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ABSTRACT

IoT firmware faces severe threats to security vulnerabilities. As an
important method to detect vulnerabilities, recurring vulnerabil-
ity detection has not been systematically studied in IoT firmware.
In fact, existing methods would meet significant challenges from
two aspects. First, firmware vulnerabilities are usually reported
in texts without too much code-level information, e.g., security
patches. Second, firmware images are released as binaries, making
the analysis of known vulnerabilities and the detection of unknown
vulnerabilities quite difficult.

This paper presents FirmRec, the first recurring vulnerability
detection approach for IoT firmware. FirmRec features several new
techniques to enable accurate and efficient vulnerability detection.

First, it proposes a new exploitation-based vulnerability signa-
ture representation for firmware, which does not use syntactic
code features but the semantic features along the dynamic vul-
nerability exploitation procedure (thus is more resilient to binary
code changes and fits the context of binary-only firmware). Second,
given a vulnerability report, it designs concolic execution-based
vulnerability signature extraction to understand the vulnerability
exploitation procedure and generate an exploitation-based vulnera-
bility signature. Third, based on known vulnerability signatures, it
employs a two-stage pipeline to accurately and efficiently detect
recurring vulnerabilities.
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Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670275

With a dataset of 320 firmware images, FirmRec efficiently de-
tects 642 vulnerabilities. Till now, 53 CVEs have been assigned.
Compared with SaTC, jTrans, and Greenhouse, FirmRec detects
more vulnerabilities and is more accurate.

Our study shows that recurring vulnerabilities are quite preva-
lent in IoT firmware but require new techniques to detect.
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1 INTRODUCTION

Internet-of-things (IoT) has brought unprecedented convenience
to human life through ubiquitous connected embedded devices,
such as routers, web cameras, and smart printers. According to
recent statistics [2], billions of IoT devices have been installed.
However, vulnerabilities in the embedded software of IoT devices,
i.e., firmware, pose severe threats to personal privacy, property, and
public security. For instance, Mirai and its variants have success-
fully exploited firmware vulnerabilities of a large number of victim
IoT devices for conducting large-scale DDoS attacks [10, 14, 33].
Therefore, it is essential to detect firmware vulnerabilities of IoT
devices early to mitigate the devastating impact.

Third-party analysts play a crucial role in hunting vulnerabilities
in IoT firmware. Actually, numerous IoT firmware vulnerabilities
have been reported by third-party analysts. According to Claroty [8,
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9], at least 64% of IoT vulnerabilities are disclosed by the third
party, while IoT device vendors only account for 28%. Typically,
due to the closed-source nature of IoT firmware, third-party analysts
have to reverse binaries for vulnerability discovery, which is time-
consuming and requires extensive expertise.

To aid security analysts in detecting firmware vulnerabilities,
existing works mainly rely on modeling vulnerability triggering
conditions by static analysis [19, 20, 24, 51, 54] or dynamic test-
ing [17, 22, 30, 37, 66, 68, 69], known as model-based vulnerability
detection. Specifically, dynamic testing relies on sanitizers [56],
while static analysis relies on rules and patterns. However, previous
studies [56, 58] have shown that static and dynamic techniques
are incomplete or unsound in detecting vulnerabilities due to their
inherent limitations (e.g., limited coverage, path explosion).

Recurring vulnerability detection is a complementary technique
to model-based vulnerability detection, which uses known vulnera-
bilities to detect similar new ones. The key insight is that vulnera-
bilities are usually caused by code reuse or similar buggy code logic.
In the area of source code, both model-based vulnerability detec-
tion [15, 42, 70] and recurring vulnerability detection [39, 60] have
been extensively studied. Their results show that recurring vulner-
ability detection can significantly extend the capability of model-
based vulnerability detection. For instance, TRACER improves recall
of CodeQL by 55.8% with a 28.4% precision increase [39]; MVP [60]
detects 97 new vulnerabilities on frequently tested projects fre-
quently tested by model-based approaches.

Similarly, IoT firmware is also severely threatened by recurring
vulnerabilities. Reports [3, 11, 12] have revealed that IoT firmware
from either the same or different vendors is threatened by similar
severe vulnerabilities. Therefore, detecting recurring vulnerabilities
in firmware is an important research problem. However, due to the
closed-source nature of firmware and the lack of code-level vulner-
ability descriptions, detecting recurring vulnerabilities in firmware
has not been studied yet. In general, recurring vulnerability detec-
tion works in two steps: extracting signatures of known vulnera-
bilities and matching vulnerability signatures to detect unknown
but similar ones [39, 60]. Following this workflow, we summarize
three challenges in firmware recurring vulnerability detection.

❶ The primary challenge is how to represent the signatures of
known firmware vulnerabilities for detecting recurring vulnerabilities
across binary code. Existing works mainly rely on source code to-
kens, e.g., normalized statements [60] and operators/expressions [39]
to represent vulnerable code. However, most source code tokens
are dropped during the compilation and thus cannot be used for
firmware. As another line of related research, code clone detection
is also used to detect recurring vulnerabilities and supports both
source code and binary scenarios [23, 25, 27, 28, 32, 44, 59, 62, 67].
However, code clone detection usually leverages general code sig-
natures (e.g., instruction/statement sequences), which fail to dis-
tinguish vulnerability code features from other code features (e.g.,
security patch features and functionality code features), leading to
false positives and false negatives in detecting recurring vulnera-
bilities [60].

❷ The second challenge is how to extract signatures for known
firmware vulnerabilities. Signature extraction usually requires fine-
grained code-level vulnerability information.Most existingworks [36,

40, 60, 61, 63] leverage security patches to extract such informa-
tion. However, patches of firmware vulnerabilities are typically
unavailable for third-party analysts. Alternatively, IoT firmware
vulnerabilities often have public reports (e.g., NVD [6] and exploit-
db [4]), which usually convey useful information to understand the
vulnerability. For example, vulnerability reports have been used to
synthesize attack signatures for intrusion detection [29]. However,
since vulnerability reports only convey text-level vulnerability de-
scriptions, it is still challenging to extract code-level vulnerability
information from the reports. This necessitates a hybrid of text
analysis with binary code analysis to uncover the code-level details
embedded within the firmware, which has not been fully explored.

❸ The third challenge is how to accurately and efficiently detect
unknown recurring vulnerabilities with known vulnerability signa-
tures. In essence, recurring vulnerability detection is a search prob-
lem, i.e., using signatures to discover similar ones in a lot of targets,
which suffers from accuracy and efficiency problems. To improve
detection accuracy and efficiency, existing approaches mainly rely
on semantic information of known vulnerabilities to reduce the
search scope and guarantee accuracy. For example, MVP [60] relies
on patches to filter target functions that potentially match the vul-
nerable functions for efficiency, and extract signatures from both
vulnerable and patched functions to improve accuracy; Tracer [39]
uses well-designed vulnerability-specific code tokens to improve
both accuracy and efficiency. However, these approaches cannot
be applied in the context of binary-only firmware vulnerabilities.

To address the above challenges, we present FirmRec, an au-
tomatic static recurring vulnerability detection approach for IoT
firmware. First, FirmRec features an exploitation-based vulnerabil-
ity signature representation for firmware vulnerabilities. The key
observation is that recurring vulnerabilities not only share similar
code features but also exhibit similar vulnerability-exploiting be-
haviors. Second, FirmRec uses vulnerability reports to extract the
necessary information about vulnerability exploitation and lever-
ages concolic execution to generate an exploitation-based vulnera-
bility signature from a vulnerable binary. Third, FirmRec employs a
two-staged design for vulnerability detection: a light-weight search
stage and a heavy-weight validation stage. This design helps to
accurately and efficiently detect recurring vulnerabilities.

We have implemented a prototype of FirmRec, and compared
it with state-of-the-art vulnerability detection tools—SaTC [19]
(a static firmware vulnerability detector), jTrans [59] (a binary
code clone detector), and Greenhouse [57] (a firmware fuzzer). Our
experiments show that FirmRec outperforms baselines by at least
28.8% in precision and 74.1% in recall, and is 4.2 times faster than
SaTC. Besides, FirmRec has uniquely discovered 53 CVEs and 52
of them are regarded as high or critical severity. We have released
the code and the dataset 1 to ease the follow-up research.
Contributions.We make the following major contributions:
• New Approach. We proposed the first recurring vulnerability de-
tection approach for IoT firmware. Our approach employs several
new techniques, including the exploitation-based vulnerability
signature to represent known vulnerabilities, concolic execution-
based signature extraction, and two-stage vulnerability detection.

1https://github.com/seclab-fudan/FirmRec

https://github.com/seclab-fudan/FirmRec
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• Comprehensive Evaluation.We evaluated FirmRecwith 40 known
vulnerability reports and 320 real-world IoT firmware images. The
results show that: 1) FirmRec is effective in discovering unknown
recurring vulnerabilities; 2) FirmRec significantly outperforms
two state-of-the-art baselines (SaTC and jTrans) in both accuracy
and efficiency; and 3) FirmRec’s internal designs significantly
help improve detection accuracy and efficiency.
• Zero-day Vulnerabilities.We leveraged FirmRec to discover 642
real vulnerabilities from a wide range of IoT products. Until now,
53 CVEs have been assigned where 52 are labeled with high or
critical severity.

2 BACKGROUND AND MOTIVATION

Before discussing the details of FirmRec, we first introduce firmware
recurring vulnerabilities and a real-world example. Then, we an-
alyze the limitations of existing works in detecting firmware re-
curring vulnerabilities. At last, we describe our key insights in
firmware recurring vulnerability detection.

