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ABSTRACT

Android integrates an increasing number of features into system

services to manage sensitive resources, such as location, medical

and social network information. To prevent untrusted apps from

abusing the services, Android implements a comprehensive set of

access controls to ensure proper usage of sensitive resources. Un-

like explicit permission-based access controls that are discussed

extensively in the past, our paper focuses on the widespread yet

undocumented input validation problem.

As we show in the paper, there are in fact more input validations

acting as security checks than permission checks, rendering them

a critical foundation for Android framework. Unfortunately, these

validations are unstructured, ill-de�ned, and fragmented, making

it challenging to analyze. To this end, we design and implement a

tool, called Invetter, that combines machine learning and static

analysis to locate sensitive input validations that are problematic

in system services. By applying Invetter to 4 di�erent AOSP code-

bases and 4 vendor-customized images, we locate 103 candidate

insecure validations. Among the true positives, we are able to con-

�rm that at least 20 of them are truly exploitable vulnerabilities

by constructing various attacks such as privilege escalation and

private information leakage.
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1 INTRODUCTION

Never before has any operating system (OS) been so popular as

Android. Over 60 percent [22] of mobile devices are running An-

droid with a huge number of applications (apps for short) that are

connected to our daily life. To achieve a variety of functionalities,
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Android Framework

public ParcelFileDescriptor openDevice(String ){

if (isBlackListed( )) {

 // terminate the process

}

 }

RPC

IUsbManager.openDevice( );

Android APP

Android SDK

Figure 1: Input validations fromAndroid system service and

Linux kernel.

apps read and manipulate Android system resources, such as GPS

device and screen display, and perform sensitive operations such

as sending and erasing SMS messages. In Android, these resources

and sensitive operations are administered by over 100 system ser-

vices. Evidently the access control in these services plays an im-

portant role in the security of Android systems and is a relatively

understudied research area.

Among the access controls, permission validations are well-

studied, e.g., Kratos [26] addressed the inconsistent permission en-

forcement problem. In this paper, we conduct an empirical study

on a di�erent set of critical security enforcements in system ser-

vices, which we de�ne as sensitive input validations. As will be un-

veiled in our study, Android imposes over 700 distinct sensitive

input validations (only a lower bound), compared to just 351 per-

missions. They serve various purposes, as an example in Figure 1,

the sensitive input deviceName is used to restrict usage of sensitive

operations, thus preventing system services from being abused by

untrusted apps. To the best of our knowledge, our work is the �rst

to systematically study the secure use of sensitive input validations

of Android services.

Unlike the traditional input validation studies that focus on a

narrow and well-de�ned set of sensitive input, e.g., web input that

can cause SQL injection attacks, and user-space pointers passed to

Linux kernel that can cause memory corruption attacks, our paper

focuses on the opposite end of the spectrum where it is not even

https://doi.org/10.1145/3243734.3243843


clear what input crossing the trust boundary should be considered

sensitive and therefore checked:

• Unstructured. Unlike Android permission

checks that rely on system-de�ned interfaces,

e.g. Context.checkCallingOrSelfPermission() and

Binder.getCallingUid(), sensitive input validations in

system services are di�cult to identify. In fact, as illus-

trated in Figure 1, any input parameter to a public method

of a service can potentially lead to a sensitive input vali-

dation (a conditional statement involving the check of a

parameter).

• Ill-de�ned. Unlike permission validations, which are well

documented by the Android permission model [13], no pub-

licly available sources de�ne how sensitive input validations

should be carried out in Android services. Thus, it is un-

clear whether an input needs to go through validation and

whether it is done correctly.

• Fragmented. Sensitive input validations are dispersed in a

large number of Java classes. For example in Android 7.0 ,

our evaluation shows that they are scattered widely in 173

di�erent Java classes, while Android permission enforce-

ments are clustered in 6 classes. Moreover, even in the same

service method, sensitive input validations are commonly

scattered in various execution paths, restricting system op-

erations in a �ne-grained manner.

Despite the importance of sensitive input validations in Android

services, their design and usage have not been well thought out,

evidenced by its ad-hoc nature outlined above. By attempting to

summarize and identify �aws related to sensitive input validations,

we make two observations as below (which are detailed in §3).

• Confusions about system security model. Android ser-

vices sometimes incorrectly trust data from apps without

any validation. Interestingly, we even �nd sensitive in-

put validations sometimes misplaced in the Android SDK

(which runs as the same process of the app), demonstrating

a complete misunderstanding of the trust model.

• Weakened validations in customized system images.

In the Android ecosystem, system services are often cus-

tomized to provide added value. During the process of cus-

tomization, we �nd common problems where the sensitive

input validations may become weakened.

By designing a general machine learning technique to identify

sensitive input validations as well as using static analysis to iden-

tify their problematic uses, we develop Invetter and evaluate it

on both Android AOSP system images and third-party customized

images. According to our analysis of 4 AOSP images and 4 third-

party customized images, we �nd at least 20 exploitable vulnerabil-

ities. For example, we show that a zero-permission app (running

in the background) can stealthily launch phishing attacks, steal a

user password stored in another app, and sometimes delete the en-

tire “system” directory. Many of these cases are demonstrated in

our anonymous video: https://youtu.be/erLY_OMi4kQ.

Contributions. The contributions of our work are summarized as

follows.

• Our work is the �rst to systematically analyze, identify, and

report the scale of sensitive input validations inside Android

system services and their potential �aws.

• From analyzing and summarizing the �aws of sensitive in-

put validations, we develop a fully-functional tool Invetter

to automatically discover their problematic uses, which we

plan to open source.

• We evaluate our tool on 4 AOSP images, from Android 5.0

to 8.0, and �nd 20 exploitable vulnerabilities in total, many

of which are con�rmed by the corresponding vendors.

2 BACKGROUND

In this section, we provide necessary background for understand-

ing how the Android system services work, and how input valida-

tions are performed in Android framework.

2.1 Android System Services

TheAndroid framework consists of more than one hundred system

services which provide support for accessing various system re-

sources, such as retrieving user location, sending SMS, and check-

ing network connectivity. Since these services are part of the An-

droid framework, their execution environment enjoys more privi-

lege and are separated from apps. For example, the system service

media is executed in a system process called media_server. Com-

monly, system services should be registered to the ServiceManager,

so that they can be accessed by apps or other services.

Each system service can be accessed via a set of pre-de�ned

public interfaces. These interfaces are commonly declared using

Android Interface De�nition Language (AIDL). During the compi-

lation process of Android framework, interfaces declared by AIDL

are compiled into two sets of Java classes, the Stubs and the Prox-

ies, to act as a channel between services and their clients (which

can be apps or other services). Speci�cally, Stubs are extended by

the services to implement their functionalities, and Proxies encap-

sulate the remote-process communication (RPC) logic to facilitate

easy access by the clients.

