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Abstract—To date, grey-box fuzzing has become an essen-
tial technique to detect vulnerabilities implied in Linux-
based firmware. However, existing fuzzing approaches com-
monly encounter three overlooked obstacles stemming from
firmware service characteristics, which largely hinder the ef-
fectiveness and efficiency of vulnerability identification. Firstly,
the multi-process nature of firmware services is oversim-
plified during both the emulation and the fuzzing proce-
dures, limiting the scope of firmware testing. Furthermore,
firmware services usually incorporate customized service pro-
tocols, which feature rich and stringent semantic constraints,
causing unique challenges for input generation. To address
these obstacles, this paper proposes a service-aware grey-
box fuzzing tool HOUSEFUZZ. During the firmware emula-
tion, HOUSEFUZZ carefully traverses the system initialization
procedure for identifying those network-facing and daemon
processes overlooked by existing approaches. After that, during
the fuzzing procedure, HOUSEFUZZ features a multi-process
fuzzing framework, enabling the comprehensive inspection of
firmware services activated via multiple processes. Further-
more, HOUSEFUZZ leverages both offline and online firmware
service analysis to capture the token-level semantic constraints
of customized service protocols, based on which HOUSEFUZZ
can effectively generate high-quality test cases. In evaluation,
compared to SoTA grey-box firmware fuzzing approaches,
HOUSEFUZZ identified 76% more network services, achieved
24.8% more code coverage, and detected 175% more 0-day
vulnerabilities on the same firmware dataset.

1. Introduction

With the rapid growth of the Internet of Things (IoT),
Linux-based firmware has become ubiquitous, powering
43% of IoT devices [1]. Despite the ubiquity of Linux-based
firmware, it remains highly susceptible to network attacks
due to firmware vulnerabilities, causing severe security risks
(e.g., remote code execution [2], [3]) to vendors and end-
users. Considering the fact that most vulnerabilities reside
in network services [4], [5] (e.g., web services) of Linux
firmware, it is imperative for security professionals and
organizations to detect and mitigate vulnerabilities in Linux-
based firmware network services.

To detect vulnerabilities in network services of Linux-
based firmware, grey-box fuzzing [6], [7], [8], [9] has been
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embraced as a fundamental approach. Technically, firmware
grey-box fuzzing first identifies and emulates the network
services to create a controlled running environment, then
generates mutated test cases for execution, and collects
execution feedback (e.g., code coverage) from the emulated
service as a guidance for the follow-up fuzzing proce-
dure. Hence obviously, emulation, test case generation, and
fuzzing feedback guidance are three keystones to achieving
a comprehensive code exploration and effective vulnerability
detection. However, in this work, we highlight that existing
firmware grey-box fuzzing approaches commonly encounter
overlooked obstacles in each of these keystones, mainly due
to the lack of awareness of Linux service characteristics:
• ❶ Limitations in Service Emulation. Linux-based

firmware services typically operate through multiple pro-
cesses, making it imperative to “comprehensively identify
all network-service-related processes for holistic service
emulation”. These include not only network-facing pro-
cesses but also those triggered by inter-process commu-
nications (IPCs). However, existing practices in service
emulation for fuzzing, either through system-emulation-
based solutions [6], [10], [11] or process-emulation-based
solutions [7], [8], [9], would inevitably miss essential pro-
cesses due to inherent design flaws. Specifically, system-
emulation-based solutions emulate the entire Linux sys-
tem including the OS kernel and all initialized processes,
where the network-facing processes can be identified
through public network channels (e.g., TCP ports). How-
ever, system emulation usually fails due to emulation
roadblocks [10], [11], preventing the establishment of net-
work channels. Process-emulation-based solutions com-
monly identify and emulate processes based on a process
name whitelist. Obviously, the whitelist-based heuristics
can hardly ensure a high recall of process identification.
Consequently, given a limited number of emulated ser-
vices, existing firmware grey-box fuzzing tools can hardly
ensure a large scope of code exploration.

• ❷ Limitations in Fuzzing Feedback Guidance. Simi-
larly, due to the multi-process runtime nature of Linux-
based firmware services, one should “build a multi-
process fuzzing framework to monitor the execution feed-
back of all target-service-related processes, and accord-
ingly guide the fuzzing procedure”. However, existing
grey-box firmware fuzzing tools commonly over-simplify
the multi-process runtime nature as the single-process one.
To sum up, they limit the feedback collection scope to a



single process (i.e., usually the network-facing process).
In such a manner, they fall short in detecting vulnerabili-
ties that require multi-process cooperation to trigger [12].
Furthermore, they would miss necessary service execu-
tion feedback stemming from those unobserved processes,
limiting the exploration space of firmware code.

• ❸ Limitations in Test Case Generation. Firmware ser-
vices can be highly customized [13] to meet diverse prod-
uct requirements. The customized service protocol would
additionally introduce rich semantic constraints (e.g., spe-
cific key-value pairs with strict data constraints or pair-to-
pair dependencies) to the standard service protocol (e.g.,
HTTP). Hence, one should “generate semantically valid
test cases to ensure the effectiveness of fuzzing”. However,
current grey-box firmware fuzzing tools lack awareness
of customized service protocols. In general, they [7],
[8], [9] usually leverage well-crafted seeds built upon
standard protocol templates (e.g., HTTP), then merely
apply random mutations on protocol contents. Hence, they
cannot achieve satisfactory fuzzing performance.

Considering the above, we propose HOUSEFUZZ, a
novel service-aware grey-box fuzzing tool, for effective vul-
nerability detection in Linux-based firmware. HOUSEFUZZ
is characterized by three key aspects. First, to determine
which processes require emulation, HOUSEFUZZ traverses
the system’s initialization procedure, which is responsible
for setting up all network services. This analysis allows
HOUSEFUZZ to identify the essential processes associated
with each service, thereby enabling a more comprehensive
service emulation compared to prior practices in firmware
fuzzing [7], [8], [9]. Second, HOUSEFUZZ introduces an
innovative multi-process fuzzing framework. The frame-
work leverages code coverage collected from all service
processes to guide comprehensive testing and detects vul-
nerabilities with multi-process vulnerability oracles. Third,
HOUSEFUZZ formalizes the semantic constraints of cus-
tomized service protocols with a Token Dependency Graph
(TDG) . Specifically, TDG symbolizes customized seman-
tic constraints as dependencies among tokens extracted
from firmware. HOUSEFUZZ automatically infers TDG from
firmware services with offline control-/data-flow analysis
and online instrumentation-based analysis, and leverages
TDG to ensure the semantic validity of generated test cases.

In evaluation, we designed extensive experiments to
demonstrate the effectiveness of HOUSEFUZZ and our de-
sign choices. Among these experiments, HOUSEFUZZ de-
tected 143 0-days with 45 CVE/CNVDs assigned, which
demonstrates its overall effectiveness. Compared to SoTA
firmware emulation approaches, HOUSEFUZZ identified
76% more network services on a dataset of 60 firmware im-
ages, which provide more fuzzing targets, where 12 more 0-
days are discovered. This result demonstrates HOUSEFUZZ
is effective in network service identification. Compared to
SoTA firmware grey-box fuzzing approaches, HOUSEFUZZ
discovered 24.8% more code coverage, and detected 175%
more 0-day vulnerabilities on the same dataset consisting
of 41 network services. The ablation study also demon-
strates that the multi-process fuzzing framework and service-

protocol-aware fuzzing technique greatly enhance the vul-
nerability detection capability of grey-box fuzzing in Linux-
based firmware services.
Contributions. We position this paper with the following
major contributions:
• We propose three key techniques to boost the effectiveness

of existing grey-box fuzzing for Linux-based firmware,
including holistic service identification and emulation,
multi-process fuzzing framework, and service-protocol-
guided test case generation.

• We implemented the three techniques into a prototype
HOUSEFUZZ, and extensively evaluated it on real-world
Linux-based firmware. Results show that HOUSEFUZZ
significantly outperforms SoTA approaches in service dis-
covery, code exploration, and vulnerability detection.

• We detected 177 vulnerabilities during experiments, where
156 are 0-days. We have responsibly disclosed these 0-
days. Till now, we have received 45 CVEs/CNVDs.

2. Background

2.1. Services of Linux-Based Firmware

Concept of Linux-Based Firmware Service. Linux is an
open-sourced system favored by firmware developers—43%
firmware images are built upon Linux [1]. Linux strongly
supports running multiple processes for complex firmware
services. According to processes lifetime, there are long-
running processes and utility processes. A long-running
process provides a persistent channel accessible to service
users or other processes; it can “invoke” utility processes to
handle a short-term task (e.g., a single network request).
We further classify long-running processes into network-
facing processes and daemon processes based on whether
the persistent channels can be accessed remotely or only
locally. These three kinds of processes—network-facing,
daemon, and utility processes can cooperate through inter-
process communications (IPC) [12], which incur complexity
as the running of one process might affect other running
processes. For convenience, we leverage the term “service”
to denote all cooperated processes that support the serving
of one communication channel.
Research Scope of Firmware Service. A Linux-based
firmware image may consist of multiple services that listen
on either local or network channels. Local services serve
only local channels (e.g., UNIX domain sockets) to support
local functionalities (e.g., system monitoring), which can
not be directly accessed from the network and thus require
a stronger attack model (e.g., physical access). Network
services serve network channels (e.g., a TCP port), and are
more vulnerable to network attacks. Hence, in this work, we
choose network services in firmware as our research targets.

2.2. Service Protocols of Linux-Based Firmware

The network services of Linux-based firmware are usu-
ally built upon standard network protocols and incorporate
customized application-layer protocols (detailed as follows).



Standard Service Protocol. Standard service protocols are
defined by official documentation, such as the HTTP proto-
col [14]. Firmware manufacturers generally adhere to these
public protocol specifications when implementing service
protocols. For instance, [15] indicates that the most widely
used protocols are derived from recognized standard service
protocols, including UPnP [16], HTTP [14], JetDirect [17],
LPR [18], and mDNS [19]. Current firmware fuzzing prac-
tices [7], [8], [9] recommend crafting high-quality initial
seeds using standard HTTP protocol templates to enhance
the syntactic correctness of the mutated test cases.
Customized Service Protocol. To implement product-
specific service features, firmware vendors typically apply
application-layer customization upon standard service pro-
tocols [13], which creates customized service protocols.
Specifically, a customized service protocol not only in-
troduces thousands of new tokens (i.e. concrete data) for
synthesizing protocol contents [4] but also constrains se-
mantic relationships among these tokens [20]. Therefore, to
synthesize a semantically valid test case, it is necessary to
correctly position multiple interrelated tokens; otherwise, the
test case might be rejected by superficial input validation.
However, existing test case generation approaches [21], [22],
[23], [24], [25], [26] totally disregard customized service
protocols, restricting the exploration of potentially vulnera-
ble paths that are guarded by semantic constraints.

3. Challenges and Insights

Here, we first illustrate a motivation example in §3.1 to
demonstrate the necessity of considering the multi-process
nature and customized service protocols when fuzzing
Linux-based firmware. After that, we discuss the challenges
to performing effective firmware service fuzzing, and outline
our critical insights for overcoming these challenges in §3.2,
§3.3, and §3.4, respectively.

3.1. Motivating Example

Figure 1 illustrates a buffer overflow vulnerability im-
plied in Linux-based firmware. The vulnerability can be
triggered by sequentially executing four specific steps:
• Step-❶ Service Initialization. The ncc process, which is

automatically launched during system booting, initiates
the mini httpd process. This process then binds to a
network channel and awaits incoming requests (L24-L26).

