installed library version or reverting to an older, compatible version.

3.2.2 Build Toolchain Issues. Build toolchain issues refer to problems related to missing or in-
compatible versions of tools necessary for the build process, such as compilers, linkers, or other
essential utilities. These issues typically arise when the project’s toolchain is not fully specified or
when the available version does not meet the project’s requirements. In our study, this occurs 64
times. These toolchain issues can be further divided into two categories, as outlined below.

Build System Version Conflict.This sub-category error occurs 6 times in our study. We ensure
that the corresponding build systems are installed by default, thus avoiding missing toolchain
issues. However, version mismatches occasionally occur. For example, in the wav2letter project, the
environment requires a minimum CMake version of 3.29.2, but the version available in the default
APT repositories is 3.25.1. Due to the unique role of build systems within the toolchain, we classify
this type of error as a separate sub-category.
Other External Tools Missing or Conflicting. The toolchain also includes external utilities

such as debuggers, linker and profilers, which may be necessary for certain stages of the build
or testing process. Incompatible or missing versions of these tools caused issues in 58 cases. For
example, missing or conflicting versions of utilities like GDB or Valgrind can lead to failures during
debugging or performance analysis stages.

Finding 2: Library issues (e.g., library not installed, version inconsistency) are themost significant
challenges in C/C++ project building, followed by build toolchain issues and configuration issues.

3.2.3 Configuration Issues. Configuration issues occur when a project’s build scripts are miscon-
figured or incompatible with the specific environment. These issues include platform or operating
system incompatibilities, incorrect build options, and misconfigured files.
System or Equipment Incompatibility. Certain projects are designed to run exclusively on

specific operating systems or hardware platforms, and attempting to build them on an unsupported
platform often results in failures. For example, projects like OpenPose recommend using Ubuntu
versions between 14 and 20, while older projects such as OpenAPLR suggest Ubuntu 16.04. Addi-
tionally, hardware-specific requirements, such as the absence of a GPU, can prevent the building of
projects reliant on CUDA and cuDNN. In our evaluation, such errors occurred 7 times.

Incorrect Build Commands Build instructions often require specific setups, such as configuring
environment variables, cross-compilation, or managing dependencies. For example, when building
for a different architecture like ARM, a toolchain file must be specified to ensure proper compilation:
‘cmake -DCMAKE_TOOLCHAIN_FILE=path/to/arm_toolchain.cmake ..’. Without such configurations,
the build process may fail or produce incorrect results.

Project Configuration Issues This error occurred 13 times and is typically caused by missing
project-specific configurations, such as hardcoded paths or dependencies hosted on private sources.
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For example, the gameplay project requires files (e.g., gameplay-deps) from a specific URL. Without
performing these required custom setups, the build process is bound to fail.

While we also encountered issues such as source code errors and unstable versions, which oc-
curred 6 times. Our study focuses primarily on build system-related problems. We have documented
these issues as they pose significant barriers to successful builds.

Finding 3: Build errors in C/C++ projects can occur at various stages, including dependency
resolution, compilation, linking, or runtime setup. These issues are diverse in nature, as they vary
depending on the build tools and project characteristics involved at each stage.

Building C/C++ projects is challenging, even for human developers, and automating this process
adds further complexity. Based on our empirical study, we summarize the key challenges in
automating C/C++ builds. Dependency management is a frequent challenge during dynamic builds,
involving the identification, downloading, and resolution of issues. While Software Composition
Analysis (SCA) studies [36, 54, 55] address dependency issues, they fail to detect non-local third-
party libraries (TPLs) before building. Research like CCScanner [45] examines package management
tools, but build-specific issues like alias conflicts and version mismatches remain unaddressed.
Static analysis is insufficient for dependencies that are conditional, dynamically loaded, or tied to
build environments with varying compiler flags and OS requirements. Additionally, dependencies
often originate from multiple sources, such as package managers (e.g., apt) or source code, and
the obstacles in downloading them further complicate the resolution process. Second, in our study,
we manually write extensive shell scripts and perform debugging within Dockerfiles, utilizing
various tools like build systems, compilers, and package managers. The diversity of these tools and
their commands makes it difficult to standardize the build process with fixed rules, presenting a
major challenge in automation. Lastly, build errors can occur at any stage, including preprocessing,
compilation, linking, or even due to external factors like network issues or hardware limitations,
such as insufficient memory, can also cause build failures. These errors vary significantly, making it
difficult to apply generalized error-handling strategies. Furthermore, the solutions to these problems
are often scattered across various sources, requiring extensive expertise or the ability to conduct
in-depth research through documentation, community forums, and other resources. All these
challenges hinder the automation of building C/C++ projects.

4 Methodology
In light of the challenges discussed in Section 3, we design an agent CXXCrafter to streamline the
building of C/C++ projects by leveraging LLMs to handle various stages of the building process.