Figure 2 depicts this process. To initiate a request to a ser-

vice, the client must �rst send a query to the Android ServiceM-

anager, which maintains a mapping between services and their

corresponding Binder objects. Using the Binder object returned by

the ServiceManager, requests can be served using the interfaces de-

�ned by the Proxies. ServiceManager has no way of forbidding apps

from forging their inputs, thus in principle it should not trust any

apps-supplied data.

Additionally, on top of the Proxies abstraction, Android SDK pro-

vides a set of Managers as wrappers that provide another layer of

APIs which are even simpler for developers to use. Di�erent from

the service code,Managers execute in the same process as the run-

ning app, so malicious developers can reimplement and overwrite

them. Thus, system services cannot trust any security validation

in such app-controlled code.

2.2 Sensitive Input Validations in Android
Services

Sensitive input validation acts as a critical part on the security

of Android services. Commonly, input validation looks like the

https://youtu.be/erLY_OMi4kQ
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Figure 2: The Binder-based RPC between system service and

its client.

following: a piece of input data is compared against a set of pre-

de�ned expectations, or cross-validated with trusted data source,

and some subsequent actions will be taken based on the outcome

of the comparison. Note that not all input validations are for secu-

rity purposes, e.g., checking the format of input or whether there

is a null pointer. In this paper, we are more interested in security-

focused validations.

In Android, we summarize them in two forms: (1) verify the

identity/property of input sender, or (2) restrict the usage of sen-

sitive resources. For (1), typically the identities/properties can be

either well-known: uid, pid, package name, or obscure: token, cert,

and so on. For (2), an example is the URIs used as keys to access

system content providers which can be restricted by checking the

scope of the URI supplied by an app.

3 OBSERVATION: INSECURE INPUT
VALIDATIONS

By analyzing the existing sensitive input validations, we observed

two sources of insecure input validations:

Confusions About System Security Model. As described in §2,

system services enjoy more privilege, e.g. a system uid compared

to apps and should not blindly trust any data sent from an app.

However, we observed that many system services not only trust

app-supplied data fromManagers (wrappers provided by SDK), but

also misplace sensitive input validations in theManagers code. For

example, Figure 3 illustrates a mistaken trust of app-supplied data.

Since apps can bypass the Managers and forge their inputs to sys-

tem services (address and pre�xLength in this example), the secu-

rity check does not operate as expected. This allows any app to

insert new VPN server addresses into the system, which can po-

tentially redirect all of the device’s tra�c to an attacker without

authorization.

Weakened Validations In Customized System Images. In the

Android ecosystem, system services are often customized to pro-

vide added value. During the process of customization, the input

validations may become weakened. Within the 4 customized im-

ages we studied, 35 system services are modi�ed, with 41 input

Android SDK

public  addAddress( InetAddress , int ){

 securityCheck( , );  

  return getService().addVpnAddress 

 ( .getHostAddress(),  );  

}

}

Android Framework

public   addVpnAddress( String , int ){

     

Android APP

RPCRPC

Figure 3: An input validation in Android SDK.

public  setRingerModeExternal( , ) {

if( wouldeToggleZenMode( )&&

  checkCallerIsSystemOrSamePackage( )&&

  checkAccessPolicy( )){

throw new SecurityException(...)

}

setRingerMode( , , )

public  setRingerModeExternal( , ){

setRingerMode( , , )

}

}

(a) Code in AOSP

(b) Code  customized by Xiaomi

Android Framework

Android Framework

Figure 4: An input validation in Android Audio Service is

removed in customized image.

if (isSystemPackageName( )){

}

Android Framework

ICNEManager.updatePolicy(  , );

public int updatePolicy( , String )  {

 // do Sensitive Operation

}

Vendor APP

RPC

Figure 5: An input validation in system service which trusts

the inputs from less privileged apps.

validations a�ected. Figure 4 depicts an example of weakened sen-

sitive input validation. Since the customized image of Xiaomi re-

moved the check before invoking setRingerMode(), any app is free

to change the ringer mode arbitrarily (e.g., silent or vibrate).



On the other side, over 203 new customized services are intro-

duced in these images, together with 326 new sensitive input vali-

dations. We �nd even more suable and interesting confusion cases.

For instance, shown in Figure 5, Qualcomm introduces a new ser-

vice called CNEService. Although its privileged interfaces are de-

signed to be available to only its vendor-supplied system apps, it

cannot be guaranteed at all (i.e., the packageName parameter is

completely untrusted).

4 METHODOLOGY

This section introduces our methodology to discover insecure in-

put validations in Android. We will give an insight that guides our

system design, the overall picture of our system, followed by each

component in detail.

4.1 Insights and Work�ow

In an ideal world where we have the labels of all the sensitive in-

puts (parameters of public service methods), all we need to do is

to identify the absence of validations against those inputs. In prac-

tice, unfortunately, such labels are never provided by developers

and at best have to be inferred which is generally an open prob-

lem. Therefore, we take a di�erent approach — instead of relying

on identifying all sensitive inputs and their missing validations, we

can look for existing sensitive input validations that are misplaced

or incomplete, which is a much more tractable problem. The as-

sumption is that the probability that a sensitive input is never vali-

dated anywhere in the entire Android codebase is small, and hence

we argue that locating existing sensitive input validations and their

insecure uses can still capture a signi�cant fraction of the related

vulnerabilities. We admit that this assumption is di�cult to vali-

date as the ground truth of the total number of vulnerabilities is

hard to obtain.

Invetter operates in three steps, as illustrated in Figure 6. First,

Invetter thoroughly extracts system services along with their pub-

lic interfaces from a given Android image, and recognizes all input

validations using a structural analysis. Second, these extracted val-

idations are passed into our learning module to recognize a subset

of them that are “sensitive input” validations. It is worth noting

that even though locating existing sensitive input validations is a

simpler problem than identifying all sensitive inputs in the world,

the very problem is still challenging. This is because (as discussed

in § 1), sensitive input validations in Android are unstructured, ill-

de�ned, and fragmented, and no simple structural patterns can cap-

ture them. Finally, we look for insecure input validations based on

our observations introduced in §3. These reported cases are then

considered as candidate vulnerabilities, which will be further veri-

�ed by security analysts.

4.2 Extracting Input Validation Structures

Since input validation is the centerpiece of our analysis, we need

to automatically identify and study input validations in Android

framework, which is a challenging problem; this is because they

are neither performed through pre-de�ned system interfaces, nor

identi�able via �xed APIs like permission checks.

We leverage the inherent structural characteristics in input val-

idations. Speci�cally, di�erent from general branching statements,

an input validation not only compares the input with other data,

but also terminates its normal execution immediatelywhen the val-

idation fails. For example, a SecurityException can be thrown as a

termination action. Figure 7 illustrates two input checks from the

Android framework, in which one (a) is an input validation and

the other (b) is a normal branching. In Figure 7.(a), the system ser-

vice veri�es the uid of the calling app, and throws an exception to

stop the execution of the systemmethods when the validation fails.

In comparison, Figure 7.(b) only aims to handle di�erent kinds of

input and select the corresponding handler method.

