
Applying Fuzz Driver Generation to Native C/C++ Libraries of
OEM Android Framework: Obstacles and Solutions
Shiyan Peng
Fudan University
Shanghai, China

pengsy21@m.fudan.edu.cn

Yuan Zhang
Fudan University
Shanghai, China

yuanxzhang@fudan.edu.cn

Jiarun Dai
Fudan University
Shanghai, China

jrdai14@fudan.edu.cn

Yue Gu
Fudan University
Shanghai, China

guy22@m.fudan.edu.cn

Zhuoxiang Shen
Fudan University
Shanghai, China

zxshen22@m.fudan.edu.cn

Jingcheng Liu
Fudan University
Shanghai, China

jingchengliu21@m.fudan.edu.cn

Lin Wang
Fudan University
Shanghai, China

wang_lin@fudan.edu.cn

Yong Chen
OPPO

Chengdu, China
chevin@oppo.com

Yu Qin
OPPO

Chengdu, China
qinyu1@oppo.com

Lei Ai
OPPO

Chengdu, China
ailei@oppo.com

Xianfeng Lu
OPPO

Chengdu, China
luxianfeng@oppo.com

Min Yang
Fudan University
Shanghai, China

m_yang@fudan.edu.cn

ABSTRACT

Fuzz driver generation (FDG) is a fundamental technique for fuzzing
library software. Existing FDG approaches have been highly suc-
cessful with open-source libraries. However, in practice, due to the
complex nature of OEM Android frameworks (e.g., customized com-
pilation toolchains, extensive codebases, diverse C/C++ language
features), it is not straightforward to integrate existing fuzz driver
generation tools with OEM Android libraries. To address this chal-
lenge, we first systematically summarize the obstacles to applying
existing tools (e.g., FuzzGen) to libraries of an OEM Android (i.e.,
ColorOS), including compatibility, usability, and effectiveness is-
sues. Following this, we developed a new fuzz driver generation tool,
namely FuzzGen++, specifically designed to tackle these obstacles
one by one. In our evaluation, we demonstrate the advantages of
FuzzGen++ in real-world OEM Android frameworks. FuzzGen++
is compatible with OEM Android and can generate fuzz drivers
for all its libraries which are not supported by existing works. The
additional analysis of the OEM Android code also enhances its
usability within the system. Overall, FuzzGen++ has helped auto-
matically generate 21,457 fuzz drivers. Additionally, through fuzz
driver ranking and selection solution, FuzzGen++ figured out cut
off 95% fuzz drivers which are less useful. FuzzGen++ supports so-
phisticated C/C++ features in code analysis, ensuring effectiveness.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00
https://doi.org/10.1145/3691620.3695266

Compared to hand-written fuzz drivers, FuzzGen++ could generate
and select fuzz drivers providing a 107.92% coverage improvement.
Furthermore, they discovered 6 bugs, showcasing the capability of
FuzzGen++ to find real-world issues.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Security and privacy→ Software security engineering.

KEYWORDS

Fuzz Driver Generation, OEM Android, Native C/C++ Libraries
ACM Reference Format:

Shiyan Peng, Yuan Zhang, Jiarun Dai, Yue Gu, Zhuoxiang Shen, Jingcheng
Liu, Lin Wang, Yong Chen, Yu Qin, Lei Ai, Xianfeng Lu, and Min Yang.
2024. Applying Fuzz Driver Generation to Native C/C++ Libraries of OEM
Android Framework: Obstacles and Solutions. In 39th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE ’24), October

27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3691620.3695266

1 INTRODUCTION & CHALLENGE OUTLINE

OEM (Original EquipmentManufacturer) Android frameworks refer
to customized versions of the Android operating system designed
to meet the specific requirements of commercial devices in indus-
trial sectors. The framework employs C/C++ libraries for low-level
system resource access [5–8]. Given their frequent operation within
high-privilege layers, C/C++ libraries’ security is of vital impor-
tance [2, 3, 10, 19]. Fuzzing is an outstanding vulnerability detection
technique that feeds unexpected, random, or invalid inputs to a
program to uncover various vulnerabilities [1, 4, 9, 18, 21]. To apply
fuzzing to OEM Android C/C++ libraries, a fuzz driver is neces-
sary to invoke APIs by feeding them with test cases generated by