• Step-❷ Request Sending. An attacker sends a malicious
packet to activate the mini httpd process (L27,L28).

• Step-❸ Request Handling. The handle request() func-
tion of mini httpd then parses the HTTP request accord-
ingly. It confirms that the request ends with “.ccp” at
L34 (i.e., indicating a special request for ncc), and thus
dispatches it to ncc process through socket (L35,L36).

• Step-❹ Vulnerability Triggering. When ncc receives
the IPC request at L3, it invokes ipc handler() at L6 to
process it. The function checks several data constraints
at (L8, L13-L17). The execution eventually reaches the

vulnerable code, resulting in a buffer overflow at L19—
the long string read by “pc ip” is used to format the buf
string without any length validation.

3.2. Challenges and Insights for Service Identifica-
tion

Challenges. To trigger the vulnerability illustrated in Fig-
ure 1, both the network-facing process mini httpd and
the daemon process ncc should be identified as a full-
featured service for a faithful emulation. However, existing
approaches can hardly achieve this goal. To be specific,
whitelist-based approaches [7], [8], [9] identify network-
facing and daemon processes only when their names occur
in given name whitelists. Unfortunately, the ncc process
would be missed since its name is not a common entry
in such whitelists. System-emulation-based approaches [10],
[11] emulate all processes and identify network-facing pro-
cesses when they establish network channels (e.g. L24).
However, emulation issues may raise exceptions that inter-
rupt the system emulation [11] before the establishment of
network channels or IPC channels. The challenging point is
that emulation exceptions might arise in various processes,
but existing fuzzing works only monitor and fix exceptions
in a single process [9], hindering holistic service emulation.
Key Insights. We find that exceptional processes can
be identified by observing abnormal process events (e.g.,
crashes) and exception code can be pinpointed through
a deep analysis of the process execution trace. We tend
to resort to system emulation for service emulation while
carefully identifying and patching the exception code in
all service-related processes. This design choice helps the
emulation traverse more system initialization procedures and
identify more network services.

3.3. Challenges and Insights for Multi-Process
Fuzzing

Challenges. Current grey-box firmware fuzzing tech-
niques [6], [7], [8], [9] underestimate the complexity of
Linux services that involve multiple processes, focusing
solely on the network-facing process mini httpd as their
fuzzing target. Specifically, These fuzzing techniques are
only guided with the code coverage of mini httpd, while
discarding the coverage of ncc, which is valuable for vul-
nerability triggering. This narrow focus results in a failure
to uncover the vulnerability illustrated in Figure 1.
Key Insights. Here, our goal is to design a user-space multi-
process fuzzing framework, which can not only monitor
multi-process execution feedback but also offer a more
favorable overhead compared with system-level fuzzing [11]
[6]. Specifically, the proposed framework can monitor and
merge the code coverage of all service-related processes to
offer comprehensive guidance for service fuzzing. Besides,
it features multi-process vulnerability oracles to notify the
vulnerability triggering in different processes.



 1: int main() {
 2:   int sock = socket_listen("127.0.0.1", 0xFF80);
 3:   socket_select(sock, ipc_handler);
 4:   system("mini_httpd -M 0 -C /var/tmp/mini_httpd_80.conf");
 5: }

 6: int ipc_handler(request_t *rq) {
 7:   char *path = rq->get_path(); 
 8:   if (!strcmp(path, "get_set"))
 9:     get_set_callback(request);
10: }

11: int get_set_callback(request_t *rq) {
12:   char buf[0x100];
13:   ccp_act = get_value("ccp_act");
14:   if (!strcmp(ccp_act, "set")) {
15:     nextPage = get_value("nextPage");
16:     if (!strcmp(nextPage, "back.htm")) {
17:       pc_ip = get_value("pc_ip");
18:       // Buffer Overflow!!!
19:       sprintf(buf,"%s?...&pc_ip=%s",nextPage, ..., pc_ip);
20:     }
21:   }
22: }

23: int main() {
24:   int net_sock = socket_bind_to("0.0.0.0", 80);
25:   while (1) {
26:     select(net_sock, read_fds, NULL, NULL, 0);
27:     int client = accept(in_fd, in_addr, in_addr_len);
28:     if (!fork()) handle_request(client);
29:   }
30: }
 
31: int handle_request(fd) {
32:   network_request_t *rq = parse_HTTP_request(int fd);
33:   char *path_suffix = rq->get_path_suffix();
34:   if (!strcmp(path_suffix, ".ccp")) {
35:     char *ipc_data = build_ipc_data(rq);
36:     ncc_socket_send(ipc_data);
37:   }
38: }

Cooperation of ncc and httpd process

Going through HTTP protocol validation on 
customized data constraints (e.g., ccp_act=set)

Vulnerability
Triggering
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Figure 1: Motivating Example: A buffer overflow vulnerability in real-world Linux-based firmware. (We’ve restructured the
decompiled code for ease of understanding)

3.4. Challenges and Insights for Handling Cus-
tomized Service Protocols

Challenges. The vulnerability depicted in Figure 1 requires
an attack input that adheres not only to the syntax of
the standard HTTP protocol (validated at L32) but also
meets the complex semantic constraints imposed by the
customized service protocol. For example, to pass the verifi-
cation at L14 in the ncc process, “ccp act” and “set” must
be combined to form a semantically-valid key-value pair.
Unfortunately, existing test case generation [21], [22], [23],
[24], [25], [26] approaches totally ignore such constraints
and can hardly bypass the check.
Key Insights. As shown in Figure 1, the customized service
protocol provides three valuable hints for generating high-
quality test cases. First, “set” and “ccp act” are interest-
ing values to be inserted into a test case. Second, “set”
and “ccp act” correspond to a key and value respectively,
which suggests they should be inserted as the left and right
operands of an assignment. Third, when “ccp act” is used
as a field name, it is meaningful to use “set” as a corre-
sponding value. Our idea is to formalize customized service
protocols based on these hints, then infer the customized
service protocols by analyzing firmware services, and finally
leverage the inferred protocols to guide test case generation.

4. Overview of HOUSEFUZZ

Figure 2 shows the overall workflow of HOUSEFUZZ.
HOUSEFUZZ takes a firmware image and a set of standard
service protocols as inputs, and automatically detects vul-
nerabilities with grey-box fuzzing. Initially, HOUSEFUZZ
emulates the services under test (§5). The core is to
identify network services by carefully traversing the sys-
tem initialization procedure. Then, HOUSEFUZZ leverages

multi-process fuzzing framework (§6) and service-protocol-
guided fuzzing (§7), to improve existing single-process and
protocol-unaware firmware fuzzing. The multi-process grey-
box fuzzing framework is featured with two designs: it
is guided by multi-process code coverage, and it detects
vulnerabilities with multi-process vulnerability oracles. The
service-protocol-guided fuzzing technique infers standard
and customized service protocols and leverages the inferred
protocols to generate high-quality test cases with syntax and
semantic validity.
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Figure 2: HOUSEFUZZ Overview

5. Service Emulation

The service emulation consists of two steps. First, it
identifies network services in the firmware (§5.1), specif-
ically, the network-facing and daemon processes. Then, it
emulates these processes with existing process emulation
techniques [9] (§5.2).

5.1. Holistic Service Identification

The basic idea of service identification is to analyze the
system initialization procedure. This is primarily because the



system initialization procedure is responsible for establish-
ing both network and IPC channels for services. These chan-
nels then serve as the indicators for identifying network-
facing and daemon processes. For identifying broader net-
work services using this approach, it is crucial to traverse
the system initialization procedure thoroughly. HOUSEFUZZ
improves the traversing by carefully identifying and ad-
dressing emulation exceptions that interrupt or hang system
initialization. We first introduce how HOUSEFUZZ emulates
the system initialization (§5.1.1), then how HOUSEFUZZ
identifies network services, including network-facing (§5.1.2
and daemon processes (§5.1.3).

5.1.1. Initialization Emulation. Linux system invokes a
long-running user-space program—INIT [27] after the ker-
nel is ready to perform system initialization. During system
initialization, various emulation issues may cause excep-
tions that interrupt or hang up the initialization procedure
[11]. (e.g., incorrect configurations of network devices and
NVRAM storage devices). As a result, the initialization
may fail to establish network and IPC channels, causing
an overlook of corresponding service processes.

Inspired by GREENHOUSE [9], which patches service
processes to bypass single-process service emulation road-
blocks, HOUSEFUZZ fixes exceptions found during sys-
tem initialization to identify more network services. Dif-
ferent from GREENHOUSE, which targets a single net-
work process, HOUSEFUZZ targets the whole system initial-
ization procedure involving multiple processes. Therefore,
HOUSEFUZZ needs to identify which process raises an
exception and then identify the exception code. A difficulty
here is that exception processes exhibit quite similar behav-
iors as normal ones—both may programmatically abort or
hang during service initialization. Therefore, simply using
heuristic-based exception identification like GREENHOUSE
inevitably yields false positives. To address this challenge,
our idea is to use established IPC channel numbers to
determine real exceptions.

Algorithm 1 depicts the overall INIT emulation algo-
rithm of HOUSEFUZZ. Specifically, the algorithm first iden-
tifies the INIT program in the firmware image (Line 1) using
name matching (the program is usually named as “init”
or “preinit” [11]). Then it starts an emulation patching
loop to fix all identified exceptions. The patching loop first
launches the INIT process and collects execution traces of
all processes (Line 4). When any emulation exception is
detected from the traces (Line 6), HOUSEFUZZ patches the
exception code (Line 13) and reruns the emulation. This
loop continues until one of three conditions is satisfied: no
exception is found (Line 7), the previous patch breaks the
emulation (Line 5,10-12), or the loop reaches a maximum
attempts limitation (Line 14-15).

❶ Exception Process Identification. In Line 6, the al-
gorithm uses IdentifyException() to identify which pro-
cesses raise exceptions and what the exception code is.
Specifically, HOUSEFUZZ uses 4 exception indicators in
Table 1. When the INIT process aborts programmatically
caused by validation (e.g., device checking) failures or

Algorithm 1 INIT Emulation
Input: Img - Firmware image,

N - Max attempt times
TO - Timeout of each emulation run

Output: Img - Patched firmware image,
C - Identified network or IPC channels

1: P ← IdentifyInitProgram(Img)
2: C ← Nil
3: repeat
4: T ← TraceEmulation(Img, P, TO)
5: PrevC ← C;C ← IdentifyChannels(T )
6: Ex← IdentifyException(T )
7: if Ex = Nil then
8: return Img,C
9: end if

10: if PrevC.size > C.size then
11: return PrevImg, PrevC
12: end if
13: PrevImg ← Img; Img ← PatchException(Img,Ex)
14: N ← N − 1
15: until N = 0

unexpectedly due to memory faults (e.g., accessing an unini-
tialized and invalid pointer), the system initialization will be
interrupted. HOUSEFUZZ identifies these situations when an
exit() function call or a fatal signal is observed at the tailing
of the INIT process execution trace. Similarly, abnormally
interruptions of non-INIT processes may interrupt system
initialization, where HOUSEFUZZ recognizes such exception
only when a fatal exception signal (e.g., segment fault
signal) is observed as non-INIT processes commonly exit.