2.1 Scope: Firmware Recurring Vulnerabilities

Recurring vulnerabilities are vulnerabilities caused by similar buggy
code logic. They have been extensively studied in the source code
area [39, 60]. Similarly, IoT firmware is also threatened by recurring
vulnerabilities. For example, a vulnerability in D-Link smart camera
firmware recurs in TP-Link routers, making tens of thousands of
devices exposed to similar remote attacks [11]. These vulnerabilities
recur in IoT firmware due to two primary reasons. Firstly, IoT
devices usually provide similar functionalities (e.g., configuration
backup, file upload, and device reset), so their code logic would be
quite similar. Secondly, developers commonly reuse and customize
third-party components (e.g., BoA HTTP server [12]) in their own
firmware. Considering recurring vulnerabilities can be severe and
widespread, it is essential to detect them in an early stage. In this
paper, we focus on the network-facing binaries of IoT firmware
(e.g., HTTP and UPNP servers) because their vulnerabilities can be
exploited remotely, rendering severe consequences.

2.2 Motivating Example

Figure 1 gives a real-world example of IoT recurring vulnerabili-
ties. Specifically, Figure 1(a) details CVE-2019-20500, a command
injection vulnerability discovered by third-party analysts in D-Link
router firmware. Figure 1(b) presents a recurring vulnerability of
CVE-2019-20500, which we have discovered in Netgear firmware.
Both vulnerabilities were found in the HTTP server of the firmware.

In Figure 1(a), the vulnerable function downloads a configura-
tion file from a user-specified server IP—“downloadServerip". The
“downloadServerip" field is retrieved from the HTTP request at Line
3 and is used to compose a tftp download command at Line 10,
which is then executed by system(). Due to the lack of validation,
an attacker can execute arbitrary commands. For example, an at-
tacker can run “cat /var/passwd” command by crafting a malformed
server IP “downloadServerip=;cat /var/passwd;". Since HTTP down-
load functionality is quite common in IoT firmware, such vulnerable
code logic is prone to recur in other modules or firmware images.

As shown in Figure 1(b), we observe a recurring vulnerabil-
ity of CVE-2019-20500 in the firmware update service of Netgear

firmware. An attacker can inject the same malformed server IP to
the “firmwareServerip" field and run arbitrary commands through
this vulnerability, which is similar to exploit “downloadServerip"
in (a). Besides, while both vulnerabilities share the same vulner-
able logic, their vulnerable functions look significantly different
because they implement different functionalities. We have renamed
the pseudo-code variables and functions to ease the understanding.
Existing Works and Limitations. Due to the unique character-
istics of recurring vulnerabilities (i.e., sharing similar vulnerable
code logic), there has been a standalone research line for detecting
recurring vulnerabilities. In this research area, known vulnerabil-
ities are leveraged to detect similar unknown ones. For example,
the vulnerability depicted in Figure 1(a) can be used to detect Fig-
ure 1(b). Compared with model-based vulnerability detection, re-
curring vulnerability detection automatically extracts code features
from known vulnerabilities for vulnerability detection instead of
solely relying on fixed and pre-defined vulnerability models. Thus,
recurring vulnerability detection is an orthogonal and complemen-
tary research line to model-based vulnerability detection.

Recurring vulnerability detection generally works in two steps:
(1) extracting signatures of known vulnerabilities and (2) matching
these signatures to detect unknown vulnerabilities. According to
vulnerability representations, existing approaches can be divided
into two categories: token-based approach and code clone-based
approach. The former one can only be applied to source code [39, 60]
while the latter one works on both source code and binaries [25, 28,
35, 52, 59]. Unfortunately, these works would meet huge limitations
in detecting recurring vulnerabilities of IoT firmware.

First, the token-based approach leverages source code tokens to
represent known vulnerabilities. However, these tokens are usually
dropped during compilation. In Figure 1(a), only a few names of
dynamically linked external functions are reserved; other tokens
are inferred by decompilers and may be incorrect. For example,
decompilers may recognize the variable type “char*” at Line 3 as
“int” or “void*” due tomissing type information. Thus, it is unreliable
to match source code tokens with vulnerable binary code.

Second, code clone detection, which aims to find recurrences of a
code block (e.g., a function), is also used to detect recurring vulnera-
bilities. A common practice in this line of research is to use features
of the whole code block to represent a known vulnerability. Taking
Figure 1(a) as an example, existing code clone detectors usually
extract the code features from the whole config_download_handler()
function and then use these features to match other functions for de-
tecting code clones. As discussed in MVP [60], such coarse-grained
vulnerability representation has two shortcomings. Firstly, it can-
not detect the recurring vulnerabilities that have similar vulnerable
code logic but embed in functions with different functionality, e.g.,
Figure 1(b). Secondly, coarse-grained vulnerability representation
cannot differentiate the patched version from the vulnerable ver-
sion, introducing a lot of false alarms.

Third, both existing token-based approaches and code clone
detection approaches rely on code-level information of known vul-
nerabilities, which at least encompasses two aspects: vulnerability
locations and vulnerability-relevant code. Vulnerability locations are
essential as they dictate the specific segments from which vulner-
ability signatures are extracted, serving as a cornerstone for the
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01: int config_download_handler(void *ui) {
02: ...
03: char *serverIP = ui_get_input_value(ui, "downloadServerip");
04: ret = check_suffix(var, "xml");
05: if (!ret)
06: return 0;
07: ret = dump_config("/tmp/config.xml");
08: if (ret)
09: return 0;
10: tftp("/tmp/config.xml", var, "-p", serverIP);
12: ...
13: }

(a) CVE-2019-20500 in D-Link

01: int upgrade_handler(void *ui) {
02: ...
03: char *serverIP = ui_get_input_value(ui,"firmwareServerip");
04: tftp("/tmp/upgrade.tar", var, "-g", serverIP);
05: ...
06: }

bool tftp(char *local, char *remote, char *opt, char *ip) {
char cmd[0x84];
snprintf(cmd, 0x80, "/usr/bin/tftp -l %s -r %s %s %s"

" >/dev/console 2>&1", local, remote, opt, ip);
return !system(cmd);

}

(b) A Recurring Vulnerability of CVE-2019-20500 in Netgear

Figure 1: Motivating Example. Both vulnerabilities belong to command injection and share similar vulnerable code logic. Note

that the names of the variables and functions in the pseudo-code have been renamed to ease understanding.

D-Link DWL-2600AP - (Authenticated) OS Command Injection
==========================
Device Firmware version :
[+] 4.2.0.15

--- PoC Session Logs ---
POST /admin.cgi?action=config_save HTTP/1.1
[Hide HTTP headers for space]
check_tftp=up&configBackup=;whoami;whoami;.xml
&downloadServerip=;cat /var/passwd;cat /var/passwd
==========================
no input validation on "configBackup” and "downloadServerip" (the 
input are passed directly to TFTP command)

Security Impact
Vulnerable Image

Exploit Inputs
Information

Figure 2: Vulnerability Report of CVE-2019-20500 [3]. We

hide some redundant or descriptive texts for space limitation.

detection approach. Vulnerability-relevant code pertains to the seg-
ments of code that are directly associated with the vulnerability.
This latter type of information is crucial for the refinement of vul-
nerability signatures, thereby enhancing the detection process. For
example, MVP [60] leverages modified lines in security patches to
derive enhanced vulnerability signatures, which significantly im-
proves its performance over traditional code clone detection meth-
ods, achieving a remarkable increase of at least 75.6% in precision
and 42.4% in recall. However, the dependency on rich vulnerable
code information presents a notable limitation when dealing with
closed-source IoT firmware. In such cases, known vulnerability
information is mainly described by text-level vulnerability reports
instead of code-level security patches. An illustrative example of
this limitation is the vulnerability report for CVE-2019-20500 [3], as
depicted in Figure 2. Lacking explicit references to vulnerable code
slices, vulnerability reports complicate the task of pinpointing the
precise location or the relevant code associated with a vulnerability.

2.3 Key Ideas

In light of the above limitations and the challenges mentioned in §1,
we have the following key ideas to design an accurate and efficient
recurring vulnerability detector for IoT firmware.

Idea-I: Leveraging Exploitation-based Vulnerability Signa-

tures. As discussed in the previous section, the major limitation of
existing works is that their vulnerability representations are not

applicable in binary code or are too coarse-grained. To design an
appropriate vulnerability signature representation for firmware,
our observation is that recurring vulnerabilities not only share sim-
ilar code features but also exhibit similar vulnerability-exploiting
behaviors. Specifically, a vulnerability is typically exploited within
three steps: reading malformed inputs from the “exploitation entry",
driving the code execution along the “exploitation flow" and trigger-
ing the final “exploitation impact" (e.g., buffer overflow). Moreover,
we observe that such a procedure is similar among recurring vulner-
abilities because developers usually make similar mistakes when
implementing semantically similar code.

Taking Figure 1 as an example, both vulnerabilities start by read-
ing inputs from “exploitation entry", where both read a server IP;
then, they can be exploited with the same malformed server IP val-
ues containing a “;" character, which drives code execution along
similar “exploitation flows"; finally, they trigger the same “exploita-
tion impact"—command injection, where the malicious inputs are
used to invoke arbitrary commands. Thus, we propose using the
exploitation procedure (including “exploitation entry", “exploita-
tion flow" and “exploitation impact") to represent the signature of a
known IoT vulnerability. By capturing the semantic features during
the exploitation of a vulnerability, the new representation is more
resilient to binary code changes than previous works. We present
more details and examples in §3.1.