Based on this observation, we need to understand which set of

termination actions are typically taken if a validation fails. To re-

iterate, the �rst requirement of input validation is that the input

must be propagated to a comparison statement through data �ow

and compared against some pre-con�gured values or results dy-

namically retrieved from other APIs. Then, di�erent actions are

taken based on the comparison result. After analyzing a handful

of real-world input validations in Android, we summarize the fol-

lowing four kinds of termination actions:

• Throw exception.A straightforward way to show that the

client fails in the input validation is throwing a speci�c ex-

ception, such as SecurityException and IllegalArgumentEx-

ception.

• Return constant. System services use some pre-de�ned

constants to indicate that caller fails in input validation,

which will be returned in the termination actions.

• Log and return. Logging information is useful in monitor-

ing the running of the system. In termination actions, they

commonly log some information about the illegal input and

then return.

• Recycle and return. In some cases, before the exit of execu-

tion, public interfaces need to recycle the previous allocated

resources.

In some cases, some input validations are simply data format

checks, e.g., a Null object check. Since this kind of validation does

not lead to serious security consequences (other than perhaps

crashing the system service if missing), we choose to exclude this

kind of validations in our framework and focus on other non-DoS-

related vulnerabilities, e.g., privilege escalation or privacy breach.

By recognizing the termination actions, we can identify input

validations with the following four steps: First, for a given system

method, we obtain all conditional statements in the method body.

Second, we identify the conditions that involve variables related to

the method input (via data �ow analysis). Third, we apply the �lter

to eliminate data format related validations. Finally, our analysis

ensures that each recognized validation has a termination action.

Our results described in §6.1 show that this approach can identify

800 input validations in Android services with only 71 false posi-

tives.

4.3 Learning Sensitive Input Validations

Unfortunately, no structural patterns can tell sensitive input vali-

dations from other less sensitive ones. A precise and complete anal-

ysis would require inferring the semantic signi�cance of the input

variables in terms of how they are processed in the service and
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Figure 6: The overall architecture of Invetter.
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Figure 7: Code snippets of input checks within Android

framework.

what kinds of operations they authorize. We consider this analy-

sis to be infeasible as it requires a signi�cant knowledge base de-

scribing what operations in the system are sensitive, which itself

is di�cult to obtain.

We take a drastically di�erent approach through machine learn-

ing. The idea is to take advantage of the fact we can label a much

smaller set of sensitive input validations as training samples, and

have the machine learning automatically learn the rest.

We �rst present a strawman approach, which does not quite

work. In Figure 5, we illustrate a simple example where a sensitive

variable “packageName” is validated to check the identity of the

caller package. One might imagine a natural language processing

based technique to infer the meaning/sensitiveness of an English

word. However, Android framework manages plenty of system re-

sources, and uses a diverse set of variable names to represent dif-

ferent pieces. It is almost impossible to determine the sensitiveness

of such domain-speci�c names without a complete understanding

of Android framework.

Instead, Invetter chooses to use the association rulemining tech-

nique [28] to automatically discover additional input validations

that are likely also sensitive based on their co-occurrence with

known sensitive input validations. The intuition here is sensitive

input validations are often co-located in the same service meth-

ods. Taking the “packageName” and “uid” as an example, Android

framework often uses them together to verify an app’s identity (See

Figure 9). They are thus likely to be positively correlated in terms

of their sensitiveness. Our detailed approach is introduced below.

4.3.1 Grouping input validations for association rule mining. One

important requirement in association rule mining is that we need

to observe enough samples/occurrences of any given variable.

However, if we treat each unique variable name separately, wemay

end up with cases such as variables flag1 and flag2 which each

appear only one time respectively in the code base, disallowing ef-

fective association rule mining. Our intuition is that if the variables

share a common term (or pre�x/su�x), they must be semantically

related and we can simply group them together. To do so, we go

through a series of steps:

Word splitting and stemming. Normally input parameters are

letter-case separated words. For example, ‘componentName’ can

be separated as ‘component’ and ‘name’, and ‘groupOwnerAd-

dress’ can be separated as ‘group’, ‘owner’, and ‘address’. Based

on this approach, we split such long words into separated words.

Furthermore, for each separated word, Invetter attempts to further

identify a single common root or base word. For example, words

like ‘types’ and ‘subtype’ stemmed from the base word ‘type’, and

the pre�x ‘m’ of words ‘m�ag’ and ‘mname’ should be removed

also. To �nd the base word, Invetter splits words by iteratively

matching the maximum length word in WordNet [19] until the in-

put word cannot be further split, and discards the remaining. After

this step, Invetter obtains the root words of each input parameter.

Variable name normalization. We can obtain a normalized

name by merging the root words of each input parameter. How-

ever, even though word splitting and stemming are applied, mean-

ingless quali�ers are unavoidable, skewing the �nal name. For ex-

ample, variable ‘linkaddress’ is split into ‘link’ and ‘address’, while

both ‘address’ and the quali�er ‘link’ are treated as root words. To

remove the quali�ers, Invetter calculates the occurrence frequency

of each pair of words. If two words often occur simultaneously, we

only retain the more popular word. After this step, we can group

variables based on their normalized names, which will facilitate

the association rule mining.

4.3.2 Learning new sensitive input validations. In total, we ob-

tained over 1132 input validation groups after the above step. How-

ever, without a priori knowledge, it is not clear whether a valida-

tion involves any sensitive input. Fortunately, we observed that

developers tend to enforce similar input validations in adjacent

places. For example, in Figure 9, various sensitive input validations



Figure 8: The Initial seeds and expanded groups for recog-

nizing sensitive input validations.

are enforced nearby. Thus, we can �gure out a small number of sen-

sitive input validation groups, and discover other related groups.

Seeds of sensitive input validations. As described in §2.2, only

the input validations which verify the user identity, or restrict the

usage of sensitive resources, are considered sensitive. Thus, we cu-

rated the list of input validation groups in Figure 8 as the initial

seeds.

Association rule mining. We expand the sensitive input valida-

tion sets by conducting the association rule mining. First, we cal-

culate the distance between each pair of input validations. Specif-

ically, if two input validations occur on two basic blocks with a

common edge, we consider these input validations adjacent to each

other. Then, if two input validation groups contain three adjacent

pairs, we associate these groups together (number chosen empiri-

cally). Finally, starting with the seeds, we collect all the associated

groups iteratively until no more new group can be discovered. Fig-

ure 8 shows the partial list after expansion. As we can see, the

technique is e�ective in discovering a large number of groups of

sensitive input validations.

Figure 9: An example for nearby input validations.
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Figure 10: Types of security �aws in sensitive input valida-

tion.

4.4 Vulnerability Discovery

Invetter operates from two independent perspectives: by search-

ing for incorrect/insecure sensitive input validations in each An-

droid system image; and by comparing inconsistent security en-

forcement between di�erent images. In this section, we �rst de-

scribe our intra-image analysis followed by the inter-image analy-

sis.

4.4.1 Intra-image analysis. Based on our observation in §3, we

reason about other possible incorrect assumptions that a�ect sen-

sitive input validation. We summarize them as illustrated in Fig-

ure 10.(a) and (b).