Besides, the hangs of both INIT and non-INIT processes
may prevent the execution of the initialization code. For
instance, the INIT process may spawn an interactive de-
bugging shell due to misconfigured NVRAM variables. For
another instance, a non-INIT script may keep waiting for a
network adapter before launching network-facing processes,
which is endless because the network adapter never exists
during emulation. Hanging is more covert than interruption
due to a lack of strong indicators like signals. For a non-
INIT process, HOUSEFUZZ regards it is stuck in busy
waiting if it consumes lots of total CPU time (equal or more
than 1

3 ). For the INIT process, HOUSEFUZZ aggressively
considers it hangs if no other exception is detected.

❷ Exception Handling. After an exception process is
identified, HOUSEFUZZ analyzes the tailing execution trace
of the process to identify the exception code. The rationale
is that when a process aborts or hangs, the process stops
its execution or keeps executing the same code within a
loop, so the direct exception cause can be found at the
tailing execution traces. Then, HOUSEFUZZ just patches the
identified exception code at the tailing execution trace to
prevent aborting or breaking the hanging loop. Specifically,
HOUSEFUZZ selects a tailing function call that satisfies two
conditions and rewrites the call instruction by replacing it
with a NOP instruction. The two conditions are: (1) the
called function size does not exceed a threshold, which
minimizes the impact of patches; (2) the function call target
is in the executable program of the process and is not a



stub call to external libraries, which avoids breaking shared
libraries.

❸ Robustness Enhancement. As the expception identifi-
cation involves heuristics and aggressive mechanisms, it may
yield false positives. To address this problem, HOUSEFUZZ
uses a reverting mechanism (Line 10-12). Specifically, when
fewer network channels and IPC channels (i.e., C) were
discovered during emulation, it means the initialization code
logic is broken by patch. In this situation, HOUSEFUZZ
regards the previous patch as error-prone and adopts prior
emulation results to avoid errors and enhance robustness.

TABLE 1: Initialization emulation exceptions

Observed Situation Explanation Exception

INIT process terminates It aborts programmatically
or unexpectedly Interrupts

Non-INIT process crashes It aborts unexpectedly

Non-INIT process takes
lots of CPU time It is busy waiting Hangs

Other cases INIT process may hang

5.1.2. Network-Facing Process Identification. The
network-facing process identification has two goals. First,
it needs to identify network channels. Fuzzing must
communicate with the network channels to execute test
cases. Second, it requires inferring the correct command
line to launch the process, including the program path,
and arguments. Using actual arguments is essential for
emulation fidelity; for example, missing a configuration
path argument of a web server may cause it to fail to
launch. HOUSEFUZZ first identifies processes that listen to
network channels as network-facing processes. Specifically,
HOUSEFUZZ collects system call traces during emulation,
including PIDs, system call names and arguments, and
inspects the concrete arguments of the network binding
call (i.e., bind()) to extract the network channel. If the
channel is exposed to the network (i.e., not “localhost”),
it is considered as a network-facing process. Sometimes,
a network-facing process (e.g., HTTP server) indirectly
interacts with the network through an encrypted tunnel
(e.g., HTTPS), so it may not directly listen to network
channels. We denote them as proxied network-facing
processes. HOUSEFUZZ identifies these processes based
on known proxied ports (e.g., 80 for HTTP) because they
can be fuzzed more efficiently than fuzzing them through
the encrypted tunnel. After identifying a network-facing
process, HOUSEFUZZ extracts its command line from the
arguments of corresponding execve() system call.

5.1.3. Daemon Process Identification. Daemon process
identification also has two goals. The first is to infer and
reason the IPC dependencies between processes to find dae-
mon processes for a given network service. Second, it also
needs to identify the command lines of daemon processes.

According to Karonte [12], IPC channels of Linux pro-
cesses are uniquely identified with specific “keys”, such as

socket file paths. IPCs through the same channel indicate
dependencies between processes. HOUSEFUZZ first identi-
fies “keys” of IPC channels with dynamic tracing, which
is more accurate than static approach [12], then identifies
daemon process if it establishes IPC channels dependent by
other network service processes. Specifically, HOUSEFUZZ
identifies IPC “keys” at system calls that create (e.g., open())
or bind (e.g., bind()) an IPC channel (e.g., file descriptors
and socket addresses). When a process establishes IPC
channels are read or written by other service processes, it is
regarded as a daemon process. HOUSEFUZZ identifies the
reading and writing event at specific system calls, such as
recv() and send() and backtracks the system trace to identify
the corresponding channel based on file descriptors.

5.2. Process Emulation

HOUSEFUZZ adopts the technique proposed by
GREENHOUSE [9] for process emulation. To emulate a
service, HOUSEFUZZ first launches its daemon processes,
followed by the launch of the network-facing process.
During this sequence, both the network-facing and daemon
processes will autonomously initiate utility processes as
required. During grey-box fuzzing, all service processes
should be managed by the fuzzer. HOUSEFUZZ instruments
the execve() syscall to trace all processes launched by the
service under test with QEMU [28] for coverage collection
and vulnerability detection.

6. Multi-Process Fuzzing Framework

Multi-process fuzzing framework has two core designs.
First, it is guided with multi-process code coverage (§6.1),
which is more comprehensive than a single-process one.
Second, its vulnerability oracle detects vulnerabilities in all
processes of the service under test (§6.2).

6.1. Multi-Process Coverage Guidance

Generally, code coverage guidance consists of three
steps. First, the grey-box fuzzer records code coverage
during the test case execution. Then, it detects whether the
test case execution completes based on specific events (e.g.,
process termination). We denote this step as test completion
event (TCE) detection. When the TCE is observed, the
recorded coverage is regarded as the code coverage of the
test case. Finally, fuzzing will use the collected coverage
as guidance to identify whether the test case is valuable. In
our multi-process fuzzing framework, these steps become
more complex than in single-process fuzzing. We describe
TCE detection in §6.1.1, coverage recording in §6.1.2, and
coverage guidance in §6.1.3

6.1.1. Test Completion Event Detection. the main diffi-
culty of multi-process code coverage guidance is identifying
“when to collect code coverage”. As depicted in Figure 3,



during multi-process fuzzing, test case executions will in-
troduce a more complex process state transition than single-
process fuzzing. Specifically, single-process code coverage
collection only identifies whether one process stopped or
the network resource (e.g., socket) is released. Instead,
multi-process fuzzing requires detecting whether all service
processes have finished test case handling. Otherwise, the
fuzzing likely collects incomplete coverage. This is because
some service processes are still handling the test case, where
new coverage is ignored. Such incomplete coverage collec-
tion may overlook valuable test cases or cause instability that
running the same test case likely yields different coverage.
So HOUSEFUZZ regards the test case complete execution
when TCEs of all processes have been observed. The TCEs
of different processes require different detection methods.
We describe how HOUSEFUZZ detects TCEs of utility,
network-facing, and daemon processes in the following.

Multi-Process Test Case Execution

NP DP UP

NP DP UP

NP DP UP NP DP UP

NP DP UP

NP DP UP

NP NP

Single-Process Test Case Execution
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NP: Network-facing Process 
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Stopped or Net Resource Released

Service

State Transition

Legend

Figure 3: Different process state transition model during test
case execution of single- and multiple-process fuzzing.

Utility processes have a short-term life cycle because
they are launched specifically for handling single requests,
which is similar to the PUT in single-process grey-box
fuzzing. So HOUSEFUZZ just detects the terminating of a
utility process as its TCE like traditional fuzzers.

Network-facing and daemon processes are long-running
processes and typically keep running after test case han-
dling. We find that network-facing processes usually release
network resources after handling requests. Therefore, when
HOUSEFUZZ detects the network resource (i.e., the network
socket under fuzzing) is released (i.e., closed), it also deems
the TCE of this process is satisfied.

Unlike network-facing processes that handle network
requests, a daemon process mainly handles inter-process
communications (IPCs). After handling IPC communication,
the daemon process may reuse the IPC channels instead of
closing them (e.g., maintaining an opening pipe for reading
messages). In this situation, a daemon process repeatedly
waits for IPC requests by invoking specific I/O listening
system calls (e.g., select, poll), and starts handling the
requests when it returns from these system calls. Based
on this observation, HOUSEFUZZ instruments I/O listening
system calls to detect completion of IPC request handling.
When HOUSEFUZZ finds a daemon process re-invokes an

I/O listening system call, HOUSEFUZZ assumes this pro-
cess has finished IPC request handling. Completion of IPC
request handling is not always the same as the completion
of a test because network-facing and utility processes may
issue multiple IPC requests during one test. To avoid this
issue, HOUSEFUZZ detects TCEs of daemon processes af-
ter TCEs of all network-facing and utility processes have
been detected. HOUSEFUZZ regards the test case complete
execution when TCEs of all processes have been observed.

6.1.2. Coverage Recording. To record coverage of each
process without data racing, HOUSEFUZZ allocates isolated
shared memory as a coverage bitmap for each process
when the process is launched; after being used by coverage
guidance, all bitmaps will be cleared and placed into a
shared memory pool for the next round of testing. To save
memory space, the bitmaps of processes that load the same
program will be merged into the same bitmap after the TCE
of that process has been detected. To further reduce over-
head, HOUSEFUZZ avoid collecting coverage from daemon
processes that are not triggered during test case handling.
This is achieved by maintaining an activation flag, which is
set when they leave accept() system call.

6.1.3. Coverage Guidance. HOUSEFUZZ analyzes col-
lected coverage bitmaps by comparing them with historical
code coverage (i.e., virgin map in AFL++). If a fresh bit
is found in the bitmap of any process, it means that the
current test case has triggered a new path in the service.
HOUSEFUZZ thus treats this test case as valuable and adds
it to the seed queue for subsequent code exploration. A prob-
lem here is that the launched processes may vary across tests
(e.g., launch different programs or with different sequences),
and HOUSEFUZZ must ensure process coverage comparison
is consistent—the compared coverage data corresponds to
the same program. To address this issue, HOUSEFUZZ inte-
grates coverage bitmaps of all processes that load the same
executable ELF object (by summing up hit counters) and
uses the output coverage bitmap for comparisons.

6.2. Multi-Process Vulnerability Detection

Different from single-process grey-box fuzzing [9],
HOUSEFUZZ detects vulnerabilities in all service processes,
including network-facing, daemon, and utility processes.
Specifically, HOUSEFUZZ implements vulnerability oracles
for memory corruption and command injection vulnerabili-
ties, which are prevalent vulnerability types in firmware [2]
and frequently attacked [4], [29]. For memory corruptions,
HOUSEFUZZ detects crash signals (e.g., segmentation fault)
in all service processes and excludes unexploitable crashes
in utility processes by verifying whether the memory corrup-
tion impact can be controlled by user input. For command
injection, HOUSEFUZZ adapts the web-application-based
approach [30], [31] for firmware binaries, which instruments
the execve() system call of all service processes. We present
more technical details in Appendix-§B.