Idea-II: Extracting Vulnerability Signatures from Vulner-

ability Reports with Concolic Execution. After designing the
exploitation-based signature representation for firmware vulnera-
bilities, the next challenge is to extract such signatures from vulner-
ability reports of IoT firmware, since there is no code-level informa-
tion about the vulnerabilities, such as security patches. We observe
that though the vulnerability reports do not mention any code-level
information, they typically mention the exploiting method and the
potential exploitation impact, which may help to locate the vulnera-
bility in an affected firmware. For example, the vulnerability report
shown in Figure 2 says that the vulnerability in Figure 1(a) could
cause “command injection" and provides an exploit input to demon-
strate the exploiting method of the vulnerability. Our key idea is
to leverage concolic execution (a method that combines concrete
and symbolic execution [50, 55]) to identify a feasible exploitation
procedure in an affected firmware which triggers the described
security impact with the described exploit input.
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We use Figure 2 and Figure 1(a) as an example to illustrate our
idea. Specifically, we first locate the code that may read the attack
payloads. Since the constant “downloadServerip" occurs both in
the exploit input (Figure 2) and the firmware code, we recognize
Line 3 in Figure 1(a) as a potential vulnerability exploitation entry.
Then, from this code point, we leverage concolic execution to verify
there is an exploitable path. The concolic execution initializes the
“serverIP" variable with the concrete value “;cat /var/passwd;", as
the “downloadServerip" field in the exploit input is assigned to this
variable. After that, the concolic execution explores the program
paths from Line 3. During exploration, all uninitialized variables are
marked as symbolic (representing arbitrary value) to improve code
coverage. Finally, the execution could find a path that reaches Line
10 and triggers the system() syscall, which executes a command like
“...;cat /var/passwd;...". This shows an attacker-controlled command
injection is triggered, just as described in the report (Figure 2). Thus,
the discovered exploitation procedure can be used to extract the
signature of this vulnerability. Note that the concolic execution
part actually has more issues to handle (e.g., the discovery of unde-
sired vulnerabilities and the slow path exploration) than the above
description, which are given in §3.2.

Idea-III: BalancingAccuracy and Efficiencywith Two-stage

Vulnerability Detection. Accuracy and efficiency are two impor-
tant properties of a vulnerability detector. However, since our vul-
nerability signatures are based on runtime exploitation behaviors,
the detection phase also require to matching the runtime exploita-
tion behaviors, which should leverage an accurate analysis and is
time-consuming. To address this challenge, our idea is to employ
a two-stage design: the first stage uses a lightweight analysis to
find recurring vulnerability candidates and the second stage uses a
heavyweight analysis to verify these candidates.

As shown in Figure 1(a), the attack input is injected into the
“downloadServerip" field. Thus, we use a lightweight constant anal-
ysis to find similar input reading locations. In this way, we locate
Line 3 of Figure 1(b) as a potential vulnerability candidate because
it reads inputs from a similar field, i.e., “firmwareServerip". From
Line 3 of Figure 1(b), our heavyweight analysis uses concolic execu-
tion to validate whether there is an exploitation flow to trigger the
same exploitation impact as the given vulnerability, i.e., command
injection. To narrow the search scope of the concolic execution, the
attack input value “;cat /var/passwd;” is used to initiate the serverIP
variable, and the exploitation flow of the given vulnerability is used
as guidance (detailed in §3.3). Following the two-stage design, we
could find a good balance between accuracy and efficiency.

3 DETAILED APPROACH

Based on our key ideas mentioned in §2.3, we design an auto-
matic recurring vulnerability detection approach for IoT firmware,
namely FirmRec. Figure 3 depicts its workflow. In general, FirmRec
works in two steps. ❶ FirmRec automatically analyzes known vul-
nerability reports to retrieve some necessary information about
the vulnerabilities and leverages concolic execution [50, 55] to ex-
tract vulnerability signatures from the vulnerable firmware images
(see §3.2). To facilitate the detection of recurring vulnerabilities
in firmware, FirmRec adopts a new exploitation-based vulnera-
bility signature, which consists of three parts: exploitation entry,

Entry

Exploitation Entry

Exploitation Flow

Exploitation Impact

Exploitation-based
Vulnerability Signature

Vulnerability
Report

Vulnerable
Firmware

Impact
Description

Concolic
Execution

Report
Analysis

Firmware
Database

Candidate
Searching

Vulnerability
Verification

Candidates

Flow & Impact

Two-stage Vulnerability Detection

Concolic Execution-based
Signature Extraction

Alarms

Input
Value

Figure 3: FirmRecWorkflow.

exploitation flow, and exploitation impact (see §3.1). ❷ With the
extracted signatures of known vulnerabilities, FirmRec automat-
ically detects recurring vulnerabilities in other firmware images
within two stages (i.e., a search stage and a verification stage), to
guarantee both accuracy and efficiency (see §3.3).

3.1 Exploitation-based Vulnerability Signature

Our exploitation-based vulnerability signature consists of code fea-
tures related to the dynamic exploitation procedure. Technically,
we divide the exploitation procedure into three steps: reading mal-
formed inputs from the exploitation entry, driving the code execu-
tion along the exploitation flow, and triggering the final exploitation
impact. Accordingly, our exploitation-based vulnerability signature
also consists of three parts: “exploitation entry", “exploitation flow",
and “exploitation impact". Next, we will detail their designs. Figure 4
shows an example of such signature.

3.1.1 Exploitation Entry. A vulnerable program may have several
entries (program locations) that read external inputs. The exploita-
tion entry represents the program location that reads the exploit
input that finally triggers the exploitation impact. For example,
Line 3 of Figure 1(a) is the exploitation entry because it reads a mal-
formed serverIP which triggers the attacker-controlled command
injection at Line 10.

As explained later, the exploitation entry is the entry point to
extract vulnerability signatures and detect recurring vulnerabilities,
so it should be lightweight to locate in a firmware image.Meanwhile,
it should be unique enough to stand out from benign input reading
locations (denoted as input entries). We observe that firmware
binaries usually use constants to read or validate inputs, and these
constants usually describe the semantic meaning of the handled
data. For example, Line 3 of Figure 1(a) and Line 3 of Figure 1(b)
use the constant “downloadServerip" and “firmwareServerip" to read
a server IP address, respectively. Therefore, we use such constants
to represent the exploitation entry, such as “downloadServerip".

3.1.2 Exploitation Flow. The exploitation flow describes the key ex-
ecution trace during the exploitation.We only consider vulnerability-
relevant code because vulnerability-irrelevant code behaviors (e.g.,
“dump_config" in Figure 1(a)) are useless to describe the vulnerable
logic and even introduce noises in detecting vulnerabilities.
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Exploitation-based Vulnerability Signature

Exploitation Entry: constant similar to “downloadServerip”

Exploitation Impact: sanitizer of command injection

Exploitation Flow:
Exploit Inputs: downloadServerip-like-var=“;cat /var/passwd;…”

Essential Function Call: tftp-like-call(string pointer, string pointer,                  
string pointer, string pointer)

Figure 4: Exploitation-based Vulnerability Signature of CVE-

2019-20500.

To this end, we consider two kinds of vulnerability exploitation
behaviors to represent the exploitation flow. First, the input data
read at the exploitation entry is included in the exploitation flow.
Our consideration is that the exploit input data directly determines
whether the vulnerability can be triggered or not, thus capturing
the most important behaviors of the exploitation. Moreover, the
exploit input is not specific to a concrete vulnerable code imple-
mentation (e.g., both command injection vulnerabilities in Figure 1
can be exploited by serverIP=“;cat /var/passwd;"), and thus it is very
helpful to detect more recurring vulnerabilities. Second, we include
essential function calls that occurred during the exploitation in the
exploitation flow. A function call is deemed as essential because
it enables the exploitation. Specifically, FirmRec considers three
kinds of essential function calls: i) it is the ancestor of the function
that triggers the vulnerability (i.e., vulnerability-triggering func-
tion); or ii) it modifies the sensitive argument of the vulnerability
triggering function; or iii) it modifies the data that affects the path
conditions to the vulnerability-triggering function. FirmRec will
automatically extract these essential function calls as part of the
signature. Considering the function names may be stripped in the
firmware binary, we match the prototypes of the essential function
calls in the signature to address this issue.

3.1.3 Exploitation Impact. The exploitation impact is the security
consequence caused by a vulnerability. It describes the purpose of
the attacker and is an important feature of the vulnerability. Though
the exploitation impact is described as text in a vulnerability report
(e.g., NVD), we need to capture it at the code level to support
vulnerability detection. Technically, FirmRec employs sanitizers to
identify the triggering of a vulnerability, so we use the triggered
sanitizer to represent the exploitation impact of a vulnerability. For
example, both vulnerabilities in Figure 1(a) and Figure 1(b) can
be captured by a command injection sanitizer. We present more
sanitizer implementation details in §4.1.

3.2 Concolic Execution-based Signature

Extraction

Before detecting recurring vulnerabilities, FirmRec first needs to
extract the signatures of known vulnerabilities from vulnerability
reports. As shown in Figure 3, FirmRec has two steps for signature
extraction. First, it automatically analyzes a vulnerability report to
extract the necessary information to understand the vulnerability.
Second, it uses concolic execution to locate the vulnerability and
the vulnerability-relevant code in an affected firmware image and
then generates an exploitation-based vulnerability signature.

3.2.1 Vulnerability Report Analysis. To facilitate concolic execution-
based vulnerability signature extraction, we extract three types of
vulnerability information from a vulnerability report showcased
by Figure 2: (1) affected products and versions of the vulnerability
that are used to find a vulnerable image; (2) a description of the
security impact when the vulnerability is triggered/exploited; (3)
attack inputs that are used to trigger/exploit the vulnerability.

