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Abstract—Java web applications have been extensively utilized
for hosting and powering high-value commercial websites.
However, their intricate complexities leave them susceptible to
a critical security flaw, named Missing-Owner-Check (MOC),
that may expose websites to unauthorized access and data
breaches. However, the research on identifying and analyzing
MOC vulnerabilities has been limited over the years.

In this work, we propose a novel end-to-end vulnerability
analysis approach, called MOCGuard, that can effectively vet
Java web applications against MOC issues. Different from
related techniques, MOCGuard pinpoints MOC vulnerabil-
ities from a new perspective of database-centric analysis.
MOCGuard first applies database structure analysis to infer
user table and user-owned data. Then, MOCGuard conducts
insecure access checks across both the Java and SQL layers.
To thoroughly evaluate the effectiveness of MOCGuard, we
collaborated with a world-leading tech company. Through our
evaluation of 30 high-profile open-source Java web applications
and 7 industrial Java web applications, we demonstrate that
MOCGuard is automatic and effective. Consequently, it success-
fully uncovered 161 (confirmed) 0-day MOC vulnerabilities,
leading to the assignment of 73 CVE identifiers.

1. Introduction

With the robust ecosystem and reliable performance,
Java is extensively utilized in the development of web
applications, including notable examples such as Amazon
[1], Paypal [2] and Shein [3]. These applications store and
manage a vast array of sensitive user resources, including
account details, financial information, and personal data,
making them prime targets for web attackers. To safe-
guard these sensitive and valuable assets (namely user-
owned data), implementing ownership verification or owner
checks for every access request to user-owned data is critical.
Overlooking these owner checks may lead to serious security
flaws, referred to as Missing-Owner-Check (MOC), posing
a substantial risk to user privacy and potentially jeopardizing
financial security [4], [5]. For example, a MOC vulnerability
was recently found in the U.S. Postal Service (USPS). It
allowed any logged-in user to access the account details
belonging to other users, ultimately leading to the exposure
of the privacy data of up to 60 million users [4].

To detect MOC vulnerabilities in real-world Java web
applications, an intuitive vulnerability detection idea is iden-
tifying user-owned data and vetting its corresponding owner
checks, i.e., verifying whether the accessed data belongs to
the currently logged-in user. Although this idea is straight-
forward, it is difficult to directly utilize or extend existing
techniques to achieve the goal in practice. Two key perspec-
tives should be carefully considered:

• Q1: How to infer user-owned data within the context of
Java web applications? Accurate identification of user-
owned data is crucial for effective detection of MOC vul-
nerabilities. High inaccuracies can lead to false positives
or negatives during vulnerability detection. Applications
usually utilize variables to access or represent user-owned
data. However, it is challenging to pinpoint user-owned
data from thousands of variables and data items available
in modern web applications.

• Q2: How to detect the missing of owner checks when ac-
cessing user-owned data? Even assuming we successfully
identify all user-owned data, it is still difficult to analyze
whether the access to this data is secure. In particular, the
owner-check implementation is quite flexible and may be
performed through SQL (e.g., WHERE clause) or Java level
(e.g., if-statement).

However, existing techniques faced significant difficul-
ties in addressing the above critical challenges. Their meth-
ods can be divided into two groups according to how they
analyze user-owned data and owner-checks. The first type of
techniques (e.g., RoleCast [6] and MPChecker [7]) utilized
heuristics to identify crucial variables holding user-owned
data through code-level analysis. However, such heuristics
are ineffective or infeasible in the domain of the Java
web area. For example, RoleCast depended on JSP (Java
Server Pages [8]) file structures, which were unavailable in
modern template-based web applications. MPChecker relied
on system logs tailored for distributed systems. Moreover, in
addressing the second challenge, they overlooked the owner
check occurring at the SQL level. They potentially treated
a large number of safe owner-checks as vulnerable, thereby
potentially resulting in lots of false positives.

The second category (e.g., MACE [9]) leveraged an
insight that user variables are essential to manipulate user-
owned data. Therefore, the existing technique tracked the
data flow of the manually annotated user variables (that store



user identities) flowing to SQL statements and identified
the user-owned data. However, this approach is still limited.
First, they heavily relied on the manual annotation of the
user variables. Such manual markings are labor-intensive
and prone to errors. Second, the result (of the found user-
owned data) fell short of completeness when analyzing SQL
statements to infer user-owned data from user identities.
In practice, the design of application databases is often
sophisticated, where much user-owned data is manipulated
through data element IDs, rather than user identities. Thus,
existing coarse-grained methods may result in a high rate of
false negatives for identifying user-owned data, significantly
impacting the effective detection of MOC issues (70.81%
false negatives in our dataset).