Incorrectly trusting app-supplied data. Some services validate

the caller identity based on input parameters that can be easily ma-

nipulated by untrusted apps. Clearly, the input parameters can be

originated from untrusted apps and cannot be trusted for sensitive

input validation. Based on the expanded input validations in Fig-

ure 8, an sensitive input validation is considered vulnerable if it

veri�es an app-supplied sensitive data, and our learning based sen-

sitive input validation analysis reveals that it is applied to check

the identity of the caller.



Incorrectly trusting code in the app process. Unlike permis-

sion checks which never occur in the application process itself, in-

put validations are actually quite often misplaced due to their un-

structured nature. Speci�cally, we �nd that the collection of Man-

agers in the Android SDK (see Figure 2) that run inside the appli-

cation processes often acts as a proxy that packages data from the

app and forwards them to Android service processes. During the

data packaging process, theseManagers also conduct input valida-

tions (many of which are sensitive).

We consider a case vulnerable when sensitive input validations

are performed in the Android SDK and yet the Android services

do not perform the same sensitive input validations (if both sides

perform the same sensitive input validations then it is still secure).

The scope of Android SDK includes not only the public interfaces,

but also those that are labeled by@hide or@SystemApi, since apps

can access these hidden interfaces with re�ection.

4.4.2 Inter-image analysis. Given the set of input validations, we

locate the corresponding public interfaces that deploy these vali-

dations. To locate the weakened sensitive input validations during

vendor customization, we �gure out inconsistent sensitive input

validations between AOSP and customized images, as illustrated in

Figure 10.(c). We �rst group the public interfaces of di�erent sys-

tem images, based on similarities in their method behaviors. Specif-

ically, we borrow the techniques from [36] that represent a method

behavior based on its data dependency graphs. We determine two

methods to be similar when the similarity score is higher than 0.7.

Speci�cally, the threshold is determined empirically from a small-

scale experiment where we apply our inconsistent validation de-

tection with AOSP as baseline to 4 third party images with three

di�erent thresholds (0.6, 0.7 and 0.8). As illustrated in Figure 11,

0.7 is the largest threshold that Invetter can �nd similar but not

identical methods. Anything above (e.g., 0.8) is too strict and can

�nd only unmodi�ed methods. Then, by comparing the enforced

validations inside each group, Invetter reports inconsistent access

controls among di�erent system images.

Note that it is insu�cient to simply look at the class names and

method names to determine similarity. The reason is that many

vendor-customized services introduce new system services, which

achieve similar functionalities as AOSP services yet with reduced

security. We suspect that this is often times for reasons of conve-

nience — it may be complex to change the existing AOSP services

directly.

5 IMPLEMENTATION

We implement Invetter on an open source static analysis frame-

work, Soot [24], with about 12,000 lines of Java code, which we

plan to open source. Our implementation follows the same work-

�ow as illustrated in Figure 6. In this section, we discuss a few

major technical issues in implementing Invetter.

Extracting system services. The third-party system images are

commonly not open-source. Thus, to analyze their code, Invetter

uses Java bytecode as input. As the �rst step of our analysis, we ex-

tract Java classes from system images for analyzing. For a speci�c

system image, Invetter �rst dumps all dex, odex, and oat �les from

it. Then, by using oatTodex, Invetter translates oat �les and odex
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inter-image analysis. The three columns present the results
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Figure 12: An example of client-side code for building a

Binder-based RPC connection to a system service.

�les into dex �les. Next, the dex �les can be processed by a tool

dexTojar, which translates them into jar �les, in which the corre-

sponding Java class �les are zipped. Invetter uses the Java bytecode

extracted from the jar �les as the analysis target.

A critical technical challenge for Invetter is to extract a com-

plete list of system services. At runtime, all system services register

themselves to Android ServiceManager so that the system can start

all available services when initialized. However, there is no direct

way to obtain the service list statically. Related work [26] searches

the speci�c register interfaces, such as addService in ServiceMan-

ager. But in this way, only services registered in Java code can be

extracted. Unfortunately, we �nd that many system services are

registered to the system in native code. Additionally, smartphone

vendors may customize their own service managers and register

methods. Thus the system services in customized images cannot

be completely identi�ed with this approach.

We propose another approach based on the observation that if a

system service is available to use, there should be some code in the

system (e.g., Android SDK) that visits its public interfaces. Speci�-

cally, we identify a system service by �nding one of its clients in the

Java bytecode, that is, recognizing a client-side Proxy for Android

Binder-based RPC. Figure 12 depicts an example of this. Besides,

we also use the register interfaces as a supplement.

Extracting public interfaces. For each system service we �nd,

we extract all its app-accessible public interfaces. Speci�cally, two

kinds of public interfaces are considered in this paper. First, as

aforementioned, methods declared byAIDL are public interfaces of



services. Thus, they are extracted as targets of our analysis. Second,

public interfaces documented by Android SDK are also extracted.

These interfaces are APIs (of various Managers) executed in app-

controlled processes (see Figure 2). We utilize these interfaces to

�nd misplaced validations described in §3.

Constructing control �ow graph. Since Invetter conducts its

analysis based on the control �ow graph of Android framework,

complete and precise call graph and control �ow graph are es-

sential for our approach. Invetter uses inter-procedure analysis to

achieve better coverage and accuracy, thus it requires both intra-

procedure information about how the execution �ows inside the

methods, and inter-procedure call information. To construct com-

plete call graphs and control �ow graphs, we �rst leverage the ap-

proach proposed in Axplorer [5], to connect the callers and their

callees of asynchronous or implicit function calls. Besides, we uti-

lize Spark, to generate points-to and class-hierarchy information,

and to recognize possible referenced object types for each method

call.

Conducting path-sensitive analysis. Path-sensitive analysis is

often prohibitively expensive to apply in complex systems. Invet-

ter requires inter-procedure analysis to cover inter-method execu-

tion paths, which further expands the search space. While there

are many system methods that are relatively simple and can be

handled, some methods have complicated control �ow graph and

generate plenty of execution paths.

To overcome this problem, we reduce the execution paths by

applying several optimizations illustrated in Figure 13. First, given

a basic block, if none of its instructions (or its descendant nodes’

instructions) is data/control dependent on the service input, and

it is not dominated by any permission, then it is ignored by Invet-

ter. For example, we do not analyze node C in Figure 13. Second,

if a basic block is dominated by a system level privileged permis-

sion validation, Invetter ignores this node. For example, node A in

Figure 13 will not be further analyzed. We manually checked the

logic of 21 interfaces checking privileged permissions, and found

that all of them rely on the secure input provided by the system

(e.g. uid from system interface Binder.getCallingUid()). Thus, this

optimization do not introduce false negatives to Invetter. Besides,

all normal conditional jumps recognized in §4 are also ignored in

our analysis. After the optimizations, we obtain a simpli�ed con-

trol �ow graph which contains less paths to be analyzed.