4.1 Overview
Our approach is driven by the broad capabilities of LLMs across multiple dimensions, including
semantic understanding [46], code generation [21], and implicit knowledge storage [57]. Existing
studies show that LLMs’ semantic understanding enables the performance of code analysis tasks [8]
and assists in bug and error comprehension [25, 27], demonstrating potential for interpreting
diverse error messages in the build process. Their robust code generation capabilities allow devel-
opers to create applications in various programming languages [61], with promising potential for
automatically generating build instructions and bash scripts to resolve build errors. Additionally,
through training on extensive corpora, LLMs implicitly store vast amounts of knowledge across
multiple domains, helping to address issues in various fields [31, 41, 44]. LLMs may have been
trained on large-scale open-source resources, including GitHub issues and Stack Overflow [4, 26, 34],
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which contain numerous build-related problems and solutions, further underscoring their potential
in tackling challenges related to software construction.

However, the effectiveness of directly using LLMs for building is limited. As shown in the
experimental results in Section 5, using bare LLMs with prompts successfully generates build
solutions for only about 30% of the projects. This is because the build process for many C/C++
projects involves multi-faceted errors, including those arising from different stages of the build.
Relying solely on the LLM can only address a small fraction of such errors. An iterative approach
is needed to continuously resolve issues as they arise. To address this, we propose an LLM-based
agent that dynamically manages the build process through iterative feedback mechanisms. This
agent autonomously resolves errors in real-time, adjusting and refining build decisions based on
evolving conditions. The framework not only reduces the need for manual intervention but also
enhances build reliability and success rates.

DockerfileInformation

Error Feedback

Generator Module

Executor Module

Build Solution

1

2

3Parser Module

Dynamic Interaction

C/C++ Projects Workflow Module Data

Fig. 2. The Overall Framework of CXXCrafter

As illustrated in Figure 2, the CXXCrafter is comprised of three essential modules:
• Parser Module: This module automatically extracts and analyzes key build-related infor-
mation from the project directory, encompassing dependencies, environment settings, and
relevant documentation that facilitate the build process. This ensures that all essential data
is available for the subsequent stages of the workflow. Additionally, we leverage the LLM’s
semantic understanding capabilities to overcome two key obstacles: identifying the valid
build system entry file and retrieving helpful documentation.

• Generator Module: This module utilizes LLMs to generate a Dockerfile that includes build
procedure code based on the parsed information, ensuring that necessary dependencies,
environment settings, and configurations are correctly specified. The module also modifies
the Dockerfile in response to error feedback from the Executor Module, ensuring an adaptive
approach to resolving build issues.

• Executor Module: This module oversees the build process in containers by execute Docker-
file, providing a consistent and clean build environment for testing whether the build solution
succeeds. Specifically, it captures errors and logs, feeding them back to the Generator Module,
forming a dynamic interaction loop that continuously addresses errors until completion.

CXXCrafter uses five types of prompts for different use cases, incorporating techniques such as
RAG and nested prompt templates, as detailed in Section 4.5.

4.2 Parser Module
The Parser Module analyzes local projects to extract critical information for the software’s environ-
ment preparation and compilation.

It employs three specialized extractors (see Figure 3) to gather data, including environment set-
tings, dependency details, and helpful build documentation. 1 In the Environment Information
Extractor, CXXCrafter uses basic shell commands like ‘lscpu’ and ‘uname -a’ to capture system
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Input the file list into the LLM to filter files relevant 
to this project’s build

... build the project … the following docu-ments are 
potential resources … :{doc_files}…Please select the 
most relavant documents …

Candidate Build Systems

Extract the build system and build script paths used in 
the project based on file name matching

Parse CPU specifications and check for GPU presence 
using shell commands

Choose the most suitable build system and entry file 
from the given list

... the project {Project Name}, which can be built us
ing one of the identified build systems listed belo
w.  … {Build System Dict} … Select … build syste
m and … entry …

Build System Selection Prompt

GPU Info.: W/O GPU    Architecture: X86

Candidate File Contents

Scan the project structure and use keyword-based regex 
to identify all building-related files

Candidate File Paths   
File Path List:
→README.md
→runtime_data/postprocess/readme.txt
→src/openalpr/simpleini/README.md

OpenALPR is an open-source 
Automatic License Plate …
User Guide …
Simply typing “alpr [image file 
path]…

Setup.py
README

…

Filtered Files

Recommended OS Version:
Ubuntu 16.04 is recommended for installation.
Dependency Versions:
Key dependencies include Tesseract OCR v3.0.4 and 
OpenCV v2.4.8+. Specifying the ……

Invoke the dependency analysis tool CCScanner to 
extract dependencies
→ CCScanner detects TPL dependencies in C/C++ by parsing 

quasi-SBOM files from 21 package managers and using 
CENTRIS for code clone detection

① Extract Environment Information

② Extract Documentation Information

③ Extract Dependency Information

Build System: CMake
Entry File: src/CMakeList.txt
Version Requirement: 2.6 or higher

CMake Related Files:
→src/CMakeLists.txt
→src/video/CMakeLists.txt
→src/openalpr/CMakeLists.txt
→src/openalpr/simpleini/CMakeLists.txt
→src/openalpr/support/CMakeLists.txt
Python Related Files:
→src/bindings/python/setup.py

Build System Info.