7. Service-Protocol-Guided Fuzzing

7.1. Formalization of Service Protocol

As introduced in §2.2, a firmware service protocol con-
sists of two parts—the standard service protocol (e.g., HTTP,
UPnP, JetDirect), and customized service protocol. To im-
prove the quality of generated test cases, fuzzing should
handle both of them to ensure the syntax and semantic
validity of test cases. To unambiguously express this require-
ment, we formalize syntax constraints of standard service
protocol with an existing method—context-free grammar
(CFG), which has been widely adopted [22], [23], [24], [25],
[26], and formalize the semantic constraints of customized
service protocol with token dependency graph (TDG).
Definition. TDG is a directed graph G(N,E) (showcased
in Figure 5). Each graph node n ∈ N is a two-element
tuple n(v, t). The n.v denotes the token value, which is a
concrete string, and n.t is the token type, which depicts
token semantics. We define three basic token types that
denote the semantic meanings of a wide range of tokens—
Path, Key, and Value, where Path denotes a specific function-
ality routing, Key denotes a left operand of assignment, and
Value represents an assigned value. For example, the token
“ccp act” and “set” in Figure 1 correspond to Key and
Value types accordingly. For each graph edge e(ni, nj) ∈ E,
it denotes a dependency (i.e., semantic constraint) from the
source token ni to the target token nj ; specifically, it means
that when the nj has been used by a test case, it requires
to insert ni to satisfy this constraint. As showcased in
Figure 4, there are two kinds of dependency—control-flow
and data-flow dependency. For control-flow dependency, ni

depends on nj because nj controls whether ni will be
accessed/required (showcased by scenarios 1 and 2). For
data-flow dependency nj decide how ni is understood by
protocol (showcased by scenario 3).

7.2. Service Protocol Inference

For a target service, HOUSEFUZZ identifies which stan-
dard protocol is used from known protocols, and infers cus-
tomized service protocol with online dynamic instruction-
based analysis and offline control-/data-flow analysis.

7.2.1. Standard Service Protocol Identification. For a
network service, HOUSEFUZZ identifies known protocols
with two protocol-specific features: network channels and
magic constants. Standard protocols usually communicate
through known network channels as a common practice [32]
(e.g., HTTP protocol through TCP 80 port), so HOUSEFUZZ
first identifies the channel with system tracing (§5) and then
maps the channel to a known protocol. In some cases, a
standard service communicates through unknown network
channels, HOUSEFUZZ identifies them by magic constants.
Specifically, HOUSEFUZZ extracts string constants from the
identified network-facing binary and matches them with
magic constants of known protocol (e.g., “SUBSCRIBE” of
UPnP) to identify their corresponding standard protocols.

7.2.2. Customized Service Protocol Inference. For cus-
tomized service protocols, HOUSEFUZZ infers token de-
pendencies by analyzing the target service and uses these
dependencies to construct TDG. To infer more token depen-
dencies, we propose two orthogonal components—online
and offline TDG inference. Each component infers token
values, types, and dependencies with different methods. The
online component leverages dynamic instrumentation during
fuzzing to collect token values, and analyzes the fuzzing test
cases to infer token types and dependencies. The offline
component leverages static analysis to extract token values
and infer the types and dependencies from firmware code.
Both components are complementary to each other: the
offline component is lightweight enough to quickly infer
an initial TDG for early-stage code exploration, while the
online component can gradually improve TDG using fuzzing
feedback when the exploration goes deep.
❶ Online TDG Inference. Figure 5 showcases how
HOUSEFUZZ infers TDG with the online component. First,
the online component instruments string comparing func-
tions like strcmp() during fuzzing to collect token values
used by input parsing, which is already adopted by existing
fuzzing to collect input corpus [31], [33]. Specifically, the
online component infers tokens that are compared with an
input token in the current fuzzing test case.

Then, the online component uses the type of compared
input token as the type of the inferred token. The rationale
is that service protocol parsing usually compares whether
the input token equals to an expected token (e.g., “set”),
where the expected token will be inferred and has the same
type as the input token. To retrieve the type of input token,
HOUSEFUZZ first parses the test case based on the standard
service protocol to retrieve the field type of the input token,
and then maps the field type of the input token to a token
type. For example, the token “set” is parsed as an HTTP
parameter value, which is mapped to the token type Value.

Finally, the online component infers the dependency of
the inferred token based on its type. For example, the in-
ferred token with a Value type likely depends on input tokens
with Key type. As a test case may contain multiple tokens of
the same type, HOUSEFUZZ refines the token types based
on the standard service protocol to find its dependency more
accurately. For example, an Value token that is parsed into an
HTTP parameter value only depends on the corresponding
parameter key. Such refinement is a one-time effort for
each standard service protocol and is lightweight. For HTTP
protocol, HOUSEFUZZ only refines the Key and Value types
corresponding to headers and parameters.
❷ Offline TDG Inference. The offline component leverages
static code analysis to extract tokens due to lacking test
cases. The idea is to find tokens in code based on their
semantic meanings denoted by token types. We find many
existing static analysis tools have implemented the detector
for identifying fields of HTTP service protocol [4], [12],
[20], so HOUSEFUZZ directly uses these detectors. Specifi-
cally, HOUSEFUZZ leverages the approaches proposed by
[20], [34] to identify URL paths and parameter keys of



Scenario 1: Direct control flow dependency
1 //B("ac�on") is dependent on A("scandir.sgi")
2 if ( !strcmp(uri, "scandir.sgi") )
3 return sub_1CFC0(packet, a2, a3);
4
5 sub_1CFC0(char* s1, int a2, int a3){
6 val = cgi_value(s1, "ac�on");
7 sub_1EF60(val);
8 }

Scenario 2: Indirect control flow dependency
1 // B ("username") is dependent on A("ddns.cgi")
2 func_A = get_handler("ddns.cgi");
3 func_A();
4 sub_A8D0(char* input, int a2){
5 name = websgetvar(input, "username")
6 }

.data: 0x1CDA0 DCD "ddns.cgi" DCD sub_A8D0

.data: 0x1CDA8 DCD "ipv6.cgi" DCD sub_ACC0

Get func�on
handler by name

Scenario 3: Data flow dependency
1 // B(":::::::") is dependent on A("ipv6_pri_dns")
2 websgetvar(input, "ipv6_pri_dns", v10);
3 if ( strstr(v10, ":::::::") ){
4 if (!NvramConfig_match("ipv6_dns", "") ){
5 NvramConfig_set("ipv6_dns", v10);
6 call_acos_service(v10);
7 …
8 }
9 }

- - -

Figure 4: Examples of static code patterns of token dependencies.
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Figure 5: An example of online TDG inference

HTTP protocols, which extracts tokens with Path ans Key
types. The Value tokens can be extracted when inferring
token dependencies.

Then the offline component leverages three kinds of code
patterns showcased by Figure 4 to infer token dependen-
cies based on control-flow and data-flow analysis. Specifi-
cally, HOUSEFUZZ identifies direct control-flow-based to-
ken dependencies showcased in scenario 1 by analyzing
the control-flow graph of the service binary; for indirect
control-flow dependency, HOUSEFUZZ leverages the ap-
proach proposed by LARA [20] to identify handler functions
of URL paths, and then analyze the control-flow graph of the
handler function. For data-flow-based token dependencies,
HOUSEFUZZ leverages the feature-based input approach
proposed by FITS [34] to identify input reading location and
accompanied Key tokens, then HOUSEFUZZ utilizes path-
insensitive reaching definition analysis to track the read data,
and detect Value tokens compared with the read data.

7.3. Service-Protocol-Guided Test Case Generation

HOUSEFUZZ combines both standard and customized
service protocols to guide test case generation. HOUSEFUZZ
formalizes standard service protocol with context-free gram-
mar (CFG). CFG can represent most popular firmware ser-
vice protocols such as HTTP and UPnP [15] and has been
widely adopted for test case generation [22], [23], [24],
[25], [26]. As shown in Figure 6, CFG consists of sets of
production rules, where each indicates “a grammar symbol
can be replaced by a list of grammar symbols and constant

strings”. By continuously applying production rules, a test
case generator can finally create a derivation tree whose leaf
nodes composite a syntactic valid test case.

For handling customized service protocol, HOUSEFUZZ
mutates test cases while ensuring the token dependencies
described by the inferred TDG. Given a test case generated
with standard service protocol (e.g., CFG), HOUSEFUZZ
carefully inserts the inferred tokens into the test case, and
attempts to satisfy more semantic constraints of the inserted
tokens. Specifically, HOUSEFUZZ first picks a token n(v, t)
from the TDG and inserts the token into the given test case.
To insert the token at the proper position, HOUSEFUZZ
picks a token in the test case that has the same token type
n.t, and replaces it with n. For example, in Figure 5, the
inferred token (“set”, Value) can be used to replace (“AAA”,
Value). When the refined token type (§7.2.2) is available, it
is also used to refine the insertion positions. After the token
is inserted, HOUSEFUZZ attempts to insert more relevant
tokens into the test case to satisfy more customized con-
straints. HOUSEFUZZ traverses the TDG backward starting
from n to find all tokens that directly or indirectly depend
on n. These tokens will also composite the mutated test
to bypass semantic validation. Specifically, HOUSEFUZZ
iterates found tokens by TDG traverse order and inserts each
token to the test case, similar to inserting n.

Other than service-protocol-guided test case generation,
HOUSEFUZZ also adopts random mutation [21] for generat-
ing malformed test cases for triggering protocol parsing vul-
nerabilities. HOUSEFUZZ schedules service-protocol-guided
and random-mutation-based test case generation based on



code coverage discovery—when one approach fails to dis-
cover new code coverage within a time limit (i.e., 3 minutes
in our experiment), HOUSEFUZZ switches to another ap-
proach. When the standard service protocol is unavailable,
HOUSEFUZZ only uses random mutation for fuzzing. In
this case, HOUSEFUZZ uses TDG for handling customized
service protocol, but blindly inserts tokens into a test case
due to a lack of the guidance of standard service protocol.

8. Evaluation

We conducted extensive experiments to demonstrate the
effectiveness of HOUSEFUZZ. First, in §8.2 (RQ1), we
compared the general fuzzing performance of HOUSEFUZZ
with SoTA grey-box firmware fuzzing tools. Afer that, in
§8.3 (RQ2), §8.4 (RQ3) and §8.5 (RQ4), we respectively
demonstrate the advantages of the three key techniques
of HOUSEFUZZ, i.e., holistic service identification, multi-
process fuzzing framework, and service-protocol-guided
fuzzing.

8.1. General Experiment Setup

Prototype. We implemented a prototype of HOUSEFUZZ
with about 7k lines of C code and 5k lines of Python
code. HOUSEFUZZ uses Binwalk [35] to extract file sys-
tems from Linux-based firmware. For system initialization,
HOUSEFUZZ runs each firmware image with QEMU user
mode, which also tracks the execution trace of system
calls and basic blocks. The trace is further analyzed with
Radare2 [36] to find and patch exception code to improve
the robustness of system initialization emulation. When a
network service is identified by analyzing the system initial-
ization procedure, the corresponding service binaries are fed
to an IDA Pro-based static analysis engine to extract offline
TDG, which will be used in service-protocol-guided fuzzing.
In the fuzzing stage, the prototype uses the technique pro-
posed by GREENHOUSE [9] to emulate target services and
modifies the QEMU mode of AFL++ [21] to add supports
for multi-process feedback mechanism, vulnerability ora-
cles, and online TDG inference. We will release our source
code at https://github.com/seclab-fudan/HouseFuzz.
Firmware Image Dataset. To evaluate the effectiveness of
grey-box firmware fuzzing techniques, we reused an existing
real-world firmware image dataset that has been extensively
used as a benchmark by recent SoTA works [8], [9]. Orig-
inally, this dataset consisted of 70 firmware images from
3 vendors. We updated 35 images in the dataset with the
latest image versions of the same products, either because
the original dataset did not annotate image versions, or the
obsolete image versions are not available for downloading.
Then, we used Binwalk [35] to extract these images. The ex-
traction failed on 10 firmware images potentially due to the
updated firmware images using new image packing methods.
Finally, we used the 60 extractable firmware images (listed
in Table 2) for most of experiments as described in §8.2.1,
§8.3, §8.4, and §8.5.