In this paper, we propose MOCGuard, a novel secu-
rity analysis approach for detecting MOC vulnerabilities
in Java web applications. The key observation behind our
MOCGuard approach is that modern Java web applications
need to manage a huge amount of user data using relational
databases. Their database structures (e.g., database tables)
are often meticulously designed. This means the complex
database structures encode their semantics, reflecting both
the crucial details of used-owned data and associated owner-
ship information. Following this key observation, we design
a novel database-centric analysis technique to understand
user-owned data and its corresponding users, and vet the
security of owner checks in Java web applications.

Our MOCGuard approach consists of two primary
phases. In the first phase, MOCGuard conducts the database
semantic analysis to pinpoint user-tables that store user
information, and then infer other tables housing associ-
ated user-owned data. In the user-owned data inference,
MOCGuard performs two-pronged analysis in terms of data
structure analysis and cross-layer code analysis. In the
second phase, MOCGuard effectively identifies its owner
checks based on the found user-owned data, and carefully
examines the security of these owner checks at both the SQL
and Java layers. MOCGuard effectively verifies whether the
necessary owner checks are in place to protect user-owned
data, enabling MOCGuard to identify potential insecure
access points and find MOC vulnerabilities effectively.

Last, we evaluate the effectiveness and performance
of MOCGuard in 30 widely-used open-source Java web
applications and 7 industrial applications. As a result,
MOCGuard successfully discovered 161 (confirmed) high-
risk zero-day MOC vulnerabilities. In contrast to the
state-of-the-art work (i.e., the improved Java version of
MACE [9]), MOCGuard demonstrates equally impressive
performance, detecting 114 more vulnerabilities and sur-
passing it by 31.31% in precision and 242.55% in recall.

These newly-found MOC vulnerabilities may be ex-
ploited to compromise user privacy or even delete data
stored within applications, thereby severely compromising
data confidentiality and integrity. Moreover, attackers can
leverage identified payment hijacking vulnerabilities to fa-
cilitate unauthorized transactions, which can result in sub-
stantial financial losses. Considering the significant security
impact of these vulnerabilities, we responsibly reported

them to the developers of the vulnerable applications. As
of now, these vulnerabilities have been assigned 73 CVE
identifiers.

We release the source code of MOCGuard to facilitate
further research on the security of Java web applications.

The contributions of this paper are summarized as fol-
lows:

• In this paper, we study the semantics of database structure,
and propose several new key observations and insights
about how to leverage database structure semantics to
address the problem of MOC detection.

• Following the ‘database-speaks-for-itself’ idea, we pro-
pose a novel database-centric approach to effectively infer
user-owned data and vet the security of corresponding
owner checks against MOC vulnerabilities, without man-
ual interventions.

• Our evaluation on 30 real-world popular web applications
and 7 industrial web applications shows MOCGuard is
automatic and effective, with the discovery and confirma-
tion of 161 (confirmed) 0-day MOC vulnerabilities. As
of now, these vulnerabilities have been assigned 73 CVE
identifiers.

2. Problem Statement

2.1. MOC Vulnerability Definition

Modern web applications have evolved into sophisticated
platforms housing extensive data, with one of the most
critical elements being user-owned data. User-owned data
includes users’ high-value assets and privacy information,
e.g., ID card, addresses, and order records. Thus, its security
is crucial. When web application developers do not appropri-
ately safeguard user-owned data, a serious missing-owner-
check (MOC) vulnerability may arise, leading to serious
consequences[4], [5], [10], [11].

Below we first define several important MOC related
concepts.

Definition 1 (Users). U is a set of users available in the
target web application (namely A). Thus, U =

∑m
i=1 ui.

Definition 2 (User-Owned Data). The rich array of data
D is owned by users U , and is stored and managed by A.
Hence, D =

∑n
j=1 dj .

Definition 3 (Data Ownership). We define own(ui, dj) to
indicate data dj belongs to user ui within the context of A.

Definition 4 (Data Access). We define access(ui, dj) as a
data access operation, where requester ui accesses data dj
in A.