Inspired by IoTShield [29], we introduce a pattern-based ap-
proach to automatically extract such vulnerability information
from reports. First, FirmRec extracts the information about affected
products and versions. If FirmRec can find a link to a public vul-
nerability database (e.g., NVD) from the report, it directly extracts
the product and version information (e.g., the Common Platform
Enumeration) from the database. Otherwise, we use regular ex-
pressions to match the product/version string in the vulnerability
report. The product/version strings are collected/constructed the
same as IoTShield [29]. Second, FirmRec extracts the description
of a vulnerability’s security impact using two methods. For most
cases, a public vulnerability database (e.g., NVD) will label the vul-
nerability category (e.g., CWE number), which describes its security
impact. In these cases, FirmRec uses the vulnerability category’s
name to describe the security impact. In other cases, FirmRec uses
common keywords that describe the security impact (e.g., buffer
overflow) to match the vulnerability report. If such keywords are
found, they are used to describe the security impact. Table 1 shows
these keywords. Third, FirmRec extracts exploit inputs from vul-
nerability reports. As described in [29], the exploit inputs may be
represented as network traffic logs or PoC/exploit scripts. We first
define representative patterns of exploit inputs to locate them in
the reports. In most cases, the traffic logs and scripts can be identi-
fied with special markers (e.g., “‘ in Markdown language). In other
cases, they are usually introduced by special texts, such as “Proof
of Concept". Then, from the location of the exploit inputs, FirmRec
extracts their concrete values, which will be used for concolic ex-
ecution. The traffic log directly provides the concrete inputs we
need, while for the scripts, FirmRec executes them and extracts the
concrete values from the traffic by hooking network-facing APIs
(e.g., send() in Python scripts).

3.2.2 Signature Generation. With the information extracted from
the vulnerability report, signature generation is initialized by col-
lecting a vulnerable firmware image. Specifically, FirmRec queries
the extracted affected products and versions to find the depicted
image in a firmware database, such as the one built by [17].

FirmRec then leverages concolic execution to discover the vul-
nerable code of the given vulnerability in the firmware. However,
this step is non-trivial due to two reasons. First, the firmware image
may contain multiple vulnerabilities, and it is difficult to confirm
whether a discovered vulnerability is the given one. Second, con-
colic execution is usually quite slow in exploring many program
states, leading to significant efficiency concerns.

To address these problems, we introduce three new designs to
accurately and efficiently discover the given vulnerability with con-
colic execution. ❶ To eliminate the need to analyze every input
entry, FirmRec only focuses on those mentioned in the vulnerabil-
ity report. Besides, it starts concolic execution from these specific
locations rather than the binary program’s entry point to shorten
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the execution path (inspired by the idea of under-constrained sym-
bolic execution [50, 55]). ❷ During concolic execution, FirmRec
adaptively prunes/explores function calls. It first employs an ag-
gressive strategy that prunes all uninteresting function calls for
efficiency. If no vulnerability is discovered, it restarts the execution
and adopts a new strategy to gradually explore previously pruned
function calls. This design prioritizes exploring shallow code logic
while still guaranteeing that the deep code logic (especially that
affects the triggering of the vulnerability) could be explored during
the execution, albeit at a later stage. ❸ When a vulnerability is
discovered, FirmRec features a verification step to confirm whether
it matches the given vulnerability report.

Following the above designs, we depict the signature generation
algorithm in Algorithm 1. Initially, Line 1 identifies the program lo-
cations that read exploit inputs in the vulnerable firmware. Then, for
each identified location 𝐿, Line 4 adaptively explores the code from
this point with concolic execution until a sanitizer triggers a vulner-
ability. Line 5 verifies whether the triggered vulnerability matches
the vulnerability report. If the given vulnerability is discovered, Line
6 extracts its signature by inspecting the vulnerability-exploiting
execution trace. Specifically, the vulnerability signature consists
of the exploitation entries, the essential function calls that enable
the triggering of the vulnerability, the input values fed into the
exploitation entries, and the sanitizer that triggers the vulnerability.
Next, we present more details about each major step.

Algorithm 1 Vulnerability Signature Generation
Procedure GenerateSignature(𝐼𝑚𝑎𝑔𝑒, 𝐸𝑥𝑝, 𝐼𝑚𝑝𝑎𝑐𝑡 )
Input: 𝐼𝑚𝑎𝑔𝑒 - A vulnerable image,

𝐸𝑥𝑝 - Exploit input,
𝐼𝑚𝑝𝑎𝑐𝑡 - Exploitation impact

Output: 𝑆𝑖𝑔 - Vulnerability signature
1: 𝐿𝐿 ← 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑦𝐼𝑛𝑝𝑢𝑡𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (𝐼𝑚𝑎𝑔𝑒, 𝐸𝑥𝑝 )
2: for 𝐿 ∈ 𝐿𝐿 do

3: 𝐸𝑥𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝐼𝑛𝑖𝑡𝐶𝑜𝑛𝑐𝑜𝑙𝑖𝑐𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 (𝐿, 𝐸𝑥𝑝 )
4: 𝑉𝑢𝑙 ← 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 (𝐸𝑥𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 )
5: if 𝐼𝑠𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑉𝑢𝑙 ) then
6: return 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (𝑉𝑢𝑙 )
7: end if

8: end for

Identify Input Entries and Initialize Concolic Execution (Line

1&3). FirmRec first identifies all input reading functions of a firmware
binary, then it locates code that potentially reads the given exploit
input (i.e., input entries) in the vulnerable firmware, and finally, it
initializes the concolic execution with the input. The three sub-steps
are described below.

(a) FirmRec first identifies two types of input reading functions
that are often encountered in IoT firmware—raw byte reading func-
tions and structure (data) reading functions. Raw byte reading func-
tions directly retrieve raw bytes via well-defined OS APIs or sys-
tem calls, such as recvfrom() (specified in the POSIX standard).
Due to their employment of standardized specifications and well-
established implementation practices, FirmRec swiftly identifies
them through symbol or pattern matching.

Structure reading functions are also commonly used in IoT firmware
as noted in [19]. These functions typically leverage constant names

to extract structured data, such as “downloadServerip" in Figure 1.
However, such functions lack standardization and vary widely due
to different development practices, complicating the automated
identification. Traditional methods either rely on pre-defined func-
tion symbols [51] or leverage likely external input names [19]
to infer these functions. Nonetheless, these methods fall short of
capturing all structure reading functions. FirmRec confronts this
challenge by proposing a conservative behavior-based method to
recognize as many structure reading functions as possible while
eliminating false positives with follow-up analysis. Specifically, we
observe that such functions usually take constants as input, and
their outputs will be used in the binary. Thus, if the majority (more
than 80%) of calls to a function conform to such behavior, it is
recognized as a structure reading function.

(b) After the identification of input reading functions, FirmRec
finds the locations that may read the given exploit input. The ba-
sic idea is to extract the constants representing individual data
elements from the exploit input and use these constants to locate
the reading locations in the firmware (as illustrated in §2.3). To
comprehensively extract these constants, FirmRec first parses the
exploit input using common parsers, e.g., HTTP, JSON, XML, URL,
and YAML. Based on the parsed results, FirmRec collects constant
names of the input data elements. When these parsing tools fall
short, FirmRec treats the input as raw bytes and extracts all discov-
ered constants. Specifically, FirmRec extracts uncommon 4-byte
numbers (excluding 0, 2𝑛 , and 2𝑛 ± 1), visible name characters, and
delimiters between invisible characters.

Then, FirmRec uses the extracted constants from the exploit
input to match the constants discovered within the firmware bina-
ries, pinpointing potential locations that may read the exploit input.
Specifically, the matched constants can either be names of structure
reading locations or constants used to process (e.g., validate) inputs
at raw byte reading locations. These constants are extracted from
the arguments of data reading functions or input comparison code
with traditional binary data-flow analysis, without relying on any
debug symbols. Given that an exploit input may be consumed with
multiple readings at different locations, FirmRec groups reading
locations on the same execution path and starts concolic execu-
tion from the first input entry. Besides, to improve the efficiency
of discovering the target vulnerability, FirmRec prioritizes the in-
put entry if its group has more relevant constants to the original
vulnerability report.

(c) For each identified input entry, FirmRec feeds it with con-
crete values provided by the exploit input for concolic execution.
According to the type of input reading function, FirmRec feeds
the exploit input data in different ways. For functions that read
raw bytes, FirmRec follows their API standards to load and store
the input data. For functions that read structured data, FirmRec
uses the constant name to get the data in the exploit input and
feed the data into its output variables. By using the concrete values,
FirmRec can use the concolic execution to only explore targeted
program paths (that can trigger the given vulnerability).
Adaptively Prune/Explore Function Calls (Line 4).When the
concolic execution is initialized, FirmRec starts to discover the
given vulnerability by exploring the code. In theory, symbolic/con-
colic execution should step into every function call to explore all
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the possible program paths. However, this is prone to cause the
classical path explosion problem. In fact, not all the functions met
are important to the vulnerability discovery; thus, such functions
could be safely skipped during the exploration. In this way, since
few useless code are explored, symbolic/concolic execution could
explore deeper code space and probably detect more vulnerabilities.
That is why existing symbolic/concolic execution-based firmware
vulnerability detectors adopt function call pruning during the code
exploration [19, 51]. However, the most challenging problem is
determining whether a function call can be safely pruned.

By inspecting existing approaches, we find both SaTC [19] and
Karonte [51] employ an aggressive function call pruning strategy.
Specifically, they taint the variables that are read from the external
and propagate the taint tags during the symbolic execution. When
a function call is met, they will prune the function call if it does not
have a tainted argument. The pruned call is replaced with stubs that
only return symbolic values. Though this strategy is lightweight
to implement, it would miss some function calls that are useful to
detect vulnerabilities. For example, a function call may manipulate
tainted variables through global variables (and thus affects the
triggering of a vulnerability), even if its argument does not have a
tainted argument. Therefore, such an aggressive pruning strategy
would cause false positives/negatives to vulnerability detection.