https://orcid.org/0009-0004-2372-1705
https://orcid.org/0000-0003-0726-9996
https://orcid.org/0009-0002-5636-7808
https://orcid.org/0009-0006-0749-6602
https://orcid.org/0009-0006-4930-4154
https://orcid.org/0009-0003-9266-4540
https://orcid.org/0000-0001-7030-7831
https://orcid.org/0009-0003-4769-3537
https://orcid.org/0009-0005-7687-7321
https://orcid.org/0009-0004-1259-101X
https://orcid.org/0009-0006-0949-5603
https://orcid.org/0000-0001-9714-5545
https://doi.org/10.1145/3691620.3695266
https://doi.org/10.1145/3691620.3695266

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Peng, et al.

fuzz drivers. Fuzz drivers should be crafted with correct and robust
API usage, or it will lead to less productive fuzzing results, which
damage the effectiveness of testing. Therefore, crafting fuzz drivers
often requires expertise in both OEM Android C/C++ libraries and
fuzzing methodologies [17], which is labor intensive.

To address this problem, applying the fuzz driver generation
(FDG) technique to OEMAndroid C/C++ libraries presents a promis-
ing solution. Various FDG academic approaches [12–16, 20, 22, 23]
have demonstrated great effectiveness in generating usable fuzz
drivers for openly accessed libraries. Their fuzz drivers have signif-
icantly contributed to finding real-world vulnerabilities in libraries
under fuzzing. Among these approaches, consumer-based FDG is
mainstream. These approaches generate fuzz drivers from API us-
age implied in existing code that invokes APIs (i.e. consumer code),
making them more likely to avoid API usage mistakes. However, it
is non-trivial to migrate these approaches to native C/C++ libraries
of OEM Android frameworks. The key reasons are three-fold:

• Compatibility: Consumer-based FDG approaches [13, 14, 22, 23]
leverage detailed program analysis to extract the semantics of
consumer code. Specifically, those designed for C/C++ conduct
their analyses based on the LLVM. However, these approaches
face compatibility obstacles in OEM Androids, since OEM An-
droids often employ customized LLVM toolchains that are not
fully compatible with the standard LLVM.
• Usability: The lack of consumers who provide the usage of APIs
makes it difficult to apply FuzzGen to OEM Android C/C++ li-
braries. This is because OEM libraries are often not well doc-
umented and lack usage examples and unit tests, which are
commonly served as consumers. Consequently, a comprehen-
sive audit of the OEM Android framework is essential to gather
enough consumers. However, the extensive nature of this code-
base presents a challenge, as potential consumers are widely
dispersed, making it difficult to extract an adequate set of con-
sumers. Existing approaches do not provide a solution for this
requirement. Furthermore, once an adequate new set of con-
sumers is identified, a significant number of new fuzz drivers
will be generated. It requires much more human-efforts in the
fuzz driver selection for effective testing.
• Effectiveness: OEM Android C/C++ libraries frequently utilize
advanced C++ features, such as virtual functions for polymor-
phism. Libraries with these features are common, but few existing
approaches support them. This limitation hinders their effective-
ness because they struggle to extract API usage for APIs for such
libraries, often resulting in fuzz drivers with mistakes like incor-
rect argument passing. Additionally, some libraries are service
libraries, which do not have regular consumers that directly in-
voke APIs in consuming libraries. This makes it challenging for
existing approaches to generate fuzz drivers for these libraries.

In this paper, we explore solutions to these obstacles by applying
an open-source FDG tool, FuzzGen [14], to OEM Android. Fuz-
zGen was chosen because it is designed for third-party libraries of
open-source Android, which closely aligns with our system under
fuzzing. However, like other C/C++ FDG approaches, it also suffers
from the common obstacles above. As the solution for the obstacles,
we introduce a novel fuzz driver framework, named FuzzGen++,

specifically developed to overcome the practical obstacles associ-
ated with using FuzzGen on the OEM Android (i.e., ColorOS). To
address compatibility obstacles, our framework recovers the source
code of the OEM LLVM toolchain by utilizing patches and applies
these compatibility fixes to FuzzGen++. This enables FuzzGen++
to analyze the code of OEM Android and generate fuzz drivers that
can be compiled by the toolchain. In response to usability obstacles,
primarily arising from the substantial manual effort needed for
collecting consumer code, we have introduced a consumer collec-
tion module. To enhance effectiveness, we have introduced more
fine-grained data-flow analysis to mitigate inaccuracies.