6 EVALUATION

In this section, we evaluate Invetter’s e�ectiveness, e�ciency, and

accuracy by applying it to 8 di�erent Android system images, in-

cluding 4 versions of AOSP (5.0, 6.0, 7.0, 7.1), and 4 system images

customized by 3 di�erent vendors (Samsung S6, XiaoMi Note2,

HuaWei P9, and HuaWei Mate9). Additionally, since Android 8.0

utilizes a new dex �le format, called vdex, and currently no tool

can extract Java byte code from vdex �les, thus we cannot apply

Invetter to this version of Android. However, some vulnerabilities

reported on the other Android versions still a�ect Android AOSP

8.0 and some other 3rd party Android images including Xiaomi

Mix2(Android 8.0) and Huawei P10(Android 8.0). When applicable,

we test our exploit programs against Android 8.0.
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Figure 13: An example of optimizations for path-sensitive

analysis.

Android Image #Service #Public #Classes

(Version) interfaces

AOSP(7.1) (105)118 2126 19425

AOSP(7.0) (103)115 2072 15524

AOSP(6.0) (89)103 1786 15166

AOSP(5.0) (87)96 1562 12179

Huawei Mate9(7.0) (131)156 2292 20100

Huawei P9(7.0) (118)139 1756 18608

XiaoMi Note2(6.0) (100)126 2077 21961

Samsung S6(5.0) (191)214 3584 18933

Table 1: The statistics of system services in di�erentAndroid

system images. In the second column, the number in the

parentheses are system services covered by Kratos [26] and

the other number is Invetter’s result.

We also present some vulnerabilities identi�ed by our approach

as case studies. Our static analysis framework is running on a Cen-

tOS 7 server, with four 8-core 2.0GHz CPUs and 192 GB memory.

Statistics of analysis target. Our 8 target Android system im-

ages are summarized in Table 1. As we can see, the number of sys-

tem services increases dramatically from Android 5.0 to 7.1, which

leads to an increasing demand of security validations. Addition-

ally, though both Huawei P9 and Huawei Mate 9 are based on the

same Android version (7.0) and come from the same vendor, they

have di�erent numbers of services. It indicates the level of service

customizations is fairly intense; even a same vendor may need to

distinguish their own products. Moreover, standing out from other

vendors, Samsung adds the most number of new services and pub-

lic interfaces.

To illustrate the e�ectiveness of Invetter to extract system ser-

vices, we also compare the number of system services covered by

Invetter to the number reported in Kratos [26]. As presented in Ta-

ble 1, by applying our newmethod to �nd system services through

the client-side code (discussed in §5), Invetter covers more services

than Kratos. After manually verifying these newly found services,



we con�rm that all these services are valid Android system services

and should be included in our analysis.

E�ciency. To illustrate the e�ciency of Invetter, we summarize

Invetter’s analysis time on di�erent Android images. For a spe-

ci�c Android image, Invetter needs about 85 minutes to generate

an analysis report. Besides, the analysis time of Invetter is mostly

consumed in the structure analysis phase, which applies an inter-

procedure path-sensitive data-�ow analysis. Since the whole anal-

ysis process can be �nished in 11.8 hours for 8 Android images, we

consider the execution time of our tool acceptable.

6.1 Tool Accuracy

After recognizing access controls used in the 8 tested system im-

ages, Invetter �nds 1865 input validations used in Android frame-

work (only 643 of them (34.48%) are protected by app-level per-

missions, and the remaining can be exploited without permission

granted). We randomly select 800 (100 each for 8 system images)

of them and �nd 71 false positives by manually checking. After

manual inspection, we �nd that not all branches which return con-

stants belong to input validations (e.g., some hard code constant re-

turns). Since our tool recognizes all constant-returning branches as

input validation, we mistakenly report such cases as input valida-

tions. From the 1865 input validations, Invetter �nds 749 sensitive

input validations after learning.

After the phase of vulnerability discovery, Invetter locates 103

possibly insecure ones in total by searching for the patterns dis-

cussed in §3. The results are shown in Table 2. We manually ver-

ify these insecure access controls, and �nd that among these re-

ports, 86 are true positives. Some seemingly sensitive input val-

idations in the end do not yield any sensitive subsequent ac-

tions (e.g., returning a true/false status). Unfortunately, it is ex-

tremely challenging to evaluate the completeness (i.e., false neg-

atives) of our approach because the codebase of Android frame-

work is too huge to inspect manually (more than 100,000 condi-

tional branches). This is a common limitation of similar static anal-

ysis tools (e.g. Kratos [26], AceDroid [33]). As an empirical evi-

dence from a small scale experiment on 5 Android services (includ-

ing StatusBarManagerService, MmsServiceBrokers$BinderService,

LocationManagerService, TextServiceManagerService, MediaSes-

sionService$SessionManagerImpl) in AOSP 7.1, we manually iden-

tify their sensitive input validations as well as insecure input val-

idations. These results are all successfully identi�ed by Invetter.

Thus, we believe that the coverage is decent.

6.2 Categorization of Identi�ed Input
Validations

To better understand the input validations of Android framework

and the validations applied to the Android SDK, we conduct a mea-

surement study in this section of all the manually checked input

validations. Table 3 illustrates their distributions. About 36% of in-

put validations in Android framework and 12% of validations in

Android SDK are used to verify the caller’s identities such as uid,

package name, or whether it holds a critical permission. Most of

these validations are critical security checks, thus bypassing them

may cause serious consequences. Besides, about 10% of the input

Android Image (Version) C1 C2 C3

AOSP(7.1) 27 8 -

AOSP(7.0) 24 7 -

AOSP(6.0) 23 6 -

AOSP(5.0) 20 5 -

Huawei Mate9(7.0) 27 5 9

Huawei P9(7.0) 25 5 26

XiaoMi Note2(6.0) 28 7 14

Samsung S6(5.0) 35 6 41

Table 2: The number of possible insecure validations in dif-

ferent Android images. These results are categorized by: in-

correctly trusting app-supplied data(C1), incorrectly trust-

ing code in the app process(C2), and weakened validation in

customized system services(C3).

Category Android Framework Android SDK

Verify caller identity 189 30

Restrict usage of
50 72

sensitive resources

Security irrelevant
258 130

validations

Total 497 232

Table 3: The categorization of input validations.

validations in Android framework and 31% of validations in An-

droid SDK are designed to restrict the usage of sensitive system

resources. For example, check whether the type of a given mes-

sage is permitted. Bypassing these checks can also lead to security

�aws, although less likely compared to the identity checks. Thus,

in total, more than 40% of the input validations in Android are used

to ensure the secure usage of sensitive resources.

6.3 Tool E�ectiveness

From all the 86 identi�ed insecure sensitive input validations

(true positives mentioned earlier), we further hope to understand

whether these cases are actually exploitable. For our purposes, we

manually investigated them and indeed con�rm there exist a large

number of exploitable vulnerabilities. Admittedly wemay not have

done an extensive job in analyzing these cases, and there may be

cases that are di�cult to trigger but can become exploitable with

more e�orts. Therefore our estimate of exploitable vulnerabilities

is only a lower bound.