To mitigate the above limitation, we propose an adaptive func-
tion call pruning strategy. The core idea is to first explore shallow
function calls and then dive into deeper function calls gradually
if no desired vulnerability is detected. Specifically, FirmRec first
adopts an aggressive function call pruning strategy during con-
colic execution (i.e., same to SaTC [19] and Karonte [51]). Then,
if no vulnerability is discovered, FirmRec updates the strategy by
adding previously pruned function calls. This continues until a
vulnerability is discovered or timeout.
Verify Known Vulnerabilities (Line 5). During the concolic ex-
ecution, FirmRec may trigger some abnormal program behaviors
that can be captured by sanitizers and reported as vulnerabilities.
Actually, many of such abnormal behaviors might be false alarms
due to several reasons, e.g., the concolic execution doesn’t start
from the entry point, or the input read location is wrong. Thus, we
choose to only identify the vulnerability with aligned behaviors
to the vulnerability report, which has been confirmed to be a true
vulnerability. To this end, FirmRec requires two properties on the
triggered vulnerability. First, FirmRec ensures that the vulnerabil-
ity is controlled by the exploit input. For example, if a command
injection vulnerability is triggered but the command cannot be
controlled by the exploit input, it is not a real vulnerability. Tech-
nically, this requirement is achieved with a taint analysis to track
the data flow from the exploit input. Second, FirmRec guarantees
that the vulnerability is triggered by the sanitizers that match the
security impact described in the given vulnerability report. For ex-
ample, FirmRec shall ignore a buffer overflow vulnerability when
the report describes a command injection vulnerability.

3.3 Two-stage Vulnerability Detection

Based on the extracted signatures, FirmRec detects unknown re-
curring vulnerabilities with a two-stage design to guarantee both
the detection accuracy and efficiency. Technically, in the first stage,

FirmRec adopts a lightweight analysis to efficiently search for vul-
nerability candidates as many as possible. Then, in the second stage,
FirmRec adopts a heavyweight concolic execution to accurately
verify whether a vulnerability candidate is a recurring vulnerabil-
ity. Meanwhile, both stages are guided by the exploitation-based
vulnerability signatures to further reduce the search scope.

3.3.1 Stage 1: Vulnerability Candidates Searching. FirmRec system-
atically searches for input entries semantically similar to known
exploitation entries and flags them as potential recurring vulnerabil-
ity candidates. First, FirmRec identifies the input entries in a target
firmware binary and extracts the constants that are used to read
or validate inputs for each input entry, using the same technique
for signature extraction (see §3.2.2). We differentiate two kinds of
constants that are extracted at each input entry: named and un-
named constants. The named constants are used as names to read
input data. For example, “downloadServerip" is a named constant
to read an IP address, and “addr_list" is a named constant used to
read addresses in a list format. The unnamed constants are used to
process input data. For instance, the punctuation symbol “dot" is an
unnamed constant used to divide name spaces or file suffixes, and
“comma" is an unnamed constant often used to separate list elements
during parsing. These constants encode either meanings or formats
of the input data, which are closely relevant to the semantics of the
input entries. Thus, FirmRec then uses the semantic similarity of
these constants to find input entries semantically similar to a given
exploitation entry.

Specifically, for the unnamed constants, FirmRec only identifies
input entries with exactly the same constants, because unnamed
constants are highly sensitive to alterations (e.g., “dot" and “comma"
differ one ASCII bit but have significantly different meanings). For
the named constants, simply identifying similar names by their lit-
eral words may cause false negatives, because semantically similar
names can vary significantly in their literal forms (e.g., both “pass-
word" and “auth_secret" represent passwords). To avoid such false
negatives, our idea is to leverage the large languagemodel (LLM) [1]
to compare names by their underlying semantics. We design an
LLM prompt that uses two key requirements for identifying similar
names. First, the names’ basic meaning, i.e., denotation, must be
analogous to discover similar pairs like “password" and “auth_secret".
Second, the names should potentially convey similar data formats,
suggesting their potential use in analogous data processing logic.
The detailed prompt is presented bellow. If the LLM answers Yes,
the compared names are deemed as similar and the corresponding
input entry will be identified as a vulnerability candidate. Owing
to LLMs’ strong semantic understanding capability, this helps to
discover vulnerability candidates as many as possible. For example,
in our experiments, these name pairs are deemed as similar: key vs
passphrase, dev_name vs deviceId, ssid vs wifiFilterListRemark.

Infer whether two variables from IoT software may satisfy both
requirements:

(1) have similar denotation words;
(2) may convey similar data formats.

The answer is ‘Yes‘ or ‘No‘: {𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡1}{𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡2}
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A practical issue here is efficiency. According to our experiment,
it averagely costs 1 minute to compare about 30 name pairs with
LLMs. To improve efficiency, FirmRec uses two steps for name simi-
larity comparison. First, it uses semantic-aware sub-word matching
to recognize name pairs that share no sub-word and deem them
dissimilar. This greatly reduces the need to use LLM, as most name
pairs are dissimilar in semantics. Then, only a small part of name
pairs require the LLM-powered semantic comparison. To avoid
overlooking semantically-similar names, the sub-word matching
considers not only the words that form the named constant but also
their abbreviation and synonym words. To obtain such sub-words,
FirmRec employs LLMs to segment words and find abbreviation-
s/synonyms. The segmented words and their abbreviations/syn-
onyms words are kept in a dictionary, so the semantic-reserving
sub-word matching only takes linear time to finish. In our exper-
iments, this two-step approach reduced 94.4% of needs for using
LLMs while still maintaining high accuracy.

3.3.2 Stage 2: Vulnerability Verification. Each vulnerability can-
didate identified in the first stage has a similar input entry to the
exploitation entry of a known vulnerability. In this stage, FirmRec
verifies whether the input entry of each vulnerability candidate
can trigger a recurring vulnerability. To guarantee detection accu-
racy, FirmRec applies concolic execution for verification. Besides,
to improve the efficiency of the concolic execution, we use the ex-
ploitation flow (i.e., exploit input data and essential function calls)
of the given vulnerability signature as guidance.

Technically, FirmRec starts the concolic execution from the input
entry of a vulnerability candidate and feeds the exploit input data
(which is kept in the exploitation flow of the given vulnerability
signature) into the entry. Then, the concolic execution explores
the program states path-sensitively and precisely tracks data flows.
During the exploration, FirmRec uses static sanitizers detailed in
§4.1 to capture the triggering of a vulnerability. If a candidate shares
the same exploitation impact as the given signature and is triggered
by the exploit input, FirmRec reports it as a recurring vulnerability.

Guided Function Call Pruning Strategy: To mitigate path explo-
sion during concolic execution and avoid pruning some essential
function calls to trigger the vulnerability, FirmRec leverages the
known exploitation flow to guide the pruning. Specifically, FirmRec
retains essential function calls given by the vulnerability signature
and prunes non-essential ones. However, a key technical challenge
arises when attempting to match function calls from a vulnera-
bility signature to those that occur in a different firmware image.
Traditional binary code similarity techniques, while useful, often
meet efficiency and accuracy issues. These techniques must analyze
the whole function code for calculating code similarity, but they
still miss essential function calls particularly when functions share
similar purposes but differ in implementations.

Instead, we propose matching functions by their prototypes.
Specifically, we infer the function prototype by recognizing the ar-
gument types based on their run-time values. For example, when an
argument points to a constant string, FirmRec classifies it as a string
pointer. Similarly, FirmRec also identifies various argument types
encountered during execution, including concrete number/number
pointer, symbolic value/value pointer, etc. This strategy, while may
keep some inessential function calls (due to the false positives in

functionmatching), will not hurt the vulnerability detection capabil-
ity. Compared with the adaptive function call pruning strategy used
in signature extraction (see §3.2.2), such a guided strategy is more
efficient and appropriate for detecting recurring vulnerabilities.

4 EVALUATION

We conducted extensive experiments to evaluate FirmRec’s perfor-
mance in detecting real-world vulnerabilities (RQ1), compare it
with existing vulnerability detection tools (RQ2), and measure the
contributions of its internal designs (RQ3).

4.1 Experiment Setup

Prototype.We implemented a prototype of FirmRec with about
9,000 lines of Python code and 3,600 lines of Java code. For a vulnera-
bility report, the prototype used Python scripts to extract necessary
vulnerability information. For a firmware image, the prototype first
used Binwalk [7] to extract binaries; then it used Ghidra [5] to
identify and locate all input reading locations and used the concolic
execution engine of Angr [55] to generate known vulnerability
signatures and detect recurring vulnerabilities. Currently, the pro-
totype focuses on Linux-based firmware. To extend the prototype
to other types of firmware, e.g., RTOS firmware, Angr needs more
firmware information such as load address, architecture, and mem-
ory layout. When generating vulnerability signatures and verifying
a vulnerability candidate, the concolic execution engine was set
with a timeout of 5 and 10 minutes correspondingly. When identi-
fying vulnerability candidates, the prototype leverages ChatGPT
LLM [1] with its temperature parameter set to zero. This makes the
results more deterministic and reproducible.

Similar to existing firmware vulnerability detectors like SaTC [19],
the prototype detects 4 kinds of vulnerabilities with sanitizers dur-
ing the concolic execution: stack, heap, data segment buffer over-
flow, and command injection. The core idea is to detect the direct
security impact of vulnerabilities during exploitation. Specifically,
the stack overflow sanitizer detects whether the return pointer is
overwritten by malicious inputs using a return stack; the heap over-
flow sanitizer checks whether a write operation (e.g., memcpy())
writes multiple heap chunks, thus corrupting the heap data, by
maintaining heap boundary information; the data segment over-
flow sanitizer checks whether a write operation writes across data
segments or variables, where we only consider data segments and
variables whose boundaries can be recovered through binary anal-
ysis; and the command injection sanitizer checks whether attacker-
controlled inputs are used to invoke command execution APIs (e.g.,
system()). All these checks are performed at specific program loca-
tions using a lightweight instruction-level hook during symbolic
execution. For example, the stack buffer overflow sanitizer is only
called at function returning instructions. Besides, we have summa-
rized the security impact description for each sanitizer to facilitate
the mapping between them (See Table 1).
Firmware Images. For the evaluation, we collected 9,993 firmware
images from the official websites of 12 popular IoT vendors. Uti-
lizing the binwalk tool [7], we extracted file systems from 4,708
images. To effectively evaluate FirmRec, we employed a two-step
sampling process on the extracted binaries. First, to ensure a broad
representation of the vendor’s product range, we randomly selected
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Table 1: The sanitizers and their corresponding security impact descriptions.