Upon these concepts, we define MOC vulnerability:

Definition 5 (MOC Vulnerability). A MOC(ui, dj) vulner-
ability exists when

∃ui ∈ U, ∃dj ∈ D,¬own(ui, dj) ∧ access(ui, dj)

holds. When user ui accesses data dj , ui should be dj’s
owner. Otherwise, an illegitimate access occurs.



// PoC: /delete?addrId=${others addrId}
@GetMapping("delete")
public Addr delete(@LoginUser Integer userId, Integer addrId) {
    // delete ... from address where id = #{addrId}
    return addressMapper.delete(addrId);
    // delete ... from address where id = #{addrId} and userId = #{userId}
    return addressMapper.delete(addrId, userId);
}
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Figure 1: A real-world MOC vulnerability patch on litemall;
the owner check implemented at SQL-layer.

2.2. Threat Model

The user-owned data in Java web applications are the
major attack targets of remote malicious users [7]. In gen-
eral, these resources are stored in databases and accessed
through database operations. Intuitively, the access and ma-
nipulation of user-owned data should be verified by testing
the owner check. Otherwise, attackers can unauthorizedly
access sensitive resources belonging to other users, i.e.,
access(ui, srj) is true and own(ui, srj) is false, ultimately
resulting in MOC vulnerabilities.

2.3. Real-World MOC Example

We explore a real-world vulnerable web application to
demonstrate MOC vulnerability. Figure 1 shows its simpli-
fied code snippet. At line 3, "addressMapper.delete()"
executes SQL to access and delete user-owned data, which
is saved in the variable "addrId". However, crucial data
ownership, i.e. own(userId, addrId), is not appropriately
verified. Thus, this causes a serious MOC vulnerability and
may break the integrity and availability of the vulnerable
web application.

Line 4 demonstrates a security patch. It checks the data
ownership, with the ‘WHERE’ clause in SQL, i.e., userId
= #{userId}. Thus, own(ui, srj) is true, which indicates
that the MOC vulnerability is fixed.

2.4. Detection Challenges

Given the serious security hazards that MOC vulnera-
bilities pose to user assets and privacy, early detection and
remediation are of utmost importance. In general, MOC
vulnerability detection can follow MOC’s definition and
consider the following two key perspectives.

� How to infer user-owned data within the context of
Java web applications? Accurately identifying user-owned
data is the first crucial step in detecting MOC vulnerabilities.
Any errors or oversights in this process can directly lead to
false positives or false negatives during vulnerability detec-
tion. However, this is not a trivial task. As demonstrated,
user-owned data is often represented or accessed through
variables (e.g., addrID) within the target application. Pin-
pointing these specific variables among thousands present
in the application can be complex and challenging.
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@GetMapping("/order")
public Order order(String orderId) {
    String userId = httpSession.getAttribute(U_SESSION);
    Order order = orderMapper.selectByOrderId(orderId);
       
    if (!userId.equals(order.getUserId())) {
        throw new Exception("NO PERMISSION");
    }
    ...
    return order;
}

Figure 2: The owner check implemented at Java-layer (the
lines on light green background).

� How to detect the missing of owner checks when ac-
cessing user-owned data? After identifying the user-owned
data, the next step is to analyze whether the access to this
data is secure. Intuitively, source-to-sink analysis is quite
suitable. First of all, we can identify which operation (i.e.,
MOC sink) can manipulate the user-owned data. Then, we
need to analyze which MOC sinks are reachable for user
input (i.e., MOC source) from the program entry. Last, we
should analyze whether there are appropriate protections on
the program path from MOC source to sink (i.e., owner
check).

Nevertheless, achieving high accuracy in MOC vul-
nerability detection, especially analyzing owner checks, is
challenging. The reasons come from two aspects. On one
hand, identifying the owner check on the source-to-sink path
is difficult. Java language does not provide built-in functions
for owner checking. Instead, these are often implemented
by the developers themselves, allowing for great flexibility.
As demonstrated in Section 2.3, Java web applications can
implement owner checks at the SQL-layer. Beyond this,
it can be achieved at the Java code-layer as well. For
example, as shown in lines 5-7 of Figure 2, developers
use if conditional statements to verify data ownership, i.e.
verifying that the requester "userId" should be the data
owner "orderId.order.getUserId()".

On the other hand, analyzing whether the owner check
is appropriate for user-owned data is also difficult. Given the
possible existence of various user identities in the system,
different data have different owners (e.g., products owned by
sellers and orders owned by buyers in the mall application).
A coarse-grained approach that only checks for the existence
of protection, without considering whether the protection
is appropriate or not, will directly lead to inaccuracies in
vulnerability detection.