After our analysis, we con�rm at least 20 exploitable vulnera-

bilities, presented in Table 4. They range from privilege escalation,

privacy leakage, to clearance of system �les, etc. Among them, 11

input validations incorrectly check the caller’s identity using app-

supplied data. One of them is illustrated in §3, as shown in Fig-

ure 5. Another example is that an app-supplied userId is used to

verify the identity of the caller. Furthermore, for one case, we �nd

a counterpart of native service which is properly protected, while

its Java-level wrapper service is left unprotected. A regular app di-

rectly accessing the native service will be denied, yet accessing the

Java service allows indirect access to the native service, e�ectively

a confused deputy example.



Class Name

A�ected Frameworks

Attack Detail
AOSP Third Part Rom

Vendor
XM XM HW HW HW SU

Reply
5.0 6.0 7.0 7.1 8.0 N2 M2 M9 P9 P10 S6

AccessibilityManagerService • • • • • • • • • • • A1 interrupt all accessibility services N

NetworkManagerService • • • • • • A1 modify VPN con�gurations N

AccessibilityManager ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ A1 expose all hidden interfaces to user N

Window ManagerService • • • • • • A1 create phishing toast window F

AccessibilityManagerService • • • • • • • • • • • A1 send arbitrary accessibility event N

InputManagerService • • • • • • • • • • • A1 send crafted physical key event N

MediaSessionService • • • • • • • • • • • A1 send crafted media key event N

DropBoxManagerService • • • • • • • • • • • A2 clear kernel logs N

Atfwd# • • • A1 send arbitrary keyword/touch event, N

erase sdcard content,etc.

CNEService# • • • A1 modify the wi� spot connection policy N

MiuiInitServer ⊗ ⊗ A1 do factory reset for the pre-install apps C

AudioServer ⊗ A1 mute the device F

AudioServer ⊗ ⊗ A1 add or remove bluetooth device C

WhetstoneActivity
⊗ A1 modify system white list N

ManagerService

Regionalization Server ⊗ ⊗ A1 delete arbitrary �le under system dir C

HwAttestationServer • • A1 obtain the unique id of mobile device F

HwPhoneServer ⊗ ⊗ A3 obtain the cell location of mobile device C

HwAttestationServer ⊗ ⊗ ⊗ A3 obtain the public keys stored on the device C

HwSysResManagerService • • A1 allocate arbitrary memory C

Device* ⊗ A1 store arbitrary MMS on the device C

Table 4: The exploitable vulnerabilities exposed by Invetter. We show the e�ect of these vulnerabilities in di�erent versions

of AOSP, as well as XiaoMi Note2(XMN2, Android6.0), XiaoMi Mix2(XMM2, Android8.0), HuaWei Mate9(HWM9, Androi7.0),

HuaWei P9(HWP9, Android6.0), HuaWei P10(HWP10, Android8.0), and Samsung S6(SUS6, Android5.0). These vulnerabilities

can be categorized by: incorrectly trusting app-supplied data(•), incorrectly trusting code in the app process(◦) and weakened

validation in customized system services(⊗). By exploiting these vulnerabilities, attackers can conduct privilege escalation

attacks(A1), log over�ow attacks(A2), and private leakage attacks(A3). The 5th column provides the details about each vul-

nerability. The row labeled with * can also be located by Kratos [26]. Since Atfwd(labeled with #) is hidden by the SEAndroid

policy, its vulnerabilities can be exploited only if SEAndroid is disabled or 3rd-party vendor modi�es the policy. We submit-

ted these vulnerabilities to Google and other corresponding vendors. The last column lists the status, with C stands for this

vulnerability has been con�rmed, N stands for we have noti�ed them and currently not received their responses, and F stands

for it has been �xed in the latest version of Android image.

Besides, one access control is misplaced only in the Android

SDK (and not in Android services). Interestingly, there are 4 other

similar cases that do not seem exploitable at the moment but nev-

ertheless it is a potential problem.

Finally, we �nd all four studied customized system images

weaken the security enforcements when they modify old or add

new services, resulting in 10 exploitable vulnerabilities. In fact,

we �nd that in most of the cases, vendors barely put any security

checks in their new service code, suggesting that third-party ven-

dors are less security-conscious overall compared to Google.

6.4 Case Study

We now choose a subset of the 20 cases to explain how the vul-

nerabilities manifest themselves and how they can be exploited.

For interested readers, our anonymous demonstration video can

be found at https://youtu.be/erLY_OMi4kQ. We are in the process

of responsibly disclosing the details to Google and other related

third-party vendors.

Hidden interfaces left by the microchip manufacturer (priv-

ilege escalation). Atfwd is a system app provided by the mi-

crochip manufacturer Qualcomm, and pre-installed on many

Qualcomm-based Android devices. Atfwd registers a system ser-

vice called AtCmdFwd, which accepts various commands through

app-accessible interfaces. Speci�cally, the commands accepted by

AtCmdFwd are illustrated in Table 5. Although it is designed to

reject commands from non-system apps, we show that due to an

insecure input validation, a malicious app can fake its identify. As a

result, malware can arbitrarily inject commands such as push phys-

ical buttons, or trigger motions on the touch screen. Additionally,

we notice that due to a similar insecure input validation, AtCmd-

Fwd exposes some sensitive system operations, for example, erase

the external/internal storage or reboot/shutdown the device. Sur-

prisingly, we are unable to locate the user of these exported inter-

faces and unsure why they are pre-installed everywhere. Luckily,

in recent updates of SEAndroid policies, Atfwd becomes inacces-

sible to regular apps. However, its vulnerabilities can be exploited

https://youtu.be/erLY_OMi4kQ


Command Event Handler Description

+CKPD AtCkpdCmd
Send an arbitrary

key/button press event

+CTSA AtCtsaCmd
Send a touch screen

motion event

+CFUN AtCfunCmd Reboot the device

+CRSL AtCrslCmd
Set audio stream

volume

+CMAR AtCmarCmd
Erase the

external/internal storage

CSS AtCssCmd
Get default display

settings

$QCPWRDN AtQcpwrdnCmd Shutdown the device

Table 5: Commands accepted by AtCmdFwd. The �rst col-

umn shows the command tokens accepted by the system

service, and the second column presents the corresponding

event handler triggered by the commands. The �nal column

describes the e�ect of each command.

if SEAndroid is disabled (in a lower version of Android), if a 3rd-

party vendor miscon�gures the policy, or if an unrelated system

process is compromised �rst which can then reach the service. Our

demonstration video shows that the interfaces can be utilized in a

zero-permission app.

Sending arbitrary accessibility event (privilege escalation).