TABLE 2: Firmware service dataset for comparison exper-
iments.

Vendor # Images # Extracted Images # Target Services 1

D-Link 30 22 17
Netgear 29 29 20
Trendnet 11 9 4
1 Services could be emulated and fuzzed by both GREENHOUSE

and HOUSEFUZZ.

Environment. All experiments were conducted on a Ubuntu
22.04 machine with an Intel Xeon(R) Gold 5218 CPU (2.30
GHz × 64 cores) and 245 GB memory.
Vulnerability Disclosure. We have responsibly reported
all 156 0-day vulnerabilities found during experiments to
vendors and then the vulnerability database, including 58
buffer overflow, 15 OS command injection, and 83 denial-
of-service vulnerabilities. Currently, we have received 45
CVE/CNVDs as shown in Table 9.

8.2. General Fuzzing Performance (RQ1)

Experiment Overview. In this section, we conducted
two experiments, i.e., comparison experiment and vulner-
ability hunting experiment, to demonstrate the superior
code exploration and vulnerability detection capabilities of
HOUSEFUZZ.

8.2.1. Comparison Experiment. This experiment com-
pares the general fuzzing performance of HOUSEFUZZ with
the SoTA grey-box firmware fuzzing technique under the
same fuzzing settings on the dataset shown in Table 2.
Baseline Choice. Here, we mainly considered SoTA grey-
box firmware fuzzing approaches that are based on pro-
cess emulation, which greatly outperforms those built
upon system emulation in the aspect of fuzzing through-
put [7]. We identified three baselines that met our crite-
ria: GREENHOUSE [9], EQUAFL [8], and Firm-AFL [7].
Given that these approaches have already been thoroughly
evaluated for their fuzzing effectiveness in prior works (i.e.,
existing evaluations [8], [9] have shown that GREENHOUSE
is 2x faster than EQUAFL, and EQUAFL is 14x faster than
Firm-AFL), we finally chose the technique that achieves the
best performance as our baseline—GREENHOUSE.
Fuzzing Targets (Firmware Service Dataset). To fairly
evaluate the effectiveness of firmware service fuzzing be-
tween GREENHOUSE and HOUSEFUZZ, we need to build
a firmware service dataset that can be fuzzed by both
GREENHOUSE and HOUSEFUZZ. Hence, given the 60 ex-
tracted firmware images in the existing firmware image
dataset, we first run GREENHOUSE to collect all emulatable
and fuzzable services among them, which contain a total
of 41 web services. Since we confirmed that HOUSEFUZZ
could also successfully fuzz these services, we used them
as the firmware service dataset (listed in Table 2).
Fuzzing Settings. We then ran GREENHOUSE and
HOUSEFUZZ to fuzz the firmware service dataset under
the same emulation environments (i.e., running the same

https://github.com/seclab-fudan/HouseFuzz


TABLE 3: General fuzzing performance comparison (RQ1).

Vendor Series # Services Avg. Edge Code Coverage1 Number of Detected Vulnerabilities
GREENHOUSE HOUSEFUZZ GREENHOUSE HOUSEFUZZ

DAP 12 20704 28924 1 14
DIR 3 4480 5678 0 0
DSP 1 2449 2969 4 5D-Link

GO 1 1442 1841 0 0
WN/WNCE 2 1522 2625 6 19

WN*AP/WAC 7 15715 16408 0 0
WN(D/DR/R) 8 6886 11209 20 57

WPN 1 766 994 2 2
Netgear2

X(AV/W)N 2 3620 4745 5 22
Trendnet TEW 4 3012 4068 8 9

Summary 41 11072 14767 46 128

1 Summing image edge numbers of the same series and dividing with the round number. 2 Netgear product series are merged based on device type.

processes on the same file system). For each tool, we ran
the fuzzing on each service for 3 rounds, and each round
used 1 CPU core for 24 hours. Both tools used the same
initial seeds from GREENHOUSE. For test case generation,
GREENHOUSE used fuzzing dictionaries extracted from tar-
get services, while HOUSEFUZZ only used the token de-
pendency graph it automatically extracted. Note that, when
evaluating HOUSEFUZZ, we counted the time consumed by
TDG inference (including both offline and online compo-
nents) into the fuzzing time.

Comparison Metrics. We mainly compared GREENHOUSE
and HOUSEFUZZ in the aspect of vulnerability detection
and code coverage. To evaluate vulnerability detection, we
first grouped all crashes detected by crash sites and further
leveraged QEMU-based sanitizer and manual root cause
analysis to pick up unique vulnerabilities. In particular, com-
mand injections detected by HOUSEFUZZ were excluded
from the comparison for fairness because GREENHOUSE
cannot identify this kind of vulnerability. For evaluating the
code coverage, we only considered the edge coverage of
the network-facing program because GREENHOUSE does
not have the capability of collecting multi-process cover-
age like HOUSEFUZZ. Following the representative fuzzing
evaluation practices [37], we calculated the p-value and Â12

score for measuring the significance and effect size, and
regarded p < 0.05 as an indicator of significant difference
between two tools, while Â12 ≥ 0.71 as an indicator that
HOUSEFUZZ likely outperforms GREENHOUSE. Besides,
we also analyzed the execution overhead introduced by
HOUSEFUZZ based on the total test case execution times.

Results on Code Coverage. Table 3 shows the code cov-
erage of both tools on services of different product se-
ries. Overall, HOUSEFUZZ outperformed GREENHOUSE on
edge code coverage by 24.8%. Among 41 tested services,
HOUSEFUZZ achieved p < 0.01 and Â12 ≥ 0.71 on
36 services, which showed that HOUSEFUZZ significantly
outperformed GREENHOUSE in code coverage. Meanwhile,
HOUSEFUZZ also achieved higher average code coverage
than GREENHOUSE in the remaining 5 services. These
results show that HOUSEFUZZ was more effective in code
exploration than GREENHOUSE.

Results on Vulnerability Detection. In total, we ana-
lyzed 705 and 2,519 crashes detected by GREENHOUSE

and HOUSEFUZZ, and summarized the results (i.e., unique
vulnerabilities) in Table 3. In summary, GREENHOUSE only
detected 46 vulnerabilities on 18 services, including 40 0-
days, while HOUSEFUZZ detected 128 vulnerabilities on 25
services, including 110 0-days. This means HOUSEFUZZ de-
tected 175% more 0-days than GREENHOUSE. Statistically,
HOUSEFUZZ achieved significantly better results (i.e., p <
0.01 and Â12 ≥ 0.71) than GREENHOUSE on 5 services,
and found more vulnerabilities than GREENHOUSE on 18
services. Here, HOUSEFUZZ identified slightly fewer vul-
nerabilities (i.e., one less vulnerability) than GREENHOUSE
on 2 services, mainly due to the high overhead of multi-
process code coverage collection.

Notably, we tried our best to confirm that HOUSEFUZZ
and GREENHOUSE correspondingly detected 110 and 40
previously unknown vulnerabilities (i.e., unrecorded by
NVD [38] database), with 23 and 10 CVE/CNVD assigned,
where 9 were detected by both tools.
Results on Overhead. Due to the multi-process feedback
collection and the TDG inference, HOUSEFUZZ averagely
introduced 6.8x more time overhead than GREENHOUSE on
the 41 services. For memory overhead, HOUSEFUZZ allo-
cated a (128 KB) coverage bitmap for each active process,
and the memory overhead is linear to the number of active
processes. Here, we argue that the overhead is quite ac-
ceptable, considering the fact that HOUSEFUZZ significantly
outperformed GREENHOUSE in aspects of vulnerability de-
tection and code coverage.

8.2.2. Vulnerability Hunting Experiment. Given that the
firmware image dataset used by the prior comparison exper-
iment only involves legacy firmware released before 2019,
this experiment aims to demonstrate that HOUSEFUZZ can
also detect vulnerabilities in latest firmware images of ac-
tively maintained products. Therefore, we conducted this
experiment on a new firmware image dataset, where the
firmware images are released after 2020.
Fuzzing Targets (Firmware Service Dataset). We con-
structed a new firmware service dataset following the below
steps. First, we collected the latest firmware images of 45
actively maintained products, where these products are sam-
pled from recent security advisory web pages of 9 vendors
and have firmware images released after 2020. Then, we ex-
tracted these images and found 12 ones can be successfully



extracted. Finally, we follow the same workflow described
in §8.2.1 to collect emulatable and fuzzable services from
the new firmware image dataset as fuzzing targets. As a
result, we identified 12 web services from the 12 extracted
firmware images as shown in Table 4.

TABLE 4: Firmware service dataset for vulnerability hunt-
ing.

Vendor # Images # Extracted Images # Target Services 1

ASUS 2 2 2
D-Link 10 1 1
Draytek 2 1 1
Netgear 11 3 3
Ruijie 2 0 0

TOTOLINK 5 3 3
TP-Link 4 0 0
Trendnet 5 2 2
Xiaomi 4 0 0

Total 45 12 12
1 Services could be emulated and fuzzed by HOUSEFUZZ.

Results on Vulnerability Hunting. We used HOUSEFUZZ
to fuzz each identified web service for 24 hours, and suc-
cessfully detected 21 0-day vulnerabilities in 5 services,
with 21 assigned CVE/CNVDs. This result demonstrates
that HOUSEFUZZ is also effective in vulnerability detection
when applied to the new firmware image dataset.

8.3. Experiments on Service Identification (RQ2)

Experiment Overview. In the previous section, we mainly
compared HOUSEFUZZ and GREENHOUSE on the effec-
tiveness of firmware fuzzing, considering only firmware
services that can be emulated by both tools. Here, we also
conducted experiments to demonstrate the effectiveness of
our service identification approach, which actually enables
HOUSEFUZZ to identify those overlooked services with
implied vulnerabilities.
Baseline Choices. We compared the service identification
technique of HOUSEFUZZ with two SoTAs approaches—
GREENHOUSE [9] and FirmAE [11]. GREENHOUSE uses
name whitelists to identify network-facing programs and
daemon programs; then it launches the identified programs
with pre-defined arguments or arguments extracted from
FirmAE emulation results to obtain network-facing and dae-
mon processes. FirmAE emulates the entire firmware system
without service identification. To compare with FirmAE, we
ran the netstat [39] tool to identify network-facing processes
during emulation, which is similar to running HOUSEFUZZ
without patching emulation exception code.
Results on Network-Facing Process Identification and
Network Service Identification. For network-facing pro-
cess identification, we ran HOUSEFUZZ, GREENHOUSE,
and FirmAE on the same firmware image dataset introduced
in §8.1. A network-facing process was considered identified
when it opened a non-local network channel (e.g., TCP/UDP
ports on public IP addresses). Finally, results showed that
HOUSEFUZZ, FirmAE, and GREENHOUSE successfully

identified 311, 128, and 44 network-facing processes, re-
spectively from the 60 extracted firmware images. We man-
ually confirmed that these processes were actual network-
facing, so the identification precision is 100%. This indicates
HOUSEFUZZ identified at least 143% more network-facing
processes than existing work. Utilizing the total 387 unique
network-facing processes as a benchmark, HOUSEFUZZ
achieved a recall rate of 80.4%, significantly higher than
the 33.1% and 18.1% of FirmAE and GREENHOUSE, re-
spectively. Table 5 illustrates the distribution of identified
network services by three tools. GREENHOUSE identified
the least network services due to the limitation of the name
whitelist, limiting the discovery of unlisted network-facing
processes. Besides, we found GREENHOUSE attempted to
emulate 3 web servers with wrong arguments, causing the
emulated process to abort before establishing network chan-
nels. By comparing HOUSEFUZZ and FirmAE, we found
FirmAE only successfully identified network services in 25
firmware images, while HOUSEFUZZ succeeded in 59 ones.
This is because HOUSEFUZZ automatically identified and
handled exceptions to analyze more system initialization
procedures.