Sanitizer Security Impact Description

Stack Buffer Overflow stack overflow, stack-based buffer overflow, CWE-121 buffer overflow, overflow a buffer, denial of service,
DoS, out-of-bounds, OOB, improper boundary check,
CWE-119, CWE-120, CWE-306, CWE-787, CWE-788,
CWE-823

code execution, elevate privileges, bypass
authentication, execute arbitrary code, execution of
arbitrary code, improper input validation, improper
validation, RCE, CWE-826

Heap Buffer Overflow heap overflow, heap-based buffer overflow, heap
buffer overflow, CWE-122

Data Segment Buffer Overflow overwriting of sensitive memory

Command Injection command injection, command execution, execute arbitrary command, execute arbitrary OS command, run
arbitrary commands, execute system command, CWE-20, CWE-77, CWE-78

approximately 1
15 of the images from each vendor. This approach

aligns with standard practices in data representativeness and helps
mitigate selection bias. Next, we focused on extracting network-
facing binaries from these images, given they are more susceptible
to network-based attacks. This sampling approach is in line with
methodologies adopted in prior research [19, 51]. Finally, we col-
lected a dataset of 2,111 unique binaries from 320 firmware images.
Our dataset covers a variety of IoT products, such as VPN, camera,
AP, smart switch, WiFi extender, router devices.
Baselines. To answer RQ2, we need to select several baselines. To
the best of our knowledge, FirmRec is the first recurring vulnerabil-
ity detector for firmware. Thus, we have to choose baselines from
related research areas. After a literature review, we found threemost
related research areas: binary code clone detection, static analysis-
based firmware vulnerability detection, and grey-box fuzzing.
• Binary code clone detection.We chose jTrans [59], which adopts a
Transformer architecture for binary code similarity detection and
outperforms previous approaches in various settings. Specifically,
we collected known vulnerable functions and directly used the
model trained by jTrans to identify their vulnerable code clones.
• Static firmware vulnerability detection.We chose SaTC [19], which
is the state-of-the-art firmware vulnerability detector and out-
performs the previous tool—Karonte [51]. It takes a firmware
image as input and identifies the shared variable names between
the front-end files and back-end functions. Then, it locates the
input reading locations of the variables with the identified names
and leverages symbolic execution to find sensitive sinks (same
as FirmRec) reachable from these locations. If a sensitive sink
is found and its critical argument (e.g., the command argument
to the system() syscall) can be controlled by the front end, SaTC
reports it as a vulnerability. We ran SaTC with its default settings.
• Grey-box firmware fuzzing. We chose Greenhouse [57]—the lead-
ing firmware fuzzing tool. By addressing several key roadblocks
in emulation, Greenhouse can effectively rehost firmware user-
space services and fuzz them with AFL++ [13]. We ran Green-
house for 24 hours for each binary under test.

Known Vulnerabilities. Both jTrans and FirmRec require known
vulnerabilities as inputs. We collected public IoT vulnerabilities
from NVD [6]. First, we searched all the vulnerability entries re-
ported from 2019 to 2023 with common IoT vendor names (e.g.,
dlink) and IoT-related keywords (e.g., router). Second, we manually
checked the search results against four conditions to build a known
vulnerability dataset for comparing jTrans and FirmRec: (1) it is
a true IoT firmware vulnerability; (2) there is at least one affected
firmware image in our collected dataset; (3) we could locate the

vulnerable functions in the affected firmware image; (4) we could
find a vulnerability report that describes (partial) exploit inputs and
the exploitation impact. Note that the first and second conditions
are natural requirements for our evaluation, the third condition is
only required by jTrans, and the fourth condition is automatically
verified by FirmRec with given vulnerability reports. By checking
54 vulnerabilities, we finally collected 40 known vulnerabilities
from 8 vendors that satisfied all four conditions. They are used as
inputs for jTrans and FirmRec in the following experiments.
Environment. We ran FirmRec and SaTC on a Ubuntu 20.04 LTS
machine equipped with a 2.30 GHz Intel Xeon(R) Gold 5218 CPU
and 245 GB memory. Since jTrans relies on a neural network model,
we ran jTrans on a Ubuntu 18.04.6 LTS machine equipped with a
3.20 GHz Intel(R) Xeon(R) Silver 4215R CPU, an NVIDIA GeForce
RTX 3070 GPU, and 58 GB memory.
Table 2: FirmRec vulnerability detection results (RQ1).

Vendor

Stage I Stage II

# All Entries # Found Entries # Alarms # Sampled
1

# Vulns
1

ASUS 92,360 6,129 24 6 2
Buffalo 139,466 3,681 502 126 101
Cisco 49,038 4,252 131 33 9
Dahua 7,032 89 0 0 0
D-Link 132,214 7,081 331 83 58
Linksys 86,254 6,679 200 50 20
Mikrotik 494 5 0 0 0
Netgear 720,324 66,960 2,653 663 241
Tenda 190,944 25,708 733 183 155
Tomato 59,522 4,464 104 0 0

TOTOLink 25,784 3,074 78 20 17
TP-Link 115,514 17,479 214 54 39

Summary 1,618,946 145,601 4,970 1,244 642
1 The results are reported by randomly sampling 25% of all alarms.

4.2 RQ1: Vulnerability Detection Experiments

In this experiment, we applied FirmRec to detect vulnerabilities in
real-world firmware images. First, FirmRec generated vulnerability
signatures for the 40 known vulnerabilities in 18,428 seconds. Then,
using the extracted vulnerability signatures as input, FirmRec spent
11,259,535 CPU seconds to finish the analysis of 2,111 binaries.

Table 2 presents the vulnerability detection results. In stage I,
FirmRec found 145,601 vulnerability candidates, representing a
significant reduction to just 9% of all 1,618,946 input entries. In
stage II, FirmRec verified all these candidates and generated 4,970
unique alarms.

To measure the precision of FirmRec, we manually investigated
the reported alarms against three conditions. (1) The input entry of
an alarm is reachable from the program entry point. (2) The exploit
inputs of the alarm are read directly from the network or indirectly
via particular program paths. This step ensures that the exploit
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Table 3: Effectiveness comparison results of jTrans, SaTC, and FirmRec (RQ2).

Vendor # Img # Bin

Precision Recall

# jTrans # SaTC FirmRec
# Union TPs

jTrans
SaTC

3
FirmRec

3
K
1
=10 K

1
=20 Alarms Precision

2
Alarms Precision

2
K
1
=20

ASUS 5 35 7.7% 3.4% 8 50.0% 24 33.3% 4 25.0% 25.0% 50.0%
Buffalo 11 66 - - 0 - 502 80.2% 101 0.0% 0.0% 100.0%
Cisco 5 37 - - 53 16.7% 131 27.3% 11 0.0% 18.2% 81.8%
Dahua 7 19 - - 0 - 0 - 0 - - -
D-Link 29 220 2.9% 3.3% 200 64.0% 331 69.9% 87 2.3% 37.9% 66.7%
Linksys 39 216 - 1.2% 4 50.0% 200 40.0% 22 4.5% 4.5% 90.9%
Mikrotik 4 10 - - 0 - 0 - 0 - - -
Netgear 108 914 14.28% 9.21% 641 15.0% 2,653 36.3% 291 8.9% 8.6% 83.2%
Tenda 47 213 32.61% 24.74% 258 12.5% 733 84.7% 189 24.9% 5.3% 82.5%
Tomato 21 97 - - 0 - 104 0.0% 0 - - -

TOTOLink 8 60 - - 0 - 78 85.0% 17 0.0% 0.0% 100.0%
TP-Link 36 224 5.13% 2.5% 68 11.8% 214 72.2% 42 4.8% 4.8% 95.2%
Summary 320 2,111 13.5% 9.88% 1,232 22.8% 4,970 51.6% 764 10.3% 9.7% 84.4%

1 The top K items in the ranked list are deemed as vulnerabilities. 2 The precision of SaTC and FirmRec are reported by sampling 25% of all alarms.
3 The recall of SaTC and FirmRec are reported by evaluating all alarms on the ground truth.

inputs can be controlled externally. (3) All security checks can be
satisfied in some specific program paths. The alarm is deemed a
true positive if all three conditions can be satisfied.

Following the above steps, we manually checked 25% of all the
alarms (i.e., 1,244 alarms). These alarms were randomly sampled
for each vendor, and thus are representative. Our investigation
confirmed 642 vulnerabilities, demonstrating a precision of 51.6%
for FirmRec. We believe such precision is quite acceptable for a
static analysis-based firmware vulnerability detector.
Responsible Disclosure. We have responsibly disclosed the con-
firmed vulnerabilities to the vendors and the CVE database. Among
these vulnerabilities, 47 belong to command injection while the
left ones are buffer overflows. These vulnerabilities could lead to
severe security consequences, such as allowing an attacker to fully
control the device. Till now, 53 CVEs have been assigned, including
35 with critical and 11 with high severity (CVSS) score. Besides, all
these vulnerabilities are not reported by jTrans nor SaTC in §4.3.
Cross-architecture/-optimization Performance. We further
analyzed the verified 1,244 alarms to measure FirmRec’s perfor-
mance under cross-architecture/-optimization settings. Specifically,
by parsing the ELF headers, we found 883 alarms were reported in a
cross-architecture setting (i.e., the alarm is reported in a binary with
a different architecture to the signature binary) and the detection
precision is 47.0%. Moreover, we used a deep learning model [49] to
infer the optimization level of a binary. As a result, 11 alarms were
found to be reported under a cross-optimization setting and the
detection precision is 54.5%. We also found that most (about 93%)
firmware binaries were compiled with “-Os". This explains why few
alarms were reported in a cross-optimization setting. In summary,
FirmRec achieves comparable performance to the overall dataset
even under cross-architecture/-optimization settings.