2.5. Existing Techniques and Limitations

In recent years, a set of existing works have explored
various techniques to protect user-owned data. However,
they exhibited significant limitations and faced challenges
when being extended to Java web applications. We catego-
rize these works into two groups and separately analyze the
root reasons for their limitations.



The first category of work (e.g., RoleCast [6] and
MPChecker [7]) utilized heuristics to identify crucial vari-
ables holding user-owned data through code-level analysis.
However, such heuristics are ineffective or infeasible in the
domain of the Java web area. For example, as Java has
evolved rapidly, the methodology used in RoleCast, which
centers on inferring critical variables through analyzing JSP
(Java Server Pages) file structures, is no longer applicable
for today’s template-based Java web applications, which
are primarily developed through frameworks, e.g., Spring
Boot [12]. Similarly, MPChecker relied on specific format-
ted system runtime logs to infer user-owned data, which are
unique to distributed systems and do not exist in Java web
applications. Moreover, in addressing the second challenge,
their technique overlooked the owner check occurring at the
SQL level. This could potentially lead to a large number of
false positives as demonstrated in our ablation study §5.4.

The second category (e.g., MACE [9]) leveraged an in-
sight that user variables are an essential bridge to manipulate
user-owned data, which is usually saved in databases. Thus,
it first manually annotated user variables that store user
identities, such as super-global variables like $ SESSION in
PHP. Then, it tracked the data flow of these user variables
to INSERT statement variables (as sinks) for identifying the
SQL statements associated with user-owned data. Last, it
understood the SQL statements and found the data items to
be manipulated as user-owned data.

However, this approach is still limited. First, it heavily
relies on the manual annotation of user variables, which re-
quires significant human effort. The original paper noted that
annotating two applications in their evaluation took about 50
minutes. This time increases for Java web applications due
to fundamental differences between Java and PHP. In PHP,
user or user-owned data is often represented by super-global
variables with distinct characteristics (e.g., $ SESSION) and
limited types. Java lacks this concept, requiring security
experts to rely entirely on code context, making annotations
for inferring user-owned data very challenging. Furthermore,
the analysis to infer user-owned data from user variables
is incomplete. Application databases are often complex,
with much user-owned data manipulated via data element
IDs rather than user variables. Consequently, this coarse-
grained approach results in a high rate of false negatives
for identifying user-owned data and detecting MOC issues
(70.81% false negatives in our dataset).

3. MOCGuard Methodology

In this paper, we aim to address the problem of MOC
detection. It is clear that relying solely on code-layer anal-
ysis struggles to address the two key concerns that were
raised for MOC vulnerability detection in §2.4. We believe
the fundamental challenge here is that, at the code layer,
the ownership relationship between the user and data is
not explicitly defined and is intertwined within diverse code
contexts, making it quite challenging to identify.

In this work, instead of a standalone code-level analysis,
we propose a novel database-centric approach, which has

natural advantages in addressing this fundamental challenge.
Inspired by Spider-Scents [13], the key idea behind the
approach is that as web applications need to manage a sig-
nificant amount of user-owned data, they often meticulously
design their database structures, i.e., the organization of
database tables and each table’s columns. This indicates that
complex database structures encode rich dependency rela-
tionships among user data, reflecting both the crucial details
of these data and their associated ownership information.

Below we refine our database-centric idea. We first
present our key observations about database structure. Then,
we introduce our main idea for MOC vulnerability detection.
Last, we illustrate its workflow by running a real-world
example.

3.1. Key Insights and Observations

In this section, we conclude four key observations about
database structure by following the ‘database-speaks-for-
itself’ idea, and explain why they can help design a novel
and effective vulnerability detection approach.

Observation#1: Database structure contains user creden-
tials and can help identify users. Web applications, given
their complex functionalities and vast user bases, fre-
quently manage user authentication through user registra-
tion and login functionalities. Correspondingly, to validate
user identity during the login process, developers tend to
store authentication-related information for each user in the
database. We refer to the table containing authentication
data related to user identity as user-table. Consequently,
the semantics of the column names often conceal evidence
pertaining to the authentication processes. This evidence
suggests that the user-table typically exhibits distinct char-
acteristics. A typical example is the member table shown
in Figure 3. It stores user credentials through columns
such as username and password, and records unique user
identifiers using the primary key id.