To understand the effectiveness of exception identi-
fication and handling described in §5.1.1, we analyzed
each identified emulation exception. We observed that
HOUSEFUZZ identified 85 emulation exceptions of 30
firmware images, where 8 were automatically identified as
false positives using reverting mechanism. As a result, this
mechanism avoids overlooking 77 services in 8 firmware
images. After handling identified exceptions, HOUSEFUZZ
successfully identified 119 (37%) more network services
on 23 firmware images. These results demonstrate that
HOUSEFUZZ’s exception identification and handling tech-
niques are effective for network service identification.

TABLE 5: Network service identification comparison (RQ2).

Protocol # Service GREENHOUSE * FirmAE* HOUSEFUZZ*
Recall Recall Recall

HTTP 98 44.9% 43.9% 95.9%
Telnet 40 0 30.0% 100.0%
UPNP 28 0 39.3% 100.0%
NetBIOS 24 0 33.3% 91.7%
DHCP 23 0 34.8% 91.3%
(DNS) 22 0 18.2% 90.9%
NCI 18 0 11.1% 100.0%
mDNS 13 0 61.5% 76.9%
LLMNR 11 0 63.6% 63.6%
SSH 7 0 28.6% 100.0%
RIP 4 0 0 100.0%
AFP 4 0 0 100.0%
TFTP 3 0 33.3% 100.0%
STP 1 0 0 100.0%
Unknown 142 0 64.1% 47.2%

Summary 438 10.0% 45.0% 79.0%
* The recall is calculated considering all unique network services identified by

three tools as ground truth.

Results on Daemon Process Identification. We confirmed
that GREENHOUSE and HOUSEFUZZ achieved a precision
of 100% in daemon process identification with manual
analysis. However, it was hard to construct a ground truth
of daemon processes for evaluating recall because analyzing
IPC dependencies requires significant reverse engineering
efforts. Alternatively, we present an example to demon-
strate the drawback of the whitelist-based approach. We



found GREENHOUSE failed to identify an essential daemon
process named “zebra”. According to the document [40],
running zebra is mandatory to run ripd services, so zebra
is vital to identify for testing ripd services. HOUSEFUZZ
successfully found all these daemon processes without using
name whitelists.
Identified Vulnerabilities in Overlooked Services. Without
identifying the network-facing processes, grey-box fuzzing
can not test the corresponding network services prop-
erly and will fail to discover vulnerabilities in these ser-
vices. As mentioned above, HOUSEFUZZ successfully iden-
tified more overlooked network services than the baseline.
Here, we further selected 3 web services not identified by
both GREENHOUSE and FirmAE, fuzzed each one with
HOUSEFUZZ for 72 hours, and successfully detected 12 0-
day vulnerabilities.

8.4. Experiments on Multi-Process Fuzzing Frame-
work (RQ3)

Experiment Overview. We conducted three experiments
in this section to demonstrate the effectiveness of
HOUSEFUZZ’s multi-process fuzzing framework. First, we
conducted an ablation experiment to evaluate the overall ef-
fectiveness of the multi-process fuzzing framework. Second,
we performed a manual vulnerability analysis to answer
whether the multi-process fuzzing framework indeed con-
tributed to multi-process vulnerability detection. Third, we
evaluated whether the TCE detection used by multi-process
fuzzing framework was robust enough for consistent code
coverage collection.

8.4.1. Ablation Experiment. We compared two ablation
setups—GREENHOUSE and HOUSEMP to evaluate the
overall effectiveness of multi-process fuzzing framework.
Specifically, GREENHOUSE serves as the foundational base-
line, which only performed single-process fuzzing, and
HOUSEMP extends GREENHOUSE by integrating the multi-
process fuzzing framework. We then compared different
baselines using the same dataset and settings in §8.2.1.
Table 6 and Table 7 show the results on code coverage and
vulnerability detection.

According to Table 7, HOUSEMP found 7 fewer vulner-
abilities than GREENHOUSE in total, which is mainly due to
the overhead of multi-process feedback collection. Neverthe-
less, HOUSEMP achieved significantly better code coverage
discovery than GREENHOUSE in 16 target services and
detected 14 vulnerabilities not detected by GREENHOUSE.
We also observed that 53.7% services under test exhibit
IPCs among network-facing, daemon, and utility processes
and 100% services include at least two types of these pro-
cesses. These observations also demonstrate the necessity of
considering non-network-facing processes during grey-box
fuzzing. In summary, even though the multi-process fuzzing
framework brings extra overhead to grey-box fuzzing, it
significantly contributes to extra code coverage and vulner-
ability detection.

8.4.2. Multi-process Vulnerability Analysis. To under-
stand whether the multi-process fuzzing framework indeed
contributed to multi-process vulnerability detection. We
manually analyzed vulnerabilities detected by HOUSEFUZZ
in RQ1 (§8.2) to identify multi-process vulnerabilities. To
detect such vulnerabilities, fuzzing must trigger both the IPC
in one process and the vulnerable code in another process,
which requires feedback from both processes. Therefore,
single-process fuzzing can hardly detect such vulnerabilities
due to the limited feedback collection scope.

We identified that 3 out of 128 and 15 out of 21 vulnera-
bilities were multi-process vulnerabilities in the comparison
experiment (§8.2.1) and vulnerability hunting experiment
(§8.2.2) accordingly. As shown in Table 9, these vulnerabil-
ities have been assigned with 17 CVE/CNVDs, occupying
38% of all 45 assigned CVE/CNVDs. This result demon-
strates that multi-process fuzzing framework is effective in
detecting real multi-process vulnerabilities.

8.4.3. Experiment on TCE Detection Stability. The multi-
process fuzzing framework leverage TCE detection to ro-
bustly determine when to collect code coverage, which
ensures a stable code coverage collection. Therefore, this
experiment aims to demonstrate the stability (robustness) of
TCE detection from the perspective of stability of coverage
collection. Specifically, we leveraged queued seed generated
by HOUSEFUZZ from one fuzzing campain in §8.2.1 as
test case dataset, and repeatedly executed each seed for N
(N=20) times. If all executions of the same test case yield a
consistent multi-process code coverage, it demonstrates that
the TCE detection is stable for this seed.

One problem is that unstable code coverage could be
caused by not only the instability of the TCE detection
but also nondeterministic code logic (NCL). The NCL can
introduce nondeterministic behavior due to time variance,
random numbers, uncertainty of event occurrences, etc. To
mitigate such impacts, we adopt three countermeasures.
First, all seed executions ran under a consistent running
environment with a constant random number device (e.g.,
/dev/random). Second, we excluded test cases that are al-
ready unstable in single-process fuzzing mode. Third, we
manually examined traces of unstable executions to inspect
the root causes.

In summary, we evaluated 13,453 seeds, where the ex-
ecution of 8,746 (65%) seeds result in consistent coverage.
These seeds were considered stable in the single-process
fuzzing mode and thus were used to evaluate the stability of
TCE detection in multi-process fuzzing mode. Among these
8,746 seeds, 358 seeds yielded inconsistent code coverage
across execution in multi-process fuzzing mode. We found
this was caused by NCL of select() system calls when han-
dling multiple IPC I/O events. For example, when handling
2 packets, select() system call will return one or two times to
handle two packets together or separately, resulting in differ-
ent code coverage. After excluding seeds affected by such an
NCL, we found the TCE detection technique achieved 100%
consistent code coverage on the remaining 8,388 seeds. This



TABLE 6: Ablation study results on edge code coverage (RQ3 & RQ4).

Vendor Series GREENHOUSE HOUSEMP HOUSECFG HOUSETDGOL HOUSEFUZZ

Avg.1 Avg.1 p-val Â12 Avg.1 p-val Â12 Avg.1 p-val Â12 Avg.1 p-val Â12

DAP 20704 22315 <0.01 1.00 26439 <0.01 1.00 26966 0.02 1.00 28924 <0.01 1.00
DIR 4480 4669 0.02 1.00 5041 <0.01 1.00 5220 0.28 0.67 5678 <0.01 1.00
DSP 2449 3114 <0.01 1.00 2285 0.03 0 2969 0.09 1.00 3207 0.01 1.00D-Link

GO 1442 1523 0.08 0.89 1775 <0.01 1.00 1614 0.46 0.67 1841 <0.01 1.00
WN/WNCE 1522 1255 0.08 0 1191 0.03 0 2303 0.02 1.00 2625 <0.01 1.00

WN*AP/WAC 15715 15701 0.96 0.44 16946 0.03 1.00 12216 0.12 0 16408 0.05 1.00
WN(D/DR/R) 6886 6446 0.05 0 7589 0.02 1.00 9250 <0.01 1.00 11209 <0.01 1.00

WPN 766 775 0.70 0.78 786 0.41 0.89 951 <0.01 1.00 994 <0.01 1.00
Netgear2

X(AV/W)N 3620 2226 0.01 0 2100 0.02 0 4018 0.19 0.78 4745 <0.01 1.00
Trendnet TEW 3012 2788 0.17 0 2545 0.03 0 3921 <0.01 1.00 4068 <0.01 1.00

1 Summing image edge numbers of the same series and dividing with the round number. 2 Netgear product series are merged based on device type.

TABLE 7: Ablation study results on the number of detected vulnerabilities. (RQ3 & RQ4).

Vendor Series GREENHOUSE HOUSEMP HOUSECFG HOUSETDGOL HOUSEFUZZ

Avg. Tot. Avg. Tot. p-val Â12 Avg. Tot. p-val Â12 Avg. Tot. p-val Â12 Avg. Tot. p-val Â12

DAP 0.7 1 0.3 1 0.52 0.33 0.3 1 0.52 0.33 1.0 3 0.37 0.67 8.0 14 <0.01 1.00
DIR 0 0 0.7 1 0.12 0.83 0 0 n.a. 0.50 0 0 n.a. 0.50 0 0 n.a. 0.50
DSP 2.3 4 3.0 3 0.37 0.67 1.3 2 0.35 0.22 2.7 4 0.68 0.56 2.7 5 0.78 0.61D-Link

GO 0 0 0.7 1 0.12 0.83 0 0 n.a. 0.50 0 0 n.a. 0.50 0 0 n.a. 0.50
WN/WNCE2 4.0 6 2.3 5 0.19 0.17 2.7 4 0.12 0.11 5.0 8 0.16 0.83 10.0 19 <0.01 1.00

WN*AP/WAC2 0 0 0 0 n.a. 0.50 0 0 n.a. 0.50 0 0 n.a. 0.50 0 0 n.a. 0.50
WN(D/DR/R)2 13.3 20 8.0 17 0.03 0 9.0 20 0.29 0.22 21.3 28 <0.01 1.00 30.0 57 0.03 1.00

WPN2 1.7 2 1.0 2 0.12 0.17 1.0 2 0.12 0.17 2.0 3 0.37 0.67 1.0 2 0.37 0.28
Netgear

X(AV/W)N2 3.3 5 1.3 3 0.10 0.05 2.7 4 0.52 0.39 9.0 13 0.07 0.94 13.6 22 <0.01 1.00
Trendnet TEW 6.3 8 2.7 6 0.07 0 1.3 3 <0.01 0 4.7 10 0.15 0.11 6.3 9 1.00 0.44

Summary 31.6 46 20.0 39 0.03 0 18.3 36 0.01 0 45.7 69 <0.01 1.00 71.6 128 0.01 1.00

TABLE 8: Ablation experiment setups (RQ3 & RQ4).