In our evaluation, FuzzGen++ impressively generated fuzz dri-
vers for 91 libraries. In the fuzzing campaign of these fuzz drivers,
we found that they achieved significantly better coverage, with an
average improvement of 107.92%, compared to manually crafted
fuzz drivers by security experts from the OEM vendor. Additionally,
FuzzGen++’s fuzz drivers identified 6 unknown software bugs.
Contributions. This paper makes the following contributions:
• We summarize the typical obstacles in applying existing fuzz
driver generation tools on OEM Android C/C++ libraries.
• We propose FuzzGen++, a consumer-based fuzz driver genera-
tion approach, which utilize practical solutions for addressing
obstacles of compatibility, usability, and effectiveness.
• FuzzGen++ was evaluated on 91 OEM Android framework li-
braries and generated 1,695 fuzz drivers. These fuzz drivers brought
107.92% coverage improvement compared with manual crafted
ones and 6 bug identification.

2 FUZZGEN++

The overview of FuzzGen++ is illustrated in Figure 1. FuzzGen++
first leverages compilation preparation to ensure FuzzGen is com-
patible with the OEM Android compilation toolchain. Then, to ad-
dress obstacles on applying FDG to the OEM Android, FuzzGen++
has enhanced and added modules to vanilla FuzzGen. These mod-
ules are highlighted in Figure 1. The enhanced modules (illustrated
as the grey boxes) means they exist in FuzzGen and have been
enhanced in FuzzGen++. The added modules (illustrated as black
boxes) are exclusive in FuzzGen++.

2.1 Phase-1: Compilation Preparation

The lack of the LLVM source and the incompatible implementation
in FuzzGen prevent FuzzGen from being usable in OEM Android.
The Compilation Preparation phase is designed to address these
issues and involves two modules. First, the phase Retrievals LLVM
with the help of OEM LLVM patches. After obtaining LLVM, we
perform manual fixes on compatibility issues within FuzzGen. The
details of these two modules will be described below:
OEM LLVM Retrieval. The LLVM used by OEM Android has
extensive customized modifications across various sub-projects. Al-
though the complete source code isn’t provided, patches for these
modifications exist in the LLVM toolchain. These patches, main-
tained similarly to the official Android toolchain, are based on a
specific LLVM mainline version and saved as patch files. The rela-
tionship between sub-projects and patches is recorded in a patch
entries file. The tool retrieves the LLVM mainline version from

Applying Fuzz Driver Generation to Native C/C++ Libraries of OEM Android Framework: Obstacles and Solutions ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

API/Type List Consumers
IRs

BP
Template

Phase-3: Fuzz Driver Generation

Code GenerationDependency Analysis
Data Analysis
Enhancement

Syntax Error Fixing

De-virtualization Generation for
Service Library

Fuzz Drivers Fuzz Driver
BPs

Selected
Fuzz Drivers

Selected
Fuzz Driver BPs

Target
Library

Phase-4: Post-procession

Fuzz Driver Selection Fuzz Driver Scoring

Phase-2: Pre-procession

BluePrint (BP) File Analysis/Generation

API/Type Specification
Extraction

Consumer Code
Collection

Added Module
Compared to FuzzGen

Enhanced Module
Compared to FuzzGen

Phase-1: Compilation Preparation

FuzzGen
Compatibility Fixing

OEM LLVM
Retrieval

OEM
Android

Output

Input

Figure 1: Overview of FuzzGen++.

pre-compiled binaries in the toolchain, then parses the entry file to
map and apply the necessary patches.
FuzzGen Compatibility Fixing. Our strategy to update FuzzGen
involves four main areas, primarily focusing on replacing outdated
APIs with newer alternatives and updating how APIs are used.
Specifically, we’ve replaced deprecated APIs, like getElementType,
used for type retrieval in data structure dependency analysis, with
updated ones such as getPointerElementType. Additionally, we’ve
adapted to changes in the latest LLVM version used in OEM An-
droid, which replaces direct string returns with the StringRef

data structure, by integrating support for extracting the necessary
strings from this structure for vanilla FuzzGen.