Equip Info.

Helpful Document

Dependencies

Finally, Parsed data will be fed into the 
generator module for processing

Behavioral Operation Intermediate Result LLM Prompt Final Parsing Result

Read →Default-jdk & None
→Tesseract & None
→…

Name & Version:
→Debhelper & 9
→Libleptonica-dev & None
→Liblog4cplus-dev & None

Read the files and use LLM      to summarize key build 
steps

… summary of the key advice for building the 
project from source... {file_content}

Key Advice Summary Prompt

File

File Path-Level Filtering Prompt

Fig. 3. The Parser Module. It is responsible for automatically extracting and analyzing information such as
dependencies, build system information, which is crucial for subsequent build processes.

details, including CPU specs, OS, and their versions. This information is crucial for addressing
issues discussed in Section 3.2.3, such as installing software for specific architectures or ensuring
the correct GPU/CPU driver versions. It plays a key role in ensuring compatibility and optimization.
2 The Dependency Information Extractor takes the entire source code folder as input and
outputs the names and versions of all required dependencies, helping to prevent conflicts and ensure
software stability. Existing research on dependency identification falls into two categories: some
studies [36, 54, 55] use Software Composition Analysis (SCA), but SCA can’t recognize third-party
libraries (TPLs) before build time, as many TPLs are not available locally at that stage. CCScanner
[45] detects TPL dependencies in C/C++ by parsing quasi-SBOM files from 21 package managers
and using CENTRIS [54] for code clone detection. We use it in our parser module to statically extract
dependency names and versions. It is worth noting that while the statically extracted dependencies
help address library-related issues, they do not fully resolve them. Specifically, they are incapable of
handling dynamic errors such as aliasing (mismatched resolved and downloaded library names) or
version conflicts, which only manifest during the execution process. Static dependency analysis at
this stage is insufficient, necessitating the use of the generator and executor modules for dynamic
resolution. 3 The Useful Documentation Extractor collects relevant build instructions and
configuration guides, aiding CXXCrafter in troubleshooting and understanding the build process.
As shown in Part 2 of Figure 3, it scans the source code folder and applies two rounds of filtering.
First, it uses keyword-based regular expressions to identify build-related files and remove irrelevant
ones. Then, it performs finer filtering using LLMs, based on the project name and document path,
to exclude unrelated files. Finally, it reads the filtered files and uses the LLM to summarize key
build information, ultimately obtaining the relevant documents for the build process.

The parser module faces 2 key obstacles: identifying the correct build system and entry file, as
well as retrieving useful documentation for the build process. First, many projects employ multiple
build systems, each with several build files. Expert knowledge is required to determine which build
system and entry file are suited to compile the entire project. We address this by leveraging LLMs
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combined with tailored prompts. For example, in theOpenALPR project (Figure 3 Part 1), both CMake
and Python are present, but the LLM correctly identifies CMake, recognizing the Python paths as
interface files rather than the main project. Second, some projects include useful documentation
that aids the build process, but traditional rule-based methods struggle to locate this information.
To address this, we develop a RAG system to search for relevant content. For example, in Figure 3,
we retrieved documentation from the “README.md” file, which recommended installing Ubuntu
16.04 and provided advice on dependency versions to help avoid potential compatibility issues.

4.3 Generator Module
The generator module is responsible for creating and modifying build solutions. In CXXCrafter,
build solutions are defined using Dockerfiles, enabling the construction of C/C++ software in clean
and reproducible environments. While Shell or Python scripts can also be used, Docker often offers
higher flexibility and consistency. Its ability to generate clean system images ensures that the
resulting Dockerfiles can be executed reliably across different environments.

Upon receiving the output from the parser, the generator produces an initial version of the
Dockerfile. We have designed curated Embedded Prompt Templates (detailed in Section 4.5), which
provide structured guidance to the LLM by embedding predefined formats and placeholders within
the prompts. These templates ensure the Dockerfile creation process is structured and consistent.
The generator begins modifying the Dockerfile when the executor encounters a failure, utilizing the
error message and the recently executed Dockerfile. We retain all modification history within the
same session of the LLM and prioritize clearing the oldest resolved issues when the context limit is
reached, allowing the model to reference recent decisions during the modification process. Our key
methodology in the generator module is the design of Embedded Prompt Templates.These templates
offer structured guidance to the LLM by embedding predefined formats and placeholders within the
prompts. Drawing from the building experience in Section 3, we have systematically outlined the
structure of Dockerfiles in the prompt, encompassing essential components such as system and tool
installation, package management updates, dependency installation, project-specific configurations,
and build-related instructions. This structured approach ensures consistency and adherence to best
practices, promoting the generation of standardized yet flexible build solutions.