Accessibility service is commonly registered to AccessibilityMan-

agerService by apps, providing convenience to assist the mobile

user’s operations, such as auto-�lling data (e.g., password) or

touching a point on the screen. Although accessibility services are

originally designed to assist users with disabilities, it is not limited

to this purpose. For example, many UI testing frameworks use ac-

cessibility service to gain access to speci�c app views, such as the

uiautomater in Android framework. Besides, some apps use acces-

sibility services to provide sensitive functionalities, such as reading

content of user’s current view, or alerting the user.

Interestingly, we �nd the input validation used in Accessibil-

ityManagerService is vulnerable. By exploiting this vulnerability,

a malicious app can deliver arbitrary accessibility events to any

targeted accessibility service. For example, we can target Noti�-

cation Check [7], a popular app used to manage various noti�ca-

tions on your phone. This app registers an Accessibility Service,

which allows it to listen for the arrival of noti�cations, i.e., accessi-

bility events with type TYPE_NOTIFICATION_STATE_CHANGED

dispatched by AccessibilityManagerService. With the event injec-

tion capability, a malicious app can deliver crafted events to Noti-

�cation Check for phishing. Likewise, by sending a forged event to

the accessibility service which auto-�lls user password, malware

can steal user password stored in this app, causing severe infor-

mation leakage. To emphasize, as the vulnerability lies in the sys-

tem frameworkAccessibilityManagerService, any app that registers

their app-speci�c service with it can become vulnerable. We tested

the vulnerability in the latest Android (8.0) and 3rd party Android

images. We con�rm that it is still present.

Stealthy phishing attack (privilege escalation). The Android

OS provides a convenient functionality for developers to popup a

message on the screen, called Toast. When a toast is displayed, it

only �lls the amount of space required for the message and the

current top activity remains visible and interactive. Originally, the

layout of Toast window is �xed (like a noti�cation to user) and can-

not be customized by apps. However, Invetter �nds an interface in

WindowManagerService which allows a malware to create crafted

Toast message with arbitrary scope of view space. As a result, a

malware can completely customize the toast window (e.g., a trans-

parent TextField that captures the user input), and display it on top

of an arbitrary app. This is because there are two separated paths

based on di�erent inputs that can popup a toast window. One path

requires the caller must have a SYSTEM_ALERT_WINDOW permis-

sion. However, the other one does not apply any validation, leading

to the vulnerability introduced above. We con�rm this vulnerabil-

ity with an exploitation on Nexus 6 (AOSP 7.0), which can popup

a phishing window without the user noticing.

Controlling the media player (privilege escalation). Medi-

aSessionService provides amethod named dispathchMediaKeyEvent

that allows apps to send out media key events to control the cur-

rent running media player, such as stopping a media �le or playing

another. This method is originally designed as a hidden method

since it is labeled as@hide in Android SDK. Normally, a developer

can not call this method in his app. However, since the Android

SDK is executed in app’s process, an app can overwrite the man-

ager side RPC code, and invoke this method anyways by creating

its own media key event. MediaSessionService conducts a veri�ca-

tion to make sure the input key event is a kind of media key events,

after that it clears the caller’s identity in Binder by calling clearCall-

ingIdentity, which means that the sender of the media key event is

erroneously set to system. This insecure validation allows an at-

tacker to create various kinds of media key events to control the

current running media player. As an exploitation experiment, we

select two popular media players in China, NetEaseMusic and QQ-

Music as targets. Both of them can be controlled by the malicious

app we developed.

Forcing factory reset (privilege escalation). In the system im-

age of XiaoMi Note 2, Invetter discovers a sensitive service inter-

face, called doFactoryReset, which is not protected by any access

controls. This method resides in the customized system service

MiuiInitServer. Doing factory reset is a system level behavior that

should be protected with critical enforcements, and commonly, it

can only be accessed by pre-installed system apps. Actually, AOSP

has a similar method called factoryReset, which requires a privi-

leged permission (CONNECTIVITY_INTERNAL). However, Invetter

�nds that no check is performed in XiaoMi’s system image and

any app can access it without any restriction. In this case, we iden-

tify a weakened access control in the newly added system services

by a third-party vendor, which demonstrates that customized sys-

tem images may weaken the original security enforcements of An-

droid.

Clearing Android Kernel Log (Log over�ow). DropBoxMan-

agerService(DBMS) is a persistent, system-wide, blob-oriented log-

ging service of Android (not to be confused with the �le shar-

ing app which is also called Dropbox). Commonly it is used for

recording chunks of data from various sources, such as application



crashes, kernel log records, etc. Invetter reports a public interface,

add, in this service which does not enforce any permission check.

It only conducts sensitive input validation based on the untrusted

app-supplied data. This makes it possible for a malicious app to

access this interface, although it is designed for system only. The

app can fake the log information to mislead security analysts who

use the log reports, or even can erase the original system logs with

fake data. This is because DBMS uses a �xed-length queue to man-

age logs in a system directory, and old data is discarded directly

when the maximal size reaches.

Deleting system �les (privilege escalation). To prevent less

privileged apps from accessing �les stored by high privileged sys-

tem/app processes, the Android sandbox separately stores app �les

in their own app’s directory. As a result, only privileged apps or sys-

tem can access the sensitive resources. However, Invetter reports

a unprotected public interface, called deleteFileUnderDir, in a cus-

tomized system service RegionalizationService from XiaoMi Note 2.

Using this interface, the caller can delete arbitrary �les owned by

the current running process. Since this system service is executed

in the system process, the caller client can delete system �les by

calling it. Since this critical interface is not protected by any per-

mission or secure input validation, malicious apps can trigger the

�le deletion whenever the service is running. This vulnerability is

not acknowledged in our testing device due to an incompatibility,

but con�rmed by our in-depth code review.

7 DISCUSSION

Native code. Since Invetter is implemented based on Soot, which

cannot analyze the native code of Android, Invetter currently can-

not �nd vulnerabilities inside Android native services. We manu-

ally checked the native services in Android framework, and �nd

that only 15 services are not analyzed by Invetter, e.g., Camera

Service. Since the code base of these services are relatively low, we

believe the impact is small because Invetter can �nd most system

services in the Android framework. Besides, as discussed in §5, we

proposed an approach to �nd Java byte code clients of services, in-

cluding the native ones. Thus, although we still cannot analyze the

native services, we can analyze and �nd insecure code within the

Java clients of native services, which cannot be achieved by the

existing approaches.

Inferring sensitive inputs. It is an open problem to automat-

ically infer sensitive inputs crossing a trust boundary in any

large software (e.g., user-to-kernel and app-to-service). However,

in more limited scenarios, inferring sensitive data has been con-

sidered and studied using various techniques. For example, Taint-

Droid [8] labels the return value of a hand-curated list of Android

APIs as sensitive (e.g., getLastKnownLocation(). UIPicker [21]

and SUPOR [16] use learning-based approaches to identify sen-

sitive inputs through UI. Similar to our idea, they �rst manually

label some sensitive UI elements (e.g., input boxes) and then use

machine learning to infer other sensitive ones via co-location anal-

ysis. Unlike UI elements, the scale and complexity of sensitive in-

puts in programs are much more challenging. Speci�cally, we are

not aware of any good learning strategies (e.g., by co-location or

co-occurrence) that can be generally applied. This is why instead

of learning “sensitive inputs”, we choose to learn “sensitive input

validations” — as the latter can be learned by co-occurrence.