2.2 Phase-2: Pre-processing

FuzzGen++ takes API and data type definitions, along with con-
sumers, as input. It analyzes the APIs and data dependencies on the
consumer to confirm API sequences and data points, generating
the fuzz driver’s source code. To ensure usability, the tool also re-
quires compilation configuration information, which is handled by
a pre-processing phase. This phase is divided into three modules:
API/Type Specification Extraction. The tool extracts linkage
names (i.e. mangled) from C++ APIs in IR by compiling the target
library into an archive file and using nm from binutil to extract API
symbols. For type analysis, it employs AST analysis to extract data
structure definitions within the library, recognizing C++ elements
by traversing relevant AST nodes.
Consumer Code Collection. Manual IR collection for consumers
in OEM Android is labor-intensive, so an automated analysis step
was introduced. This involves collecting IRs and performing API
reference analysis across all OEM Android projects. The phase
excludes legacy code and uses string-based analysis to identify
function call sites in the IR, ensuring precise matching with an
API list that includes mangled names. For indirect callsites of the
virtual functions, it exploits the LLVM Control Flow Integrity (CFI)
mechanism, which provides candidate APIs for such callsites.
Blueprint File Analysis and Generation. To generate Blueprint
configuration files, FuzzGen++ analyzes andmatches dependencies
and compilation options from the target library’s Blueprint file. It
then arranges and records this information in the Blueprint format,
ensuring that the generated fuzz drivers are correctly configured.

2.3 Phase-3: Fuzz Driver Generation

The fuzz driver generation phase, essential to convert consumer
code into fuzz driver source code, has two main stages: Dependency
Analysis and Code Generation. Dependency Analysis extracts con-
sumers of APIs in library and build control and data flow dependen-
cies within the consumer’s LLVM IR. This is crucial for determining
the API invocation sequence and argument strategy for the fuzz dri-
vers. Based on the identified dependencies, FuzzGen++ generates
the actual code to fuzz the APIs with the help of the enhancements.
De-virtualization. To support virtual function analysis in Fuz-
zGen, FuzzGen++ implements a method within its consumer anal-
ysis process. Similarly to consumer collection, it retrieves the API
consumed using the information provided by the CFI mechanism.
However, in de-virtualization, FuzzGen++ only considers candi-
dates related to the class in a specific library as the API that the call
site consumes. This enhancement enables the analysis of virtual
APIs and improves the analysis of virtual API calls.
Data Analysis Enhancement. To improve FuzzGen’s data mod-
eling, the tool expanded the definition of source points to include
arguments, non-API function returns, and non-Alloca defined vari-
ables. Additionally, it refined propagation rules to support field-
sensitive taint analysis, allowing for more accurate data dependency
analysis by considering the fields within data structures.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Peng, et al.

Generation for Service Library. For OEM Android service li-
braries, FuzzGen++ builds a specific type of fuzz driver. These fuzz
drivers first create a mocked service and then randomly invoke
handler APIs within the service. To generate such fuzz drivers,
FuzzGen++ extracts the service object APIs and classifies them
into construction APIs and regular APIs based on their mangled
names For the random invocation of other APIs, FuzzGen++ uses
an extended version of fuzzService [11], which now supports
services in OEM Android for legacy Android systems.
Syntax Error Fixing: We observed that certain statements in
the FuzzGen-generated fuzz driver source code, specifically those
declaring arrays with the auto type, were incompatible with the
OEM toolchain. We fix the error by replacing auto with a specific
type, ensuring compatibility with the OEM toolchain.

2.4 Phase-4: Post-procession

FuzzDriver Selection. Fuzz drivers could produce nearlymeaning-
less results, such as immediate crashes or frozen coverage. These
issues arise from deconstruction mismatches and non-mutation
problems. Deconstruction mismatch problems occur when a fuzz
driver tries to deconstruct an object that was never constructed.
FuzzGen++ identifies this by performing a backward trace to check
for prior construction. Non-mutation problems occur when fuzz dri-
vers operate on API sequences lacking arguments suitable for muta-
tion or do not engage significant branches within the API’s process-
ing logic. FuzzGen++ detects this by evaluating in-API branches
affected by root mutated data. Identifying and excluding fuzz dri-
vers with these issues helps FuzzGen++ improve the efficiency and
relevance of the fuzzing process.
Fuzz Driver Scoring. Effective fuzz drivers can explore a broader
range of states/paths. Based on the assumption, FuzzGen++ evalu-
ates fuzz drivers by counting API invocations and fuzzed arguments.
A higher number of API invocations and fuzzed arguments results
in a superior ranking. This scoring helps prioritize which fuzz dri-
vers should undergo testing first. The evaluation process identifies
call sites within a fuzz driver, identifies the fuzzed arguments for
each API call, and aggregates such arguments to derive a score for
each fuzz driver. The details are shown in Algorithm 1.