4.4 Executor Module
The executor module is responsible for executing the Dockerfile generated by the generator module.
It monitors the entire build process to detect errors. During the building process, the executor
tracks the executed commands and logs detailed traces. If the build fails, the executor sends the
error messages back to the generator. This initiates an optimization process, creating a dynamic
interaction loop between the generator and executor. This loop continues until a successful build
solution is achieved or the maximum number of iterations is reached. Additionally, the executor
implements an LLM-based discriminator on the build instructions and logs. This ensures the success
of the build and helps identify and resolve errors comprehensively.

A critical challenge in designing the executor module is accurately verifying whether the project
has been successfully built. We employ the Python Docker SDK to capture the execution results
within the Docker container and save these as log files. However, certain build instruction errors
may lead to issues that Docker cannot detect. One such scenario arises when a project implements
custom error handling, which may suppress the generation of error messages. For example, in
LocalAI, the Makefile includes error handling for build targets, meaning that even if the wrong
target is selected, Docker will not report any build errors. Another issue occurs when the Dockerfile
generated by the LLM lacks essential build instructions (e.g., ‘make’). In this case, while no errors
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may be reported, no actual building operation takes place. We refer to these situations as “non-
error failures”. Due to the diverse nature of the outputs in these cases, traditional rule-based or
keyword-matching error detection methods often fail to reliably identify such build failures.

To address the challenge, we design an LLM-based discriminator to identify these build failures.
In designing the LLM discriminator, we incorporate two key insights from our manual construction
process: Static criterion: The Dockerfile should include build and compile instructions (e.g., ‘make’,
‘cmake –build’), and the build target must match the default or primary components as described
in the project’s documentation. Dynamic criterion: We store log files (an example is available in
our project [56]) generated during the build process. By analyzing these logs, we can confirm
whether the build commands are executed successfully. Logs from successful builds typically
show compile progress (e.g., ‘[ 3%] Building CXX object..’) and test progress (e.g., ‘Performing Test
C_FLAG_WALL Success’). The discriminator’s judgment process is divided into two steps. First, we
design prompts to guide the LLM in making judgments based on these two key criteria. Second, to
further mitigate hallucinations, we introduce a reflection mechanism to re-validate the “judgment
process” of the first step. If the “judgment process” did not strictly adhere to the two criteria, the
build is deemed a failure, thus minimizing FP. When providing information to the discriminator,
the executor carefully controls the context length and selects the log segments most relevant to
state determination. In the case of “error-type failures”, which are typically direct and concise, the
executor inputs the most recent 50 execution logs into the LLM for accurate error detection and
analysis. When no errors are reported, and since determining “non-error failures” often requires
more contextual information, the executor inputs the Dockerfile and the last 200 lines of the log. If
the input exceeds the LLM’s context length limit, a sliding window mechanism is used, prioritizing
the retention of the most recent logs to ensure effective resolution of new errors.

To evaluate the effectiveness of the LLM-based discriminator, we examine the accuracy of 4
LLMs—DeepSeek-v2, DeepSeek-v3, GPT-4o, and GPT-4o mini—on the Top100 dataset. We manually
check and validate the discriminator’s judgments during the build process. Out of the 400 build
processes, 249 are classified as successful. We manually verify these 249 samples and find all
judgments to be correct. Regardless of the LLM used, the discriminator accurately identifies all
successful builds. This validates the effectiveness of the LLM-based discriminator design.

4.5 Prompt Design in CXXCrafter

We have designed a set of prompts tailored to 5 specific scenarios, including build system and
entry point identification, RAG for documentation parsing, initial Dockerfile creation, Dockerfile
modification, and build success discriminator. These prompts, developed based on expert knowl-
edge and refined through iterative experimentation, incorporate strategies such as nested prompt
templates and RAG to address task complexity. The complete set of prompts is provided in the ap-
pendix file[56]. In the design process, several challenges arise when prompting LLMs to effectively
complete building tasks. Challenge 1 involves breaking down complex problems when generating
build solutions. We address this by using embedded prompt templates to dynamically inject parsing
information, such as in our Dockerfile generation prompt (Section 2.3 in Appendix file [56]), which
dynamically fills in parsed data. Additionally, we provide the LLM with strategic guidance in the
form of requirement notes. Challenge 2 stems from unclear project-specific build processes and
details. To resolve this, we utilize RAG to retrieve relevant files from the project’s source code
directory, such as documentation RAG and build system identification prompts (Section 2.1 and 2.2
in Appendix file[56]). Finally, Challenge 3, related to token limitations, arises during Dockerfile
modification. To effectively manage error feedback, we retain error messages and decisions within a
single session to ensure continuity. However, when the context exceeds the token limit, we remove
the earliest resolved issues to maintain focus on the current task.
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An Example of Prompt. As shown in Figure 4, this prompt is used to generate a Dockerfile.
Specifically, we combine information obtained from the parser with pre-defined templates for built-
in prompts to create the final prompt that generates the Dockerfile. The prompts corresponding
to numbers 3, 4, and 5 in the figure include the information parsed by the parser. Prompt 1 is a
Dockerfile template that guides the LLM to structure the Dockerfile correctly, breaking down steps
such as basic environment setup and dependency installation. In addition, this prompt includes
specific requirements, such as correctly handling line breaks in comments, to ensure that the
generated Dockerfile is free from syntax errors.