Observation#2: Database structure can help explicitly infer
user-owned data from user-table. To conveniently record
user-owned data D and its corresponding users U , D and
U can be stored within the same table in the database, and
linked to the user-table through structural connections, such
as foreign keys. We refer to all the database tables containing
user-owned data as user-owned tables. As depicted in Fig-
ure 3, the ‘order’ user-owned table explicitly includes the
‘user id’ key to denote the order’s owner. The ‘user id’
column is a foreign key linked to the primary key ‘id’ in
the ‘member’ user table.

Observation#3: There are also user-owned data with im-
plicit connection to the user table, due to database normal-
ization [14]. We observe that developers frequently transfer
data between different user-owned tables through the code
level. Specifically, developers tend to use variables in the
code level to accommodate user-owned data read from
databases, and then pass these variables as arguments to
other methods performing different database operations. We
refer to these related database tables as implicit user-owned



TABLE order (
    id,  
    user_id,                      
    address,
     
)

TABLE member (
    id,  
    username,                      
    password,
     
)

Foreign Key

Login Credentials

Figure 3: User Table and Explicit User-Owned Table.

tables. Figure 4 demonstrates implicit user-owned tables
over sensitive variables. Developers retrieve the order ‘id’
belonging to a specific user from the ‘order’ table, and
save the content to an ‘ids’ variable (line 1 of Figure 4(c)).
Subsequently, developers pass the ‘ids’ variable into a
subsequent Java SQL-operation statement (line 2 of Fig-
ure 4(c)) to query the detailed order entries stored within the
order item table. Through the sensitive variable ‘ids’,
we can link implicit user-owned tables. Moreover, the sensi-
tive variable is also crucial for determining its owner checks
(i.e., the security of data access requests).

Observation#4: Operations on user-owned data that lack
owner check protections can lead to insecure access. Upon
the data D being accessed, developers should carefully
verify D’s owner against the requester, i.e., owner check.
We find the owner check can be conducted in two lay-
ers: SQL (e.g., the WHERE clause) and the Java code
(e.g., if-statement). If owner check is neglected or in-
complete, malicious users will be allowed to access user-
owned data belonging to others without proper authoriza-
tion. Figure 5 showcases a real-world 0-day vulnerability
(See more details in Section 3.3). In line 4 of Figure 5 (b),
the selectByOrderId method accesses the order item
table, which is identified as a user-owned table. However,
due to the absence of owner check protections, this results
in insecure access.

3.2. Approach Overview

Drawing on our observations, we propose a novel
database-centric approach that can effectively address the
MOC detection from the two key perspectives, i.e., inferring
user-owned data and vetting the security of data access.
Below, we delve into these two phases with detailed ex-
planations.

3.2.1. User-owned data inference. In the first stage, uti-
lizing the key observations (Section 3.1), we design a
database-semantic analysis technique to identify user-table
and further infer user-owned data. First, we conduct database
semantic analysis to pinpoint the columns in the database
table that function as login credentials. The tables housing
these columns can be classified as user-table. Then, our ap-
proach performs a two-pronged database structure analysis
on the previously identified user tables to further explore
user-owned tables: one via foreign key analysis, and the
other through cross-layer code analysis. The former aids in
identifying the explicit user-owned tables, whereas the latter

<select id="selectByOrderIds">
    select * from order_item where order_id in #{ids}
</select>

c) Java-layer: OrderController.java

1
2
3

TABLE order (
    id,  
    user_id,                      
    address,
     
)

TABLE order_item (
    id,
    product,
    order_id, 
      
)

List<Long> ids = mapper.selectByUserId(userId);

return itemMapper.selectByOrderIds(ids);

1

2

<select id="selectByUserId">
    select id from order where user_id = #{userId}  
</select>

4
5
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b) SQL-layer: OrderItemMapper.xml

a) Table-layer: order and order_item table

Figure 4: Real-World Implicit User-Owned Table.

<select id="selectByOrderId">
    select * from order_item where order_id = #{orderId}
</select>

@GetMapping("/detail")
public Order detail(Integer orderId) {
    ...
    return orderItemMapper.selectByOrderId(orderId);
}

1
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3
4
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b ) Java-layer: OrderController.java

a) SQL-layer: OrderItemMapper.xml
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Figure 5: Simplified Real-World 0-Day Vulnerable Code.

performs the recognition of the implicit ones. With this two-
level analysis, the data within the user-owned tables can
be treated as user-owned data. Please note that through the
implicit user-owned table analysis, sensitive variables can
also be identified, which are crucial for the second analysis
phase of owner checks.