Algorithm 1 Fuzz Driver Scoring

Input: ❶ Source Code of Fuzz Driver 𝑆𝑜𝑢𝑟𝑐𝑒𝑓 𝑑 ; ❷List of APIs in
Target Library 𝐴𝑃𝐼𝑠 ;

Output: Score of Fuzz Driver 𝑆𝑐𝑜𝑟𝑒𝑓 𝑑 ;
1: (𝐶𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠, 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒𝑠) ← 𝑆𝑜𝑢𝑟𝑐𝑒𝑓 𝑑 ;
2: for ((𝐶𝑎𝑙𝑙𝑒𝑒, 𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠) ∈ 𝐶𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠) do
3: if 𝐶𝑎𝑙𝑙𝑒𝑒 ∈ 𝐴𝑃𝐼𝑠 then
4: 𝑆𝑐𝑜𝑟𝑒𝐼𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠+ = 1;
5: else

6: continue;
7: for ((𝐴𝑟𝑔) ∈ 𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠) do
8: 𝐷𝑒𝑓 𝑖𝑛𝑒𝑟𝐴𝑟𝑔 ← (𝐴𝑟𝑔, 𝑆𝑜𝑢𝑟𝑐𝑒𝑓 𝑑)
9: if 0 < |𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒𝑠 ∩ 𝐷𝑒𝑓 𝑖𝑛𝑒𝑟𝐴𝑟𝑔 | then
10: 𝑆𝑐𝑜𝑟𝑒𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠+ = 1;
11: 𝑆𝑐𝑜𝑟𝑒𝑓 𝑑 ← 𝑆𝑐𝑜𝑟𝑒𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 + 𝑆𝑐𝑜𝑟𝑒𝐼𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ;

3 RESULTS

3.1 Experiment Setup

We conduct extensive experiments to evaluate FuzzGen++ on the
OEM Android of our industrial collaborator. Specifically, our exper-
iments seek to answer the following research questions:

• RQ1: General Results of Fuzz Driver Generation.

• RQ2: Howwell FuzzGen++ can address the compatibility obstacles?

• RQ3: How well FuzzGen++ can address the usability obstacles?

• RQ4: How well FuzzGen++ can address the effectiveness obstacles?

• RQ5: How effective FuzzGen++ is in detecting real-world bugs?

Dataset. To comprehensively evaluate FuzzGen++, we meticu-
lously curated a dataset comprisingOEMAndroid native framework
libraries. This dataset is built with two primary criteria: exclusive
within the OEM Android and dataset size for thorough assessment.

The dataset construction involved three key steps: Initially, com-
piling all files from OEM Android’s framework directory ensured
a diverse library selection. Subsequently, we identified and se-
lected projects compiled into libraries, focusing exclusively on
OEM-specific additions distinct from AOSP. This rigorous process
resulted in a dataset that included 91 libraries, covering impotent
functions such as media decoding, texture parsing, and network
management. These libraries are integral to media, network ser-
vices, and essential components during system boot.
Tool Configuration. Since modifications to the API sequence re-
sult in usage patterns that are not present in OEM Android, it is not
meaningful to conduct tests on them. Therefore, we do not utilize
the API sequence merging functionality of FuzzGen++. Consider-
ing real-world testing scenarios, we configured the tool with a ’one
library, one day’ setting. Specifically, the count of consumers to
generate fuzz drivers is set to 20 for a library. For each consumer, we
allocated a 10-minute timeout for its generation. The consumer col-
lection process would not exceed 180 minutes, and post-processing
takes less than 30 minutes. Under these settings, the entire gen-
eration process of one library can be completed within 8 hours.