FROM ubuntu:[ubuntu_version] 

ENV DEBIAN_FRONTEND=noninteractive 

# Install necessary packages 

Run apt-get update 

Run apt-get install -y build-essential 

Run apt-get install -y software-properties-common

# Install Dependencies 

Run apt-get install -y [dependency1]

Run apt-get install -y [dependency2]

... 

# Build the project with [build system]

... 

Please generate a dockerfile which build the project {Project Name} from 

source code according to the dockerfile template: 

{Dockerfile Template}

Requirements: 

1. Install commands must be executed one at a time. 

2. Please adhere to Dockerfile syntax. For example, ensure that comments and 

commands are on separate lines. Comments should start with a # and be placed 

independently of commands. 

…

Useful information for reference:

1. Environment requirements: {Environment Info.}

2. Documentation information: {Docs}

3. Potential Dependencies: {Dependencies}

Build system is {Build System Name}. 

And the file of entry file of {Build System

Name} is in {Entry File} of the project. 

And build system's version requirement is 

{Build System Version}.

The key recommendations for building the 

project are as follows:

{Helpful Documents}.

Whether there are custom scripts:

{{True or False}, {Script Path}}.

Mandatory dependencies: …

Potential dependencies and versions 

identified from the build script scan are as 

follows:

{Dependencies and corresponding 

versions}.

1 2

3 4 5Environment Info.

Dockerfile Template

Docs

Prompt for Generation

Dependencies

Fig. 4. Prompt of the Generator Module. The prompts corresponding to numbers 3, 4, and 5 are from the
Parser’s results, with blue text indicating dynamically parsed content.

5 Evaluation
We implement CXXCrafter in Python, without relying on LLM frameworks like Langchain. Our
implementation ensures a clear modular structure and strong scalability, enabling easy upgrades
and replacements of components and tools. CXXCrafter consists of 1,664 lines of code and uses 5
different types of prompts. In the experiments, CXXCrafter uses GPT-4o as the default LLM, with
the dynamic interaction limit set to 10 by default. The execution environment for our build solution
is managed through Python Docker SDK. Our experiments are conducted on three Ubuntu 22.04
servers with varying hardware configurations. The first machine is equipped with two Intel Xeon
6330 processors, 512 GB of RAM, and 3 TB of HDD storage. The second and third machines feature
four Intel Xeon 8260 processors, 256 GB of RAM, and 3.37 TB of HDD storage each.

ResearchQuestions. Our evaluation aims to address the following research questions:
• RQ3 (Effectiveness): How many C/C++ projects can be automatically built by CXXCrafter?
• RQ4 (Ablation Study): How does each component within CXXCrafter contribute to the
overall build performance?

• RQ5 (Case Study): How does CXXCrafter resolve build issues that manual methods fail to
address, and what specific advantages does it offer in handling complex C/C++ projects?

• RQ6 (Efficiency and Cost): What is the efficiency and cost of using CXXCrafter?
Dataset. Two datasets are used for evaluation. The first dataset, Top100, is described in Section

3. The second dataset, from Awesome-CPP [7], includes a broader collection with 58.6K stars as
of September 2024. It covers a wide range of C++ libraries, frameworks, and tools, providing a
comprehensive testbed for evaluating CXXCrafter ’s performance across diverse real-world C/C++
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projects. To ensure there are no duplicates between datasets and that all projects are buildable,
we remove any overlapping projects with the Top100 dataset and manually exclude non-C/C++
projects based on the criteria outlined in Section 3. After filtering, 652 distinct projects remain for
evaluation. For all projects, we use the latest available version for experimentation.
LLMs Selection. We select four LLMs: GPT-4o, a high-performance closed-source model; GPT-

4o mini, a more affordable alternative ofGPT-4o;DeepSeek-v2 with 236B parameters andDeepSeek-v3
with 671B parameters, both open-source models that excel in code-related tasks.

Baselines.We select 3 types of baselines. (1)Default Build Commands: We have collected over
20 common C/C++ build systems and their associated instructions (see Appendix [56]). Based on this
collection, we develop an automated script to execute default or commonly used build commands.
The script first identifies potential configuration files, such as Makefile or CMakeLists.txt. It then
identifies all possible build systems from the configuration files and executes their corresponding
build instructions in sequence. (2) Programmers: The manual building methods used in Section 3.1.
(3)Different Bare LLMs: We also explore the performance of different bare LLMs.Thesemodels use
the same prompts as the CXXCrafter generator but lack the information provided by CXXCrafter’s
parser. Additionally, there is no dynamic iterative process if the build fails.