4.3 RQ2: Comparison Experiments

We first conducted the effectiveness comparison experiments be-
tween FirmRec and static analysis-based approaches (jTrans and
SaTC) and then with fuzzing-based approaches (Greenhouse). Fi-
nally, we reported the efficiency comparison results.

4.3.1 Effectiveness Comparison with jTrans and SaTC. In this ex-
periment, we used the same dataset used in RQ1. As a binary code
similarity detection model, jTrans cannot directly detect vulnerabil-
ities. Instead, it outputs a ranked list of binary functions according
to their similarity with the given vulnerable binary functions. To

identify vulnerabilities from the ranked list, we followed the same
method used by jTrans in its original paper [59] to evaluate its
effectiveness. Briefly, jTrans defines a threshold K and recognizes
the top-K similar functions in the list as vulnerable.

Due to the large manual effort to analyze all the alarms, we
randomly sampled 25% of alarms reported by SaTC and FirmRec
for each vendor to check. This approach is in line with the practice
of the previous work [60]. Besides, since jTrans identifies the top-K
functions as vulnerable, we could tune the K parameter to determine
the number of alarms that require manual checks. Specifically, we
set K to 20. In all, we manually checked 800, 307, and 1,244 alarms
reported by jTrans, SaTC, and FirmRec respectively.

To compare the effectiveness of the three tools, we measure both
their precision and recall. To measure the precision, we followed
the same manual investigation methodology in RQ1 to verify true
and false alarms. For SaTC and FirmRec, since the alarms were
randomly sampled for verification, the precision on these samples
should be, probabilistically, close to their real effectiveness. Mea-
suring the recall of a vulnerability detector is hard, which requires
manually finding all vulnerabilities in the selected firmware images.
Instead, we used the true alarms that have been checked as the
ground truth. By combining all the true alarms reported by three
tools, we collected 764 unique vulnerabilities and measured the
recall of each tool on this ground truth. We calculated recall on all
alarms instead of the sampled ones to eliminate potential biases
caused by random sampling.

Table 3 presents the measured results of the three tools. We
found that FirmRec achieved the best precision of 51.6%, while the
precision of jTrans, SaTC is only 13.5% and 22.8%, respectively. The
results demonstrate the advantages of using known vulnerabilities
to detect unknown ones. FirmRec also achieved the highest recall
of 84.4%, while SaTC and jTrans only discovered 9.7% and 10.3%
vulnerabilities accordingly. We also found that the vulnerabilities
discovered by different tools seldom overlap. For example, only
23 vulnerabilities have been detected by both FirmRec and jTrans,
and similarly, only 10 vulnerabilities have been detected by both
FirmRec and SaTC. This clearly shows that FirmRec is an important
complementary tool to existing vulnerability detectors.

We further investigated the causes of false positives (FPs) and
false negatives (FNs) for different tools. For jTrans, we analyzed
the 40 FPs with the highest rank for each known vulnerability
signature and randomly sampled 40 FNs. For SaTC and FirmRec,
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we randomly sampled 40 FPs and 40 FNs. By analyzing these cases,
we find several key factors of the inaccuracy for the three tools.
Shared Inaccuracy Factors. We have identified the following
three factors shared by different tools:
• Limitations of Disassembling Tools. jTrans, SaTC, and FirmRec
rely on binary code disassembling tools for function identification
or control-flow graph (CFG) construction. Thus, imperfections
in these tools have lead to 2, 15, and 8 FNs respectively. SaTC
is more prone to such FNs due to its dependency on precise
CFG construction, which is used to optimize the model-based
exploration. Unlike SaTC, jTrans and FirmRec mainly leverage
known vulnerability signatures for vulnerability detection, which
has less dependency on CFG analysis.
• Imprecise Input Entry Identification. Both SaTC and FirmRec iden-
tify input reading locations as the entries for vulnerability de-
tection. However, it is hard to define a precise model for input
entries. As a result, both tools have incorrectly identified some
entries that are actually not attacker-controllable, causing 33
and 32 FPs respectively. Although precisely identifying attacker-
controllable input entries is an important and common require-
ment for firmware vulnerability detection, it is not the research
problem of this paper.
• Limitations of Symbolic Execution. The limitations of symbolic
execution affect the taint analysis of SaTC and concolic execu-
tion of FirmRec. First, the symbolic execution engine of both
tools—Angr [55] typically replaces common library functions
with simplified versions to avoid path explosion. However, this
optimization often neglects security checks in the original func-
tions, leading to 7 FPs for SaTC, and 8 for FirmRec. Second, the
symbolic execution involves path-sensitive analysis, which may
exceed the time budgets in some cases, leading to 4 and 1 FNs for
SaTC and FirmRec respectively.

Unique Inaccuracy Factors of jTrans. To understand the FPs
of jTrans, we carefully compared the identified vulnerable func-
tions with the given vulnerable functions. Interestingly, we found
that only 7 pairs have a similar CFG, while the remaining 33 pairs
looked significantly different. After a deep code investigation of the
7 pairs, we found they all have different code logic. Thus, all the FPs
in jTrans result from its inaccuracy in detecting code clones. For
the 38 FNs unmentioned before, we found their vulnerable func-
tions have different code logic from the given vulnerable functions
(e.g., implementing different functionalities), so they have not been
detected as clones by jTrans. This finding shows the necessity of
semantic-based vulnerability detection.
Unique Inaccuracy Factors of SaTC. Except for FPs/FNs caused
by the shared factors, SaTC has two unique inaccuracy factors,
which cause 21 FNs. First, the methodology of SaTC failed to cover
the input entries for 12 cases because it relies on variable names
shared between front-end files and back-end binary code, which
these cases do not mention the same/similar variable names in
front-end files. Second, SaTC met 9 FNs due to the flaws of taint
analysis. Specifically, SaTC failed to discover 7 vulnerabilities be-
cause its aggressive function call pruning strategy created infeasible
paths/data-flow conditions, which finally affected the vulnerability
identification. For the other 2 cases, SaTC failed to recognize essen-
tial loops (e.g., memcpy-like sinks), so the variables processed by
these loops were not properly tainted (i.e., under-tainted).

In contrast, the following three designs featured by FirmRec
help to discover all these FNs. First, FirmRec analyzed the seman-
tics of exploitation entries to identify similar candidate input en-
tries, which pinpointed the 12 recurring vulnerabilities entries over-
looked by SaTC. Second, FirmRec leveraged known vulnerability
signatures to keep vulnerability-relevant functions for the 7 vul-
nerabilities, which were aggressively pruned by SaTC. Third, with
concrete inputs from vulnerability signatures, FirmRec efficiently
explored all potential execution paths, which prevented the under-
tainting issue and discovered the 2 vulnerabilities missed by SaTC.
Unique Inaccuracy Factors of FirmRec. Except for the FPs/FNs
mentioned in the shared factors, FirmRec failed to discover 31 FNs
due to the lack of corresponding vulnerability signatures. Specif-
ically, the exploitation entries of the missed vulnerabilities were
dissimilar to any exploitation entry in our generated vulnerability
signatures. Thus, FirmRec misses the detection of these vulner-
abilities. By using more vulnerabilities for signature generation,
FirmRec can be extended to discover these vulnerabilities.

4.3.2 Effectiveness Comparison with Greenhouse. Since Greenhouse
requires a long emulation period to repeatedly run and patch the
binary and the fuzzing period is also time-consuming (i.e., 24 hours
per binary), it is infeasible to run it on the whole firmware dataset
(which has 2,111 unique binaries). Considering web servers are
popular exploitation targets [29], we chose to evaluate Greenhouse
on the web server binary for each firmware image. In all, only 33
web servers have been successfully tested by Greenhouse, while
the left ones failed due to emulation/rehosting failures (242 cases)
or fuzzing errors (45 cases).

During the testing of 33 web servers, Greenhouse reported 381
unique crashes. After manual analysis, we found 209 crashes repre-
sent true vulnerabilities (precision: 54.9%) while the other crashes
are caused by incorrect/improper emulation. As a comparison,
FirmRec reported 958 alarms on the same set of binaries. Among
these alarms, 226 ones (23.6%) have been verified in RQ1 and 143
ones were true alarms (precision: 63.3%). Among the 209 crashes
reported by Greenhouse, we found that they were caused by 24
unique input entries. Thus, Greenhouse only discovered 24 vul-
nerabilities. In contrast, although only 23.6% alarms reported by
FirmRec have been checked, FirmRec has discovered 143 vulner-
abilities. These results show that FirmRec is more effective than
Greenhouse in firmware vulnerability detection.

4.3.3 Efficiency Comparison. We only compared the efficiency of
FirmRec with SaTC, because jTrans mainly ran on GPU cores, and
Greenhouse’s running timewas set to a fixed fuzzing budget. Table 4
presents the efficiency comparison results. In the head-to-head as-
sessment, SaTC took 21,743,233 CPU seconds to finish the detection
while FirmRec spent 11,259,535 CPU seconds. This means FirmRec
only required nearly half as much time as SaTC. We also compared
the time cost of SaTC and FirmRec per input entry. In all, SaTC and
FirmRec analyzed 53,936 and 145,601 input entries, respectively.
On average, SaTC needed 403 CPU seconds to analyze an input
entry, while FirmRec only cost 77 CPU seconds. It shows FirmRec
was 4.2 times faster than SaTC. The better efficiency of FirmRec
was mainly attributed to the guidance of known vulnerabilities.
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Table 4: Efficiency comparison results between SaTC and

FirmRec in seconds (RQ2).

Tool
Signature

Vulnerability Detection

Extraction Total per Sig per Bin per Entry

SaTC - 21,743,233 - 10,300 403
FirmRec 18,428 11,259,535 281,488 5,334 77

4.4 RQ3: Ablation Experiments

We have several important designs in FirmRec to guarantee good
signature extraction and vulnerability detection accuracy and effi-
ciency. In this experiment, we measured the contributions of these
designs through ablation experiments. To this end, we implemented
three variants of FirmRec.
• FirmRec w/o Adaptive: This variant disables the adaptive func-
tion call pruning strategy used in signature generation (§3.2.2).
Instead, it uses the same strategy as SaTC [19] and Karonte [51],
which aggressive prunes function calls during concolic execution.
• FirmRec w/o SimSearch: This variant disables similarity-based
input entry searching when locating vulnerability candidates
(§3.3.1). Instead, it uses an exact match to locate the input entries,
similar to §3.2.2.
• FirmRec w/o Guidance: This variant does not use the guided
function call pruning strategy when verifying vulnerabilities
(§3.3.2). Instead, it employs the adaptive function call pruning
strategy in signature generation.

Table 5: Ablation experiment on signature extraction.

Settings # Vul. Reports # Sigs. Total Time(s) Time/Sig(s)

FirmRec 40 40 50,920 73
FirmRec w/o Adaptive 40 36 62,920 66

Signature Extraction. We compared FirmRec with FirmRec w/o
Adaptive to measure the contribution of our adaptive function call
pruning strategy used in the signature generation. As shown in
Table 5, FirmRec w/o Adaptive failed to generate signatures for 4
vulnerabilities. Besides, due to such failures, FirmRec w/o Adaptive
had to analyze more input entries, costing more analysis time than
FirmRec, even though FirmRec w/o Adaptive was more lightweight
in analyzing a single input entry. The results show that the adaptive
function call pruning strategy helps to generate more vulnerability
signatures without introducing additional time costs.
Vulnerability Detection.We compared FirmRec with FirmRec
w/o SimSearch and FirmRec w/o Guidance to understand the contri-
butions of the similarity-based (LLM-based) input entry searching
strategy when locating vulnerability candidates (Stage 1) and the
guided function call pruning strategy when verifying vulnerabili-
ties (Stage 2). We run the experiments on the 320 images used in
RQ2. Table 6 presents the results. First, compared with FirmRec w/o
SimSearch, FirmRec has found 18.6 times more vulnerability candi-
dates in the first stage, so it took more analysis time. Meanwhile,
FirmRec reported 4,519 more alarms than FirmRec w/o SimSearch.
The result shows that similarity-based input entry searching sig-
nificantly helps to detect more vulnerabilities. Second, FirmRec
and FirmRec w/o Guidance report similar numbers of alarms while
FirmRec w/o Guidance took 74.5% more analysis time. The results
show that the guided function call pruning strategy significantly
improves the efficiency of vulnerability detection.

Table 6: Ablation experiment on vulnerability detection.

Settings # Candidates # Alarms Total Time(s)

FirmRec 145,601 4,970 10,356,022
FirmRec w/o SimSearch 7,430 451 529,491
FirmRec w/o Guidance 145,601 4,923 18,071,646

5 DISCUSSION

Requirements on Vulnerability Reports. For signature gen-
eration, FirmRec relies on extracting specific information from
vulnerability reports, including the methods used to exploit vul-
nerabilities (e.g., exploit inputs) and the potential security impacts.
Our study, detailed in Appendix A, reveals that the vast majority
(over 94.9%) of firmware vulnerability reports provide this critical
information. Note that, FirmRec can effectively generate vulnera-
bility signatures even with partial exploit inputs, as long as they
are sufficient to demonstrate the basic exploiting method.

Furthermore, our findings suggest that FirmRec does not depend
on an extensive corpus of vulnerability reports to detect recurring
vulnerabilities. Utilizing as few as 40 reports, FirmRec significantly
complemented existing approaches, contributing to uncovering at
least 566 more vulnerabilities and 53 new CVEs.
Other Types of Firmware Vulnerabilities. The current proto-
type of FirmRec supports four types of firmware vulnerabilities
because these are severe and primary vulnerability types and are
also supported by existing firmware detectors (e.g., SaTC). Actually,
the approach is not specific to these vulnerability types. To support
new types, we just need to design corresponding sanitizers for them,
e.g., Cross-Site Scripting (XSS). Yet, it is hard to support some logic
errors (e.g., cryptography misuse) due to the difficulty of checking
corresponding security impacts during symbolic execution.
False Positives and Countermeasures. As described in §4.3,
FirmRec’s FPs were caused by two kinds of general firmware anal-
ysis limitations—imprecise input entry identification and imper-
fect static analysis tools. The former can be mitigated by leverag-
ing additional firmware knowledge, e.g., binary dependencies [51].
The latter can be mitigated by improving the implementation of
static analysis tools. Another countermeasure is to automatically
reproduce the vulnerability alarms using directed grey-box fuzzing
(DGF) [34, 64], e.g., by specifying the alarm sites as fuzzing targets.
However, due to emulation roadblocks [17, 57], DGF is immature
in the firmware area and thus has not been applied to FirmRec.

6 RELATEDWORKS

Source Code-based Recurring Vulnerability Detection. Pre-
vious studies such as MVP [60] and TRACER [39] have proposed
recurring vulnerability detection in the source code area. MVP re-
lies on security patches to extract enhanced code signatures for
vulnerability detection. TRACER leverages known vulnerable traces
to verify whether an alarm discovered by traditional vulnerability
detectors is indeed a recurrence of the known vulnerability.
Code Clone-based Vulnerability Detection. Code clone detec-
tion techniques are extensively studied in both the source code and
binary area and can be adapted to discover vulnerability clones.
Many code clone detection approaches [35, 38, 40, 41, 52, 53], by
design, only detect code clones in source code. Binary code clone
detection approaches can deal with binary code. Their main focus is
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to design code representations robust to non-semantic changes in-
troduced by compilations, architectures, etc. For this purpose, these
approaches either leverage domain knowledge [16, 23, 26, 27, 31, 43,
45, 47, 48, 67] or learning-based approaches [25, 28, 32, 44, 46, 59, 62]
to extract code representations. Instead of using such general code
syntactic features, FirmRec captures dynamic semantic features
that are more robust to syntactic code changes. Patch presence
testing [36, 61, 63] is a technique that further identifies whether a
code clone is a patched version, but such a technique can not work
in close-sourced IoT firmware due to lack of security patches.
Dynamic Analysis for Firmware Vulnerability Detection. Dy-
namic analysis, by capturing actual program states and outputs, au-
tomates the identification of vulnerabilities. Black-box fuzzing [30],
despite its direct application to embedded devices, is limited by the
devices’ constrained computing capabilities [68]. Grey-box fuzzing,
which collects program execution feedback through instrumenta-
tion, encounters challenges with device instrumentation. To circum-
vent this, research often resorts to re-hosting program execution in
simulated environments [22, 24, 37, 57, 68, 69], a solution hindered
by the complexity of modeling device dependencies. White-box
fuzzing, exemplified by SFuzz [18], employs symbolic execution to
mitigate some emulation challenges but, like all dynamic analysis
methods, struggles with achieving comprehensive code coverage.
Static Analysis for Firmware Vulnerability Detection. Static
analysis examines code without executing it, playing a crucial role
in identifying vulnerabilities within firmware [19–21, 51, 54, 65].
Firmalice [54] and CINDY [65] target specific vulnerability classes,
e.g., authentication bypass and command injection. Karonte [51]
and SaTC [19] rely on input entries to detect a broader range of
taint-style vulnerabilities. They differ in input exploitation entry
identification. For example, Karonte uses manually-curated API
lists while SaTC uses shared keywords to identify input reading
functions. FirmRec significantly differs from them by identifying
semantically similar input entries to known exploitation entries,
which helps identify more input entries and vulnerabilities.

7 CONCLUSION

In this paper, we introduced FirmRec, a novel approach for detect-
ing recurring vulnerabilities in IoT firmware, an area previously
unexplored. Leveraging exploitation-based vulnerability signatures
and signature-driven vulnerability detection, FirmRec effectively
addresses the challenges posed by the unique characteristics of
firmware vulnerability reports and the closed-source nature of
firmware, enhancing both accuracy and efficiency in vulnerability
detection. Our evaluations demonstrate FirmRec’s superior per-
formance over existing methods, identifying 642 vulnerabilities
and contributing to 53 CVEs. As a pioneering effort in this field,
FirmRec sets the foundation for future research and will be made
publicly available to support ongoing advancements.
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A STUDY ON VULNERABILITY REPORTS

In this study, we want to answer one question: How many vulnera-
bility reports contain exploitation information that is required for
signature extraction? First, we followed the same way described
in §4.2 to collect a dataset of public firmware vulnerability reports,
but only ensure one condition: it is a true IoT firmware vulnerability.
In all, 332 vulnerability reports have been collected. Second, we
used the method described in §3.2.1 to extract exploit inputs and
security impact descriptions. We manually examined each report
to ensure the correctness of the outputs. The results show that 315
reports contain exploit inputs. For the remaining 17 vulnerability
reports, they either use simple manual operations to trigger the
vulnerabilities or just describe the vulnerability causes/exploitation
results. Further, all the reports have described the security impact.
In summary, we found that most (more than 94.9%) firmware vul-
nerability reports have described the exploit inputs and security
impact that are required for signature extraction.
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