Multi-process Standard TDG Guidance
Fuzzing Protocol

Framework Guidance Online Offline

GREENHOUSE × × × ×
HOUSEMP ✓ × × ×

HOUSECFG ✓ ✓ × ×
HOUSETDGOL ✓ ✓ ✓ ×

HOUSEFUZZ ✓ ✓ ✓ ✓

result demonstrates TCE detection approach is stable in
multi-process fuzzing.

8.5. Experiments on Service-Protocol-Guided
Fuzzing (RQ4)

Experiment Overview. We conducted two experiments
in this section to demonstrate the effectiveness of
HOUSEFUZZ’s service-protocol-guided fuzzing: an ablation
experiment to evaluate the overall effectiveness of service-
protocol-guided fuzzing, and a manual analysis-based study
to evaluate the effectiveness of TDG inference.

8.5.1. Ablation Experiment. We compared HOUSECFG,
HOUSETDGOL, and HOUSEFUZZ to demonstrate the ef-
fective ness of service-protocol-guided fuzzing. These three
baselines, as shown in Table 8, are developed based on
HOUSEMP introduced in §8.4.1. Specifically, HOUSECFG
introduces standard service-protocol-guided test case gener-
ation based on Control Flow Graph (CFG), utilizing only
the extracted tokens for test case generation without incor-
porating customized service protocols. HOUSETDGOL is
a variant of HOUSEFUZZ that excludes the offline Token

Dependency Graph (TDG) inference component. We com-
pared baselines using the same dataset and settings in §8.2.1.
Table 6 and Table 7 show the results on code coverage and
vulnerability detection.

The results show that HOUSECFG only found 36 vul-
nerabilities. By considering customized service protocol,
HOUSETDGOL detected 49% more and 94% more vulner-
abilities than GREENHOUSE and HOUSECFG. By further
applying offline token dependency inference, HOUSEFUZZ
found 55 more vulnerabilities than HOUSETDGOL. These
improvements are brought by two reasons. First, by han-
dling customized service protocols formalized with TDG,
HOUSEFUZZ effectively generates high-quality test cases.
Second, the offline TDG inference component complements
the online one by providing an initial TDG; the offline
component also identified more tokens and their depen-
dencies because the online component only instrumented
standard string comparison functions (e.g., strcmp()) to infer
tokens, and thus overlooked customized string comparison
functions. In summary, service-protocol-guided fuzzing is
effective for vulnerability detection in Linux firmware ser-
vices.

8.5.2. Study on TDG Inference Effectiveness. This exper-
iment aims to demonstrate the capability of TDG inference
by analyzing TDGs generated by HOUSEFUZZ in the prior
experiment. We first calculated the size of the generated
TDG and found that, on average, each TDG consisted of 734
nodes (i.e., tokens) and 2,610 edges (i.e., dependencies). To
demonstrate the prevalence of customized service protocols,
we empirically selected and analyzed token dependencies
from each generated TDG, along with their corresponding
code reference sites. Our findings indicate that all TDGs



feature unique yet meaningful token dependencies that de-
scribe actual input structures. This suggests that customized
service protocols are indeed common in Linux firmware
services and modeling them using TDGs will contribute to
high-quality test case generation.

Next, we aimed to quantitatively access the quality, i.e.,
precision and recall, of inferred TDGs. However, such an
evaluation is challenging due to the lack of ground truth,
which makes it impossible to evaluate the recall. Therefore,
we conducted a manual analysis-based study on a randomly
sampled firmware image to evaluate the precision of inferred
TDGs. The study aims to answer the following two ques-
tions: (1) how precise is the token inference, and (2) how
precise is the token dependency inference?

To answer the first question, we randomly sampled
100 tokens from the sampled TDG and manually verified
whether they were valid true positives; that is, they would
actually build valid path constraints. We also sampled and
analyzed 100 tokens from the fuzzing dictionary gener-
ated by GREENHOUSE as a baseline. The result shows
that HOUSEFUZZ’s token inference technique achieved a
precision of 62% and greatly outperforms the precision
of GREENHOUSE, which is only 15% due to the coarse-
grained string scanning. The improvement benefited from
fine-grained static analysis and dynamic analysis.

To answer the second question, we randomly sampled
100 inferred TDG edges and inspected whether they de-
scribed actual data dependencies. To separately evaluate
the dependency inference precision, we excluded 91 edges
that involve incorrect tokens. The result shows that the
token dependency inference achieved a precision of 44%. As
fuzzing can quickly retry different combinations of tokens
and dependencies, it will automatically filter correct tokens
and dependencies. Therefore, such a TDG inference preci-
sion is quite acceptable. During manual analysis, we found
several limitations of the current TDG inference prototype,
which is summarized in §10.

9. Related Work

Grey-Box Fuzzing of Linux-based Firmware. Emula-
tion is typically the prerequisite of grey-box firmware
fuzzing, which bypasses the challenge to instrument real
devices [41]. Existing grey-box firmware fuzzing works
focus on improving emulation techniques. Firmadyne [10]
and FirmAE [11] emulate firmware in a full-system manner
by emulating user-space programs together with customized
OS kernels and subject the emulated system to dynamic
analysis. Recent grey-box firmware fuzzing approaches have
shifted toward “process emulation” techniques [7], [8], [9],
which reduce or avoid the overhead for emulating a guest
OS kernel to improve fuzzing throughput. Specifically, Firm-
AFL [7], hybrid system emulation and user-mode emula-
tion to reduce system emulation overhead while preserving
fidelity; EQUAFL [8] and Greenhouse [9] solely rely on
user-mode emulation to emulate the target processes. This
paper focuses on addressing obstacles stemming from the

multi-process nature and protocol customization of Linux-
based firmware services.
Protocol-Guided Fuzzing. Protocol-guided fuzzing lever-
ages known protocol knowledge to craft high-quality test
cases for uncovering deep bugs. A notable example of
this approach is Peach fuzzer [42], which relies on man-
ually curated specification files for generating test cases
based on protocol structures. To encompass a broader array
of protocols, including complex formats like XML and
JavaScript, grammar-aware fuzzing techniques [22], [23],
[24], [26], [43] have been introduced. These approaches em-
ploy grammars (e.g., context-free grammars) to accurately
model the syntax of various protocols. Building upon syntax
modeling, recent advancements have focused on incorporat-
ing protocol semantics into test case generation. Program
language-oriented approaches model language features to
improve fuzzing of interpreters and compilers [24], [44],
[45], [46]. Skyfire trains probabilistic models from large-
scale public datasets to understand protocols’ general usage
patterns [25]. These approaches focus on standard protocols
but overlook application-specific protocol constraints, which
are particularly prevalent within domains like Linux-based
firmware services. As another line of research, protocol
reverse engineering [47], [48], [49], [50] and structure-
aware fuzzing [33], [51], [52], [53], [54] focus on handling
unknown protocols, which lack the guidance of knowledge
of standard protocols.

10. Discussion

Limitations of TCE Detection. The HOUSEFUZZ’s imple-
mentation of TCE detection assumes that the target ser-
vice uses specific system calls (i.e., select() and poll() to
wait for IPC requests, which is typical in multi-process
programming—followed by all services in our experiments.
However, a Linux firmware service could use other sys-
tem calls such as inotify [55] for IPC purposes. Since
such system calls are limited and have finite programming
paradigms [12], HOUSEFUZZ can easily support them with
engineering efforts.
Limitations of TDG Inference. HOUSEFUZZ leverages
existing program analysis techniques [20], [33], [34] for
TDG inference, which suffer two major limitations that lead
to false positives/negatives (FPs/FNs). First, the offline TDG
inference is limited by the unsoundness and incompleteness
of static analysis, leading to FPs/FNs. Second, the online
TDG inference only analyzes string comparisons instead
of their data dependencies, so it relies on predefined token
types to deduce dependencies, which is unsound and leads
to FPs; besides, it fails to identify tokens compared using
unknown (thus not instrumented) APIs, leading to FNs.
Limitations of Process Emulation. Like existing fuzzing
techniques that rely on process emulation [7], [8], [9],
HOUSEFUZZ encounters emulation limitations that under-
mine its effectiveness. In particular, HOUSEFUZZ depends
on GREENHOUSE for process emulation, but GREENHOUSE
has intrinsic limitations. For example, it failed to test 19



extracted firmware images. Further, the mitigation of system
initialization exceptions employed by HOUSEFUZZ is still
imperfect, as evidenced by Table 5. These results underscore
the urgent need for continuous advancements to enhance the
fidelity and reliability of process emulation techniques.
Authentication Handling. Firmware service may require
proper authentication to reach privileged code logic, which
will prevent HOUSEFUZZ from achieving higher code cov-
erage or detecting post-authentication vulnerabilities. This
issue could be addressed by maintaining an authenticated
fuzzing session. We leave it for future work.

Unknown Service Protocols. HOUSEFUZZ relies on stan-
dard service protocols such as context-free grammar to
improve test case generation effectiveness. According to
Table 5, 32.4% services use protocols that are not well-
known, so their standard service protocols can be hard to
retrieve, which hinders the effectiveness of service-protocol-
guided test case generation. To generate high-quality test
cases for such protocols, HOUSEFUZZ could adopt protocol
reverse engineering [47], [48], [49], [50] or structure-aware
fuzzing [33], [51], [52], [53], [54] approaches. This direction
presents an avenue for future work.

11. Conclusion

This paper introduces HOUSEFUZZ, which incorporates
three novel techniques to improve grey-box fuzzing for
vulnerability detection in Linux firmware services: (1) holis-
tic service identification exposes more service processes
essential to emulate for detecting service vulnerabilities;
(2) multi-process grey-box fuzzing facilitates the detection
of multi-process vulnerabilities; (3) service-protocol-guided
fuzzing models data constraints introduced by firmware
customization as token dependencies, and greatly improves
the effectiveness of grammar-aware fuzzing. Our evaluations
demonstrate the three techniques help detect vulnerabilities
in Linux firmware services, and HOUSEFUZZ superiorly
outperforms the SoTA approach by identifying 76% more
network services and 175% more 0-day vulnerabilities with
24.8% on the same dataset.
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T. Bao, Y. Shoshitaishvili, and R. Wang, “Greenhouse: Single-service
rehosting of linux-based firmware binaries in user-space emulation,”
in USENIX Security’23, 2023.

[10] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards Auto-
mated Dynamic Analysis for Linux-based Embedded Firmware,” in
NDSS’16, 2016.

[11] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae:
Towards large-scale emulation of iot firmware for dynamic analysis,”
in ACSAC’20, 2020.

[12] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Karonte: Detect-
ing Insecure Multi-binary Interactions in Embedded Firmware,” in
Oakland’20, 2020.

[13] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau,
M. Sun, R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory
corruptions in iot through app-based fuzzing,” in NDSS’18, 2018.

[14] “Http resources and specifications,” https://developer.mozilla.org/
en-US/docs/Web/HTTP/Resources and specifications, 2024.

[15] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov,
R. Gupta, and Z. Durumeric, “All Things Considered: An Analysis
of IoT Devices on Home Networks,” in USENIX Security’19, 2019.