Metrics of Success. We determine the success of builds by manually inspecting the Dockerfile
instructions and the corresponding execution outputs. During this inspection, we follow two
criteria to efficiently assess success as follows: (1) Static Criterion: The Dockerfile must contain the
necessary build-related instructions, and the build target should align with the primary components
as specified in the project documentation. (2) Dynamic Criterion: We analyze the execution logs
generated during the building process to ensure that the build commands are executed properly and
that the process completes without errors. Only projects that satisfy both criteria are considered as
successful builds. We further evaluate these metrics (see Section 6), confirming that builds meeting
these criteria yield outputs consistent with those produced by manual builds and demonstrate
correct functionality. These criteria are the same as those in the executor (see Section 4.4), with the
key difference being that we perform manual checks to prevent misjudgments by LLMs.

5.1 Overall Effectiveness Evaluation (RQ3)
To address RQ3, experiments are conducted on two datasets. For CXXCrafter, the default dynamic
interaction step limit is set to 10, withGPT-4o serving as the core LLMdue to its superior performance
in trials. We also evaluate the build performance of CXXCrafter using another powerful open-
source model, DeepSeek-v3, while keeping all other settings the same. Additionally, we compare
the results with those of the Default Build Commands and the bare LLMs, as mentioned above. For
all build results, we manually inspect and verify their correctness.

As shown in Table 5, CXXCrafter demonstrates significant superiority. For the Top100 dataset,
CXXCrafter (Default) successfully builds 75 projects, significantly surpassing other methods.
The Default Build Commands tool achieves 21 builds, while the bare LLM models, show a simi-
lar performance, with 23 and 17 successful builds, respectively. In the Awesome-CPP collection,
CXXCrafter achieves 512 successful builds, greatly outperforming Default Build Commands (272
builds) and the bare LLMs (264 for DeepSeek-v3 and 215 for GPT-4o).

The Default Build Commands approach achieves a 39.01% success rate. While this method proves
reliable for simpler projects, it struggles with more complex or non-standard build configurations,
resulting in a relatively low success rate. The bare LLMs (DeepSeek, GPT-4o, and GPT-4o mini)
demonstrate even lower success rates of 38.43%, 31.65%, and 19.81%, respectively. These findings
suggest that while LLMs have some capacity to handle build tasks, their effectiveness remains
limited without further domain-specific optimization. In some cases, they perform worse than
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rule-based methodologies. Notably, GPT-4o mini, with a 19.81% success rate, exhibits significant
limitations when applying a smaller LLM to complex build processes.

In stark contrast, CXXCrafter achieves a 78.10% success rate, showing a marked improvement
over all other methods. This outcome underscores the effectiveness of CXXCrafter ’s modular
design, which allows it to adapt efficiently to diverse build scenarios. The substantial gap between
CXXCrafter and the other methodologies emphasizes the importance of specialized agent in
automating complex tasks like C/C++ project builds.

Overall, CXXCrafter significantly outperforms both the bare LLMs and the heuristic build tool,
demonstrating high success rates and the potential to reduce the time and efforts required for
large-scale OSS building, making it a valuable tool in modern development workflows.

Finding 4: Without a carefully designed iterative framework, LLMs remain inadequate for
addressing the inherent complexity and multi-stage processes of project building.

Table 5. Experimental Results Between CXXCrafter and Baselines.

Methodology Top100 Builds Awesome-CPP Builds Total Builds Success Rate (%)

Programmers 86 N/A N/A N/A
Default Build Commands 21 272 293 39.01
Bare LLM (DeepSeek-v2) 23 239 262 34.22
Bare LLM (DeepSeek-v3) 25 264 289 38.43
Bare LLM (GPT-4o mini) 17 132 149 19.81
Bare LLM (GPT-4o) 23 215 238 31.65
CXXCrafter (DeepSeek-v3) 67 510 577 76.73
CXXCrafter (Default) 75 512 587 78.10

5.2 Component Design Analysis (RQ4)
In this section, we present a detailed component-wise analysis to assess the contribution of key
modules and various configurations in CXXCrafter. This analysis focuses on 3 main aspects:

• The role of the parser module in enhancing build success.
• The impact of dynamic interaction and effect of varying dynamic interaction step counts.
• The impact of different LLMs on CXXCrafter ’s performance.

We conduct experiments on the Top100 dataset, with results shown in Figure 5. The CXXCrafter
(Default) also uses GPT-4o as the LLM, with a maximum of 10 dynamic interaction steps.