Specifically, for user table reference, our approach parses
the database files (e.g., .sql files) in the target web appli-
cation to extract all columns of database tables. We apply
a list of keywords to match the columns associated with
user authentication, and treat the tables hosting these cru-
cial columns as user tables. For explicit user-owned tables,
we pinpoint foreign keys by conducting syntactic analysis
against the CREATE TABLE statements in the database file.
Upon these foreign keys, we can recognize the tables that
are linked via identified foreign keys to the primary key of
the user table. Thus, these tables can be classified as user-
owned tables.

For implicit user-owned tables, our approach leverages



the above explicit user-owned tables to infer the implicit
tables through code-level analysis. Since there exist data
flows between sensitive variables (accommodating user-
owned data) in the Java code layer and the corresponding
columns in the SQL layer, we propose a cross-layer user-
own data tracking analysis. In the Java layer, our approach
employs data flow analysis to identify sensitive variables
reading and holding data from user-owned tables, and track
them. In the SQL layer, our approach directly analyzes the
SQL statements to establish data flow connections between
columns in the SQL statements, as well as marking the
variables passed into them.

3.2.2. Insecure access detection. In the second stage, ad-
hering to the viewpoint outlined in §2.4, our approach
performs a source-to-sink analysis to detect MOC vulner-
abilities. This process is divided into three steps.

First, our approach analyzes all SQL statements within
the target application to single out those specifically query-
ing user-owned tables. Following this, our approach treats
the database operations in Java code that manipulate these
identified SQL statements as MOC sinks. Second, our ap-
proach locates the call sites of the MOC sinks within the
application using a call graph. Following the call sites, we
conduct a backward dataflow analysis on their parameters,
and trace back to the program’s entry point for further as-
certaining the MOC sources. Finally, our approach conducts
a two-tiered analysis from both the Java code and SQL
layer to determine whether each source-to-sink path has
appropriate owner-check protection, thereby detecting MOC
vulnerabilities.

Specifically, for the owner checks at the SQL layer, de-
velopers implemented these through WHERE clauses in SQL
statements. Therefore, our approach focuses on each SQL
statement that queries a user-owned table, analyzing whether
its WHERE clauses contain only user-owned columns and not
user columns. If this is the case, the database operation
that manipulates the SQL statement is marked as lacking
SQL-layer owner check protection. For the owner checks at
the Java code layer, developers generally implemented them
with if-conditional statements at the code level to protect the
operations on variables representing user-owned data [9],
[7]. Therefore, our approach can treat the if-conditional
statements that meet the following constraints as owner
checks: 1) verifying variables accommodating user-owned
data, and 2) disrupting the execution of operations in the
control flow level (when denied).

Ultimately, by employing the identified owner checks,
our approach assesses whether the owner checks exist on
the source-to-sink path and reports paths where such checks
are absent as MOC vulnerabilities.

3.3. Running Real-World Example

We explore a real-world example to further illustrate our
approach. The Java web application mall is an open-source
and high-profile e-commerce system (more than 70,000 stars
in open-source communities). We identified and verified a

critical previously unknown MOC vulnerability (CVE-2023-
33***), allowing a remote attacker to access all user-owned
data without any restrictions.

Its technical details have been discussed in §3.1 with
three key figures: Figure 3, Figure 4 and Figure 5. Upon
them, we further explain how our approach 1) refers ex-
plicit user-owned data from the user table (Figure 3), i.e.,
inferring the order table as a user-owned table, 2) conducts
implicit user-owned table (Figure 4), i.e., identifying the
order item table as a user-owned table, and 3) detects
the MOC vulnerability caused by insecure access when
accessing the order item table (Figure 5), i.e., the owner
checks missing both in the SQL and Java layers. Combining
these three key workflows, we discuss how our approach
successfully detects the MOC vulnerability, showcasing an
end-to-end MOC vulnerability detection process.

User-owned Data Inference. We first describe how our
approach to infer order item table as a user-owned table.
First, in Figure 3, our approach infers the member table as
a user table, by directly matching its column names with a
list of keywords related to authentication, e.g., ”username”
and ”password”. Second, our approach infers explicit user-
owned tables. As described in §