[16] “Universal plug and play protocol (upnp),” https://en.wikipedia.org/
wiki/Universal Plug and Play, 2024.

[17] “Hp jetdirect protocol (jetdirect),” https://en.wikipedia.org/wiki/
JetDirect, 2024.

[18] “Line printer daemon protocol (lpr),” https://en.wikipedia.org/wiki/
Line Printer Daemon protocol, 2024.

[19] “Multicast dns protocol (mdns),” https://en.wikipedia.org/wiki/
Multicast DNS, 2024.

[20] J. Zhao, Y. Li, Y. Zou, Z. Liang, Y. Xiao, Y. Li, B. Peng, N. Zhong,
X. Wang, W. Wang et al., “Leveraging semantic relations in code
and data to enhance taint analysis of embedded systems,” in USENIX
Security’24, 2024.

https://outreach.eclipse.foundation/iot-edge-developer-survey-2023
https://outreach.eclipse.foundation/iot-edge-developer-survey-2023
https://www.esecurityplanet.com/threats/attacks-escalating-against-linux-based-iot-devices/
https://www.esecurityplanet.com/threats/attacks-escalating-against-linux-based-iot-devices/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Resources_and_specifications
https://developer.mozilla.org/en-US/docs/Web/HTTP/Resources_and_specifications
https://en.wikipedia.org/wiki/Universal_Plug_and_Play
https://en.wikipedia.org/wiki/Universal_Plug_and_Play
https://en.wikipedia.org/wiki/JetDirect
https://en.wikipedia.org/wiki/JetDirect
https://en.wikipedia.org/wiki/Line_Printer_Daemon_protocol
https://en.wikipedia.org/wiki/Line_Printer_Daemon_protocol
https://en.wikipedia.org/wiki/Multicast_DNS
https://en.wikipedia.org/wiki/Multicast_DNS


[21] A. Fioraldi, D. C. Maier, H. Eißfeldt, and M. Heuse, “Afl++: Com-
bining incremental steps of fuzzing research,” in WOOT @ USENIX
Security’20, 2020.

[22] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi,
and D. Teuchert, “Nautilus: Fishing for deep bugs with grammars,”
NDSS’19, 2019.

[23] P. Srivastava and M. Payer, “Gramatron: effective grammar-aware
fuzzing,” ISSTA’21, 2021.

[24] S. Veggalam, S. Rawat, I. Haller, and H. Bos, “Ifuzzer: An evolution-
ary interpreter fuzzer using genetic programming,” in ESORICS’16,
2016.

[25] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” Oakland’17, 2017.

[26] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” in PLDI’11, 2011.

[27] “Linux init process,” https://en.wikipedia.org/wiki/Init, 2024.

[28] “Qemu: A generic and open source machine emulator and virtualizer,”
https://www.qemu.org, 2024.

[29] H. Xiao, Y. Zhang, M. Shen, C. Lin, C. Zhang, S. Liu, and
M. Yang, “Accurate and efficient recurring vulnerability detection for
iot firmware,” in CCS’24, 2024.

[30] E. Trickel, F. Pagani, C. Zhu, L. Dresel, G. Vigna, C. Kruegel,
R. Wang, T. Bao, Y. Shoshitaishvili, and A. Doupé, “Toss a fault to
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Appendix A.
Example of Context-Free Grammar

Figure 6 showcases a context-free grammar of HTTP
protocol. HOUSEFUZZ leverages such a protocol to describe
standard HTTP protocol for guiding test case generation.

⟨HTTP⟩ → ⟨SLine⟩⟨Headers⟩⟨Body⟩⟨LineEnd⟩
⟨SLine⟩ → ⟨Method⟩⟨Space⟩⟨URI⟩⟨Space⟩⟨Version⟩
⟨URI⟩ → ⟨Scheme⟩⟨Authority⟩⟨Path⟩⟨Query⟩

⟨Query⟩ → ?⟨QS⟩|⟨Empty⟩
⟨QS⟩ → ⟨KV⟩|⟨KV⟩&⟨QS⟩

⟨Headers⟩ → ⟨Header⟩⟨LineEnd⟩⟨Headers⟩
⟨Header⟩ → ⟨Key⟩:⟨Value⟩

⟨KV⟩ → ⟨Key⟩=⟨Value⟩
· · ·

⟨Body⟩ → ⟨JSON⟩|⟨XML⟩|⟨RAW⟩

Figure 6: Part of a context-free grammar example of HTTP
protocol (⟨HTTP⟩ is the starting symbol)

.
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Appendix B.
Vulnerability Oracle Implementation

HOUSEFUZZ aims to detect two kinds of firmware
vulnerabilities—memory corruption and command injection
vulnerabilities because they are prevalent in firmware [2]
and frequently attacked [4], [20], [29], [56]. For memory
corruptions, HOUSEFUZZ adopts the common approach to
detect crash signals (e.g., segmentation fault) in all service
processes. However, some memory corruptions in utility
processes are unexploitable. For example, not checking
nullable query results may lead to NULL pointer deref-
erence bug [57] in a utility process, which simply causes
the failure of request handling fails, but has no security
impacts to the service. So we regard such memory violations
as bugs instead of vulnerabilities. HOUSEFUZZ filters out
unexploitable crashes in utility processes by further testing
whether attacker-controlled inputs may control the memory
corruption impacts. Specifically, HOUSEFUZZ flips each bit
of the crash-causing test case (i.e., PoC) to create new
test cases and feed these test cases to the service under
test. If any new test case triggers the same crashing site
with different corruption impacts (e.g., accessing a different
broken pointer instead of a NULL pointer), we consider the
original PoC to correspond to a real vulnerability, otherwise,
it is just regarded as a bug. This filtering process is efficient
to apply because the crashing of utility processes is typically
a rare event during fuzzing.

Command injection vulnerabilities are typically ex-
ploited with “trigger strings”. Trigger strings involve char-
acters that have special meaning for a command interpreter,
to allow commands embedded in a trigger string to be
executed. Former work [30], [31] thus detect command
injections by inserting trigger strings into test cases and
then detecting the execution of the embedded command
at high-level command execution APIs (e.g., php exec ex()
and eval() in PHP). HOUSEFUZZ introduces two optimiza-
tions to this approach for firmware vulnerability detection.
First, HOUSEFUZZ instrument execve() system call instead
of high-level command execution APIs because vendors
may implement customized APIs. Directly finding these
APIs in firmware binary is challenging without symbols and
API documentation. Second, HOUSEFUZZ does not expect
fuzzing to directly generate a PoC by blindly injecting
trigger strings, because trigger strings can be rejected by
even weak input sanitization. For example, the sanitization
may reject semicolon-based trigger string (e.g., “;CMD”),
but allow back quote-based trigger string (e.g., “`CMD`”)
to reach system-like APIs that interprets “CMD” as a com-
mand. Instead, HOUSEFUZZ first uses literals consisting of
common letters to bypass input sanitizations. When these
literals are detected at arguments of execve(), HOUSEFUZZ
tries to exploit the execve() call by replacing the literals with
22 summarized trigger strings and detecting real command
injections.

TABLE 9: CVE/CNVDs discovered using HOUSEFUZZ

Vendor Binary Security Impact Assigned ID

TRENDnet ssi BOF1 CVE-2024-36728*‡

TRENDnet ssi BOF1 CVE-2024-36729*‡

TOTOLINK cstecgi.cgi BOF1 CVE-2024-41632*‡

TOTOLINK cstecgi.cgi CLI2 CVE-2024-41636*‡

TOTOLINK cstecgi.cgi CLI2 CVE-2024-41637*‡

TOTOLINK cstecgi.cgi CLI2 CVE-2024-41638*‡

TOTOLINK cstecgi.cgi CLI2 CVE-2024-41639*‡

TOTOLINK cstecgi.cgi CLI2 CVE-2024-41640*‡

TOTOLINK cstecgi.cgi CLI2 CVE-2024-41641*‡

TOTOLINK cstecgi.cgi CLI2 CVE-2024-41642*‡

TOTOLINK cstecgi.cgi CLI2 CVE-2024-41643*‡

TOTOLINK cstecgi.cgi CLI2 CVE-2024-41644*‡

TOTOLINK cstecgi.cgi CLI2 CVE-2024-41645*‡

TOTOLINK cstecgi.cgi CLI2 CVE-2024-41647*‡

TOTOLINK cstecgi.cgi CLI2 CVE-2024-41648*‡

ASUS httpd BOF1 CNVD-2024-34840*

ASUS httpd DoS3 CNVD-2024-34836*

ASUS httpd DoS3 CNVD-2024-34837*

ASUS httpd DoS3 CNVD-2024-34838*

ASUS httpd DoS3 CNVD-2024-34839*

ASUS httpd DoS3 CNVD-2024-34841*

D-Link atp BOF1 CVE-2024-55163*‡

D-Link atp BOF1 CVE-2024-55167*‡

D-Link lighttpd BOF1 CVE-2024-55164†

D-Link lighttpd BOF1 CVE-2024-55165†

D-Link lighttpd BOF1 CVE-2024-55166†

D-Link lighttpd DoS3 CVE-2024-55168†

NETGEAR uhttpd DoS3 CVE-2024-55169†

NETGEAR uhttpd BOF1 CVE-2024-55170†

NETGEAR uhttpd BOF1 CVE-2024-55171†

NETGEAR uhttpd BOF1 CVE-2024-55172†

NETGEAR uhttpd BOF1 CVE-2024-55173†

NETGEAR uhttpd DoS3 CVE-2024-55174†

NETGEAR uhttpd DoS3 CVE-2024-55175†

NETGEAR uhttpd DoS3 CVE-2024-55176†

NETGEAR uhttpd DoS3 CVE-2024-55177†

NETGEAR uhttpd DoS3 CVE-2024-55178†

NETGEAR uhttpd DoS3 CVE-2024-55179†

NETGEAR uhttpd DoS3 CVE-2024-55181†

NETGEAR uhttpd DoS3 CVE-2024-55183†

NETGEAR uhttpd DoS3 CVE-2024-55184†

NETGEAR uhttpd DoS3 CVE-2024-55185†

TRENDnet httpd DoS3 CVE-2025-26139†

TRENDnet httpd BOF1 CVE-2025-26140†

TRENDnet httpd BOF1 CVE-2025-26141†

1 BOF: Buffer overflow.
2 CLI: OS Command Injection.
3 DoS: Denial of Service.
* Vulnerability detected by HOUSEFUZZ in §8.2.2.
† Vulnerability detected by HOUSEFUZZ in §8.2.1.
‡ Multi-process vulnerability.



Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper presents a grey-box fuzzing method for
multi-process interaction of Linux-based firmware services.
HouseFuzz considers the interacting process as a single unit
and fuzzes them as a whole. The evaluation shows that
HouseFuzz was able to perform significantly better than the
state-of-the-art approaches that ignore process interactions.

C.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

C.3. Reasons for Acceptance

1) This paper addresses an important and comprehensive
approach to solving the problem of fuzzing multi-
process interactions of Linux-based firmware services.

2) Experimental results demonstrate that the techniques
for handling multi-process interactions were effective
at improving coverage.

3) Significant impact of the system, with 156 0-day vul-
nerabilities found.

C.4. Noteworthy Concerns

1) The reviewers noted that while the paper demon-
strates customized service protocols and complex
multi-process communications are common in the ser-
vices under test, it is unclear how prevalent they are in
real-world settings more broadly.
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