The Role of the Parser. The default configuration, with all components enabled, achieves
the highest number of successful builds, completing 75 builds. When the parser is removed
(CXXCrafter-w/o-Parser), the success rate drops to 48 builds, highlighting the parser’s crucial
role. In CXXCrafter, build system selection and entry file identification rely on the parser, which
forms the foundation for the entire build process and helps avoid many errors. Additionally, build-
related documentation is crucial. The parser automates the search for and interpretation of these
documents, further enhancing the build success rate.
The Impact of Dynamic Interaction. Dynamic interaction is the key design of CXXCrafter,

allowing iterative execution and modification during the build process. When dynamic interaction
is disabled (CXXCrafter-w/o-Interaction), the number of successful builds drops sharply to 22,
highlighting its importance in managing complex, multi-step build scenarios. We also analyze the
impact of different interaction step limits. When the limit is set to 5 steps, performance declines,
with only 69 successful builds. Increasing the step count to 20 does not further improve performance,
with 74 successful builds. We observe that the benefits of increasing interaction steps begin to
diminish beyond a certain threshold. For example, increasing the step count from 0 to 5 leads to a
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significant improvement of 47 successful builds. However, increasing it from 5 to 10 only adds 6
builds. Furthermore, increasing from 10 to 20 results in one fewer successful build. This variation is
likely caused by the inherent instability in the LLM’s output.

Finding 5: Dynamic interaction plays a crucial role in managing multi-step tasks in the agent
design. Increasing interaction steps improves success rates while the enhancement can be limited.

TheImpact ofDifferent LLMs. Finally, we evaluate the impact of different LLMs on CXXCrafter.
Specifically, DeepSeek-v2 completes 57 builds, DeepSeek-v3 completes 67, while GPT-4o mini com-
pletes 50. GPT-4o remains the most effective, with 75 successful builds. These results highlight the
significant impact of LLMs on CXXCrafter’s ability to automate the build process. Notably, we
observe that open-source LLMs can now achieve performance on par with leading closed-source
models. Furthermore, cost-effective closed-source models like GPT-4o mini can achieve about 50% of
the effectiveness in our design. Additionally, CXXCrafter, based on these models, performs much
better as an agent than bare LLMs (see Section 5.1), further demonstrating that our design leads to
a substantial improvement in performance.

Finding 6: The selection of LLMs significantly affects the agent’s performance. More powerful
models, such as GPT-4o, can offer stronger assistance and enhance the overall effectiveness.
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Fig. 5. Number of Successful Builds of CXXCrafter Variants on the Top100 Dataset.

5.3 Case Study (RQ5)
Among the Top100 dataset, 72 projects are successfully built manually as well as by CXXCrafter in
Section 5.1. Three projects succeed in CXXCrafter but fail in manual builds, while 14 projects are
successful manually but failed by CXXCrafter.

We analyze the 3 cases where manual builds failed. Case 1: When building CQuery manually, an
error occurs with “std::unique_lock being defined in the header <mutex>”, suggesting that “<mutex>”
is not included. Initially, we suspect this is related to the Clang version. However, after trying
various versions (e.g., Clang 7, Clang 11), the issue remains. Further analysis reveals that the
CQuery build script defaults to Clang 7 on Ubuntu 14.04, which is incompatible with Ubuntu 22.04.
CXXCrafter suggests using Ubuntu 20.04, where Clang 7 is compatible and thus resolve the issue.
Case 2: In the Paddle project, human attempts produce the error: “libdnnl.so: undefined reference
to dnnl::impl…”. Despite confirming oneDNN installations and testing various versions, the error
persists. CXXCrafter identifies a version mismatch between protobuf and oneDNN (requiring
protobuf 3.20.2+ as noted in the “requirements.txt”), a detail overlooked by human builders. Case 3:
In DOOM, a linking error initially suggests issues with 32-bit libraries or the container environment,
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leading to various adjustments. CXXCrafter identifies the actual issue as a mismatch between the
TSL variable errno and the shared library version, resolving it with a code modification.

CXXCrafter’s Advantages over Humans. CXXCrafter offers two key advantages over manual
building: (i) The parser module uses RAG to efficiently process documents and other information,
allowing it to identify build-related information more comprehensively than manual searches. For
example, in CASE2, CXXCrafter prevented errors that would have arisen from overlooking crucial
information during manual builds. (ii) The LLM stores historical build knowledge, compensating
for the limitations of human experience. As demonstrated in CASE3, CXXCrafter makes more
correct decisions, avoiding potential errors. The major drawback of CXXCrafter is its higher error
rate when installing complex dependencies, such as ‘CUDA’ for OpenPose. These libraries involve
complex installation processes with many dependencies and steps. This may be resolved in the
future through knowledge injection or RAG.

5.4 Efficiency and Cost (RQ6)
We assess the cost of CXXCrafter across three dimensions: time, financial expense, and disk storage.
These factors are crucial in determining the practical usefulness and scalability of our approach.