Recommendations for implementing secure validations.

This paper reveals vulnerabilities caused by insecure input vali-

dations. By comparing insecure and secure input validation imple-

mentations, we recommend that sensitive input validation should

be performed in the following way: First, all the data derived from

Android apps, including Android SDK, should not be trusted. To

validate the app identity, system controlled app signatures (e.g. in-

formation managed by the Binder mechanism) should be used. Be-

sides, any system level access controls should not be placed in user

apps or Android SDK. Then, vendor customization should be more

careful whenmodifying system services, so that not to remove sen-

sitive input validation.

8 RELATED WORK

In this section, we review related prior research and compare our

work with those studies.

Vulnerability detection in Android. The problem of security

vulnerabilities in Android has been extensively studied. Unixdo-

main [27] and ION [35] study the Android socket and low-level

heap interfaces, and report unprotected public interfaces by �nd-

ing missing permission validations. ASV [15] discovered a de-

sign trait in the concurrency control mechanism of Android sys-

tem server, which may be vulnerable to DOS attacks. Besides, In-

tentScope [17] shows that some Android components, e.g. services,

accept inter-component access from other components, e.g. apps,

and because some components mis-con�gured their intent �lters,

they can be accessed by unauthorized apps. This paper also discuss

access control of Android framework. Moreover, Zhang [37] shows

that in Android, after the app is uninstalled, some app data is not

completely removed, causing privacy leakage. These works focus

on a speci�c vulnerability pattern, e.g. concurrency bugs. Di�er-

ent from the work above, this paper focuses on input validation

problems in Android framework.

Additionally, some works focus on discussing the explicit per-

mission based access control mechanism of Android. Felt [10]

shows that pre-installed apps can access critical system resources,

meanwhile theymay open interfaces that accept requests from low

privileged apps. Since the access control in these appsmay beweak,

low privileged malicious apps can utilize them as a step stone to

access high privileged resources. Kratos [26] compares the permis-

sion enforcement along di�erent calling stacks of Android system

services, and �nds vulnerabilities ranging from privilege escala-

tion to DoS. Besides, AceDroid [33] focuses on the inconsistent

permission enforcement introduced by di�erent vendors. Similar

to our purpose, buzzer [6] also aims to �nd incorrect input vali-

dations in Android services, but unfortunately, we �nd that most

of their works are done manually, and only several vulnerabilities

which crash the services can be detected automatically. Gu, et

al. [31] does not formally de�ne sensitive input validations and

relies on a set of manually-created lists of sensitive APIs. In addi-

tion, their system reports 22 vulnerabilities but only 3 are related

to incorrect sensitive input validations (many are repeated invo-

cations of APIs that crash the system which is beyond our scope).



By carefully studying the 3 reported input validations, we notice

that 2 of them are also located by Invetter (one is listed in Table 4,

and the other is discarded during manual veri�cation because of

the low severeness), and the remaining one was already �xed by

Google. In this paper, we discuss incorrect security forced input

validations in Android services, and weakened access controls in

customized Android images. Our systematical approach reveals 86

vulnerabilities, among which 20 are con�rmed exploitable, from 8

Android images. To the best of our knowledge, they are not sys-

tematically studied in existing work.

Weakened access controls inAndroid customizations. The se-

curity risks introduced by the customization of Android system im-

ages are also studied before. Prior researches [1, 9, 10] focus on the

pre-installed apps in Android factory images and report the pres-

ence of several kinds of the vulnerabilities, such as over-privileged,

permission re-delegation, hanging attribute references, etc. Unlike

these works, this paper focuses on the vulnerabilities inside An-

droid system services.

Other related studies [2, 11, 14, 30] �nd that customized sys-

tem images modify security con�gurations, and incorrect modi-

�cations bring in security vulnerabilities. Like these papers, we

also discuss weakened security enforcement in customized images.

However, we focus on identifying insecure validations inside An-

droid system services, which requires deep understanding of the

service code.

Static analysis on Android. We detect the vulnerabilities in An-

droid framework by using static analysis. Techniques serving the

similar purpose have been extensively studied [2, 4, 5, 26]. As one

of the most popular techniques used to analyze Android frame-

work as well as apps, static taint analysis monitors the data prop-

agation along Android framework as well as apps [3, 12, 18, 23,

29, 34]. They answer the question of what data(source) �ows into

what destination(sink). Their use of static analysis techniques and

source/sink �ow control is an important concept in our work. We

use static taint analysis to track the propagation of service input.

PScout [4] and Axplorer [5] use static analysis to enumerate all

permission checks in the Android framework and map all the per-

mission usage to the corresponding system methods. Although

they reveal what permissions are enforced in a given method, they

cannot �nd missing validations. A similar work is Kratos, which

�nds missing security validations by comparing permission en-

forcement along di�erent calling stacks. However, since its anal-

ysis is built on top of the call graph, it cannot �nd �ner-grained

inconsistencies which can be revealed in this paper. Besides, none

of the above approaches can identify incorrect sensitive input val-

idation.

Other input validations. The traditional input validation stud-

ies mainly focus on the web apps (SQL injection) and programs

that are not memory-safe (C/C++ programs and OS kernel). For

example, Mokhov, et al [20] studies the vulnerabilities in Linux

kernel, with regards to two input validation errors: bu�er over�ow

and boundary condition error. Scholte, et al. [25] studies the evo-

lution of input validations vulnerabilities in web apps. They �nd

that these vulnerabilities have not changed signi�cantly and most

of them result from the missing check of structural input strings.

Yamaguchi, et al. [32] uses code property graph to characterize

known vulnerability types in Linux kernel, such as bu�er over�ow,

integer over�ow, format string vulnerability and memory corrup-

tion. In particular, these vulnerabilities rely on a small set of well-

de�ned sensitive input (e.g. user-space pointers) as input to static

taint analysis. However, our paper focuses on the opposite end of

the spectrum where we are not even clear what input should be

considered sensitive. Di�erent from the above studies that focus

on well-known sensitive input, our paper focuses on the sensitive

input validations in Android system services, which are unstruc-

tured, ill-de�ned and fragmented.

9 CONCLUSION

In this work, we make the �rst attempt to systematically study

the input validations used in Android framework. We propose In-

vetter, a static analysis framework which focuses on the sensitive

input validations in the Android framework and in the customized

third-party system services. We demonstrate the e�ectiveness of

our approach by applying Invetter on 4 versions of Android AOSP

framework, and another 4 third-party vendors’ Android images.

Finally, Invetter reports 20 exploitable vulnerabilities which can

lead to various kinds of attacks, such as privilege escalation and

privacy leakage. Actually, most of these attacks do not require any

permission and can be conducted by any app installed on the vic-

tim’s mobile device. Our �ndings show that a critical way to well

implement the access control should both consider the Android

permission and the inputs.
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