3.2 RQ1: General Results

We applied FuzzGen++ to all libraries in our dataset. The results are
shown in Table 1. In total, it collected 30,153 consumer functions
and successfully generated a total of 21,457 fuzz drivers. For every
library, it collected consumers and generated fuzz drivers, show-
casing FuzzGen++’s capability to address existing challenges. The
generation process was completed within a reasonable timeframe,
adhering to our specified time constraints. Specifically, FuzzGen++
averaged a fuzz driver generation time of about 5 seconds. Regard-
ing consumer collection, the analysis took less than 8 hours for the
91 libraries. Given that consumer collection is a one-time process,
this time cost is tolerable.

After harvesting the fuzz drivers, we used the post-procession
to select the top-scored fuzz drivers for each library, limiting to a
maximum of 20 per library, resulting in a total of 1,695 selected
fuzz drivers. We defined a fuzz driver as runnable if it can survive
5 minutes of fuzzing and achieve at least 5 new state findings.
Our results indicate that each library has at least one runnable

Applying Fuzz Driver Generation to Native C/C++ Libraries of OEM Android Framework: Obstacles and Solutions ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Overall Results of FuzzGen++

of Li-

braries

of Consumer

Functions

of Generated

Fuzz Driver

of Selected

Fuzz Drivers

Average Time Cost for

Consumer Collection

Average Time Cost for

Fuzz Driver Generation

91 30,153 21,457 1,695 1,534s 1.02s

Table 2: Statistics of Patches Applied

Compiler LLVM Main Version Patch Lines
OEM-Compiler-1

LLVM-11

15 5,078
OEM-Compiler-2 17 5,333
OEM-Compiler-3 20 5,664
OEM-Compiler-4 34 5,354
OEM-Compiler-5 40 5,965
OEM-Compiler-6 LLVM-14 93 34,002
OEM-Compiler-7 72 27,614
Sum - 291 89,010

fuzz driver. 69.0% (1,169/1,695) of the selected fuzz drivers were
runnable, demonstrating the effectiveness of our selection process.

We also compared the performance of manually crafted fuzz dri-
vers with those generated by FuzzGen++, specifically focusing on
coverage. We selected 10 libraries containing manually crafted fuzz
drivers from our industrial partner and chose the top-scoring dri-
ver for each library for comparison. We observed that FuzzGen++-
generated drivers achieved significantly higher coverage in a 2-hour
fuzzing session across all libraries, with an average coverage im-
provement of 107.92%. These results demonstrate that FuzzGen++
is capable of generating high-quality fuzz drivers and that its scor-
ing mechanism effectively identifies them.

3.3 RQ2: Adddressing Compatibility Obstacles

While addressing compatibility obstacles, we focused on retrieving
the LLVM code of OEM Android, updating the original FuzzGen
code, and adding support for blueprint files, which are present in
all fuzz drivers. To illustrate the extent of these efforts, we report
on the patches applied. As previously mentioned, we used two
compilation systems, which together involved seven versions of
LLVM based compilers. The details are detailed in Table 2. In total,
we applied 291 patches, including approximately 89,010 lines of
code. Our tool automates the patching process and helps testers to
apply these patches without requiring in-depth knowledge of LLVM.
In the second phase, we apply 4,265 lines of code to FuzzGen. In
addition to ensuring correctness, we also introduced optimizations
to enhance efficiency in API matching.

3.4 RQ3: Addressing Usability Obstacles

The extensive volume of consumers and fuzz drivers highlights
a significant challenge for our tool. FuzzGen++ collected tens of
thousands of consumers and generated a similar number of fuzz
drivers. A manual review validated the accuracy of consumer col-
lection, revealing some false positives in virtual function analysis.
This issue occurs because referencing a virtual function does not al-
ways correlate with referencing the library API, potentially leading
to over-collection of consumers. However, this over-collection’s
impact is mitigated by a secondary review of call sites during con-
sumer analysis, which is relatively swift. Despite occasional false
positives, the manageable analysis time justifies this trade-off.

3.5 RQ4: Addressing Effectiveness Obstacles

Enhancements to support C++ features have positively impacted
79 out of 91 of the libraries, affecting 95.7% (20,524) of fuzz dri-
vers. These drivers now correctly invoke C++ APIs and handle
C++ arguments. In comparison, the vanilla FuzzGen would fail to
generate fuzz drivers for these libraries due to the absence of the
necessary generation schedule and the inability to handle new data
flow patterns and source analysis requirements.

3.6 RQ5: Real-world Bugs Detection

To date, FuzzGen++ has successfully identified 6 confirmed bugs
within OEMAndroid, covering a diverse range of issues such as two
null pointer dereference (NPD) bugs, two out-of-bounds (OOB) bugs,
one memory leak, and a reachable assertion. These findings cover
multiple system functionalities, from text and media parsing to
service codes operating at elevated privilege levels, demonstrating
FuzzGen++’s ability to detect bugs. This underscores its contribu-
tion to strengthening the security of crucial system components.

The identification of two NPD bugs and one OOB bug within a
service library is attributed to fuzz drivers generated using the ser-
vice generationmode. This achievement highlights the effectiveness
of the service generation mode in improving fuzzing processes.

4 CONCLUSION

This paper explores the obstacles of applying fuzz driver generation
to OEM Android C/C++ libraries. To be specific, it identifies 9 obsta-
cles in compatibility, usability, and effectiveness. Then it introduces
specific solutions to address these obstacles, such as compatibility
with the OEMAndroid toolchain, newly added consumer collection,
and enhanced overall effectiveness of FuzzGen. The experiments
show that these solutions are helpful in the creation of effective
fuzz drivers and the discovery of real-world bugs.

This study aims to highlight the discrepancy between academic
fuzz driver generation methods and the practical complexities of
industrial environments. Future efforts can concentrate on improv-
ing fuzz driver selection for higher quality, developing a universal
solution to bridge compilation and generation gaps, or refining
generation techniques for better bug detection.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their insight-
ful comments that helped improve the quality of the paper. This
work was supported in part by the National Key Research and De-
velopment Program (2021YFB3101200), National Natural Science
Foundation of China (62172105, 62402116). Yuan Zhang was sup-
ported in part by the Shanghai Pilot Program for Basic Research -
Fudan University 21TQ1400100 (21TQ012). Min Yang is the corre-
sponding author and a faculty of Shanghai Institute of Intelligent
Electronics & Systems, and Engineering Research Center of Cyber
Security Auditing and Monitoring, Ministry of Education, China.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Peng, et al.

REFERENCES

[1] Go-fuzz: randomized testing for go. https://github.com/dvyukov/go-fuzz, 2015.
[2] New critical vulnerability in multiple high-privileged android services.

https://www.zimperium.com/blog/cve-2018-9411-new-critical-vulnerability-
multiple-high-privileged-android-services/, 2018.

[3] Samsung patches 0-click vulnerability impacting all smartphones sold since
2014. https://www.zdnet.com/article/samsung-patches-0-click-vulnerability-
impacting-all-smartphones-sold-since-2014/, 2020.

[4] American fuzzy lop. https://lcamtuf.coredump.cx/afl, 2023.
[5] Android connection (network). https://source.android.com/docs/core/connect,

2023.
[6] Android graphics. https://source.android.com/docs/core/graphics, 2023.
[7] Android media. https://source.android.com/docs/core/media, 2023.
[8] Android native apis. https://developer.android.com/ndk/, 2023.
[9] libfuzzer – a library for coverage-guided fuzz testing. https://llvm.org/docs/

LibFuzzer.html, 2023.
[10] Millions of smartphone users at risk of serious security flaw. https:

//eu.community.samsung.com/t5/galaxy-s22-series/millions-of-smartphone-
users-at-risk-of-serious-security-flaw/td-p/7151183, 2023.

[11] Aidl fuzzing. https://source.android.com/docs/core/architecture/aidl/aidl-fuzzing,
2024.

[12] D. Babi, S. Bucur, Y. Chen, F. Ivani, T. King, M. Kusano, C. Lemieux, L. Szekeres,
and W. Wang. FUDGE: Fuzz driver generation at scale. In Proceedings of the

2019 27th ACM Joint Meeting European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE), 2019.
[13] P. Chen, Y. Xie, Y. Lyu, Y. Wang, and H. Chen. Hopper: Interpretative fuzzing for

libraries. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and

Communications Security (CCS), 2023.

[14] K. K. Ispoglou, D. Austin, V. Mohan, and M. Payer. FuzzGen: Automatic fuzzer
generation. In Proceedings of the 29th USENIX Security Symposium, 2020.

[15] J. Jang and H. K. Kim. FuzzBuilder: Automated building greybox fuzzing envi-
ronment for C/C++ library. In ACM International Conference Proceeding Series,
2019.

[16] J. Jiang, H. Xu, and Y. Zhou. RULF: Rust Library Fuzzing via API Dependency
Graph Traversal. In Proceedings of the 36th IEEE/ACM International Conference

on Automated Software Engineering (ASE), 2021.
[17] J. Liang, M. Wang, Y. Chen, Y. Jiang, and R. Zhang. Fuzz testing in practice:

Obstacles and solutions. In 2018 IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER), 2018.
[18] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz. kAFL: Hardware-

Assisted feedback fuzzing for OS kernels. In Proceedings of the 26th USENIX

Security Symposium, 2017.
[19] W. R. Vasquez, S. Checkoway, and H. Shacham. The most dangerous codec in the

world: Finding and exploiting vulnerabilities in h. 264 decoders. In Proceedings

of the 32nd USENIX Security Symposium, 2023.
[20] C. Zhang, Y. Li, H. Zhou, X. Zhang, Y. Zheng, X. Zhan, X. Xie, X. Luo, X. Li, Y. Liu,

et al. Automata-guided control-flow-sensitive fuzz driver generation. 2023.
[21] C. Zhang, X. Lin, Y. Li, Y. Xue, J. Xie, H. Chen, X. Ying, J. Wang, and Y. Liu.

APICRAFT: Fuzz driver generation for closed-source SDK libraries. In Proceedings
of the 30th USENIX Security Symposium, 2021.

[22] M. Zhang, J. Liu, F. Ma, H. Zhang, and Y. Jiang. Intelligen: Automatic driver
synthesis for fuzz testing. In 2021 IEEE/ACM 43rd International Conference on

Software Engineering: Software Engineering in Practice (ICSE-SEIP), 2021.
[23] M. Zhang, C. Zhou, J. Liu, M. Wang, J. Liang, J. Zhu, and Y. Jiang. Daisy: Effective

fuzz driver synthesis with object usage sequence analysis. In 2023 IEEE/ACM

45th International Conference on Software Engineering: Software Engineering in

Practice (ICSE-SEIP), 2023.

https://github.com/dvyukov/go-fuzz
https://www.zimperium.com/blog/cve-2018-9411-new-critical-vulnerability-multiple-high-privileged-android-services/
https://www.zimperium.com/blog/cve-2018-9411-new-critical-vulnerability-multiple-high-privileged-android-services/
https://www.zdnet.com/article/samsung-patches-0-click-vulnerability-impacting-all-smartphones-sold-since-2014/
https://www.zdnet.com/article/samsung-patches-0-click-vulnerability-impacting-all-smartphones-sold-since-2014/
https://lcamtuf.coredump.cx/afl
https://source.android.com/docs/core/connect
https://source.android.com/docs/core/graphics
https://source.android.com/docs/core/media
https://developer.android.com/ndk/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://eu.community.samsung.com/t5/galaxy-s22-series/millions-of-smartphone-users-at-risk-of-serious-security-flaw/td-p/7151183
https://eu.community.samsung.com/t5/galaxy-s22-series/millions-of-smartphone-users-at-risk-of-serious-security-flaw/td-p/7151183
https://eu.community.samsung.com/t5/galaxy-s22-series/millions-of-smartphone-users-at-risk-of-serious-security-flaw/td-p/7151183
https://source.android.com/docs/core/architecture/aidl/aidl-fuzzing

	Abstract
	1 Introduction & Challenge Outline
	2 FuzzGen++
	2.1 Phase-1: Compilation Preparation
	2.2 Phase-2: Pre-processing
	2.3 Phase-3: Fuzz Driver Generation
	2.4 Phase-4: Post-procession

	3 Results
	3.1 Experiment Setup
	3.2 RQ1: General Results
	3.3 RQ2: Adddressing Compatibility Obstacles
	3.4 RQ3: Addressing Usability Obstacles
	3.5 RQ4: Addressing Effectiveness Obstacles
	3.6 RQ5: Real-world Bugs Detection

	4 Conclusion
	Acknowledgments
	References