Time Cost. On average, CXXCrafter takes 875.31 seconds to successfully build a project on the
Top100 dataset. Additionally, the average time cost for the failed projects is 2.67 hours. However,
time costs can vary due to factors such as Docker caching and network speed. Enabling multi-
processing significantly enhances efficiency, substantially reducing the overall build time.
Financial Cost. Running CXXCrafter on the Top100 dataset generates 4,297,652 input tokens

and 624,170 output tokens. This incurs GPT-4o related costs of $21.49 for input tokens and $9.36 for
output tokens, respectively. Among these, 75 projects are successfully built, with an average cost
per successful build calculated at $0.41. The 25 failed projects generate a total of 2,420,092 input
tokens and 225,154 output tokens, with an average cost of $0.6191 per project. This price is based
on OpenAI’s pricing as of September 2024.
Disk Storage Cost. The experiment generates over 50 TB of data, including Docker container

caches and image files. This creates significant storage demands. Despite using three machines,
disk space management remains a critical and recurring challenge throughout the experiment.

6 Discussion
Effectiveness and Consistency of Build Artifacts. We conduct an in-depth analysis of the build
artifacts to verify their functionality and consistency with manually built artifact. To verify that
the build artifacts perform as expected, we run the unit tests provided by the projects. Among
the 75 successfully built projects in TOP100, we identify 24 that generate test executables. Among
them 22 projects pass while 2 fail due to missing audio connections in libsoundio and lack of GUI
display support for Stockfish on our server (due to the absence of the relevant devices). These
results confirm that the build artifacts produced by CXXCrafter are valid and function as intended.
Additionally, we use a diff tool to compare the automated build artifacts with the manually built
artifacts for all 75 successfully built projects. The results show that the automated and manual build
artifacts are completely consistent. Detailed experimental results can be found in our Project [56].
These results also further validate the effectiveness of our success metrics in the experiment.
Building Different Software Versions. We conduct two additional experiments. First, we

investigate the build success rate across different software versions. For 20 projects that are suc-
cessfully built, we randomly select 5 commits for each, covering their entire repository commit
histories from the creation of the repository. CXXCrafter achieves an 81% success rate with 81 out
of 100 builds successful. This demonstrates that CXXCrafter are effective across multiple versions.
Some failures occur due to older versions requiring outdated packages, which are often hard to
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find. Second, we test the build performance of consecutive commits (i.e., building one commit after
another). By selecting the latest 5 commits from 20 projects, we observe a higher success rate,
with 96 out of 100 builds successful. Overall, these experiments demonstrate that CXXCrafter is
effective in both version diversity and consecutive commit builds.
Building Different Language Projects. CXXCrafter’s design shows promising potential for

other languages. Specifically, we conduct a simple migration to the top 100 most starred Java
projects (after filtering the unbuildable projects, 76 remain), successfully building 57 out of 76
projects, achieving a success rate of 75%. This already represents promising performance in Java
automation build methods [16] to our best knowledge.
Potential Applications of CXXCrafter. CXXCrafter is highly beneficial for various down-

stream applications in software security analysis, including but not limited to: (1) reproducing
identified vulnerabilities by facilitating set up environments with specific versions for vulnerability
reproduction; (2) static program analysis, particularly high-precision analysis based on LLVM IR,
which often requires code to meet compilation requirements. CXXCrafter can assist in fulfilling this
process; (3) dynamic program analysis, such as source code instrumentation, where CXXCrafter
can ensure proper compilation, thus streamlining workflows for tasks like fuzz testing.

7 Threats to Validity
Our study mainly suffers from the following threats to validity. Specifically, the internal validity
threat in our study mainly stems from the variations in LLM performance, which could impact
the experimental results. To mitigate this issue, we conduct experiments using the open-source
model DeepSeek. Additionally, during the dependency download process, CXXCrafter retrieves
dependencies from online sources (e.g., by using ‘apt ’ to install packages or ‘git ’ to download
repositories). If these sources become unavailable or if network issues arise, it may affect the results.
Furthermore, updates to the software itself could also introduce internal validity threats. Our
research primarily targets popular projects, for which LLMs may have gain deeper understanding
and the documentation is usually more comprehensive. Therefore, CXXCrafter’s performance on
less popular projects may be impacted, which constitutes an external validity threat. To address this,
we plan to further incorporate RAG techniques or retrain the model in the future. Lastly, the authors
have rich experiences in C/C++ related researches, and via further extensive investigations in C/C++
projects build automation, the authors have gained deep understandings towards build-related
issues. As a result, we believe this study’ threats of construct validity are limited.

8 Conclusion
This paper presents CXXCrafter, an LLM-based agent system that automates the C/C++ build
process, marking the first exploration of using LLM agents for this task. Through an empirical study
of popular open-source C/C++ projects, we identify and categorize 384 build errors, providing
insights into the key challenges of automating C/C++ builds. CXXCrafter addresses these challenges
by dynamically managing dependencies, resolving build issues, and diagnosing errors, achieving a
success rate of 78% across 752 projects. Our system advances build automation and offers significant
support for downstream program analysis tasks, such as vulnerability research and performance
optimization. Future work focuses on refining and expanding CXXCrafter’s capabilities to handle
more complex build scenarios and support downstream program analysis tasks.

9 Data Availability
We release the implementation and all associated publicly available data in the website [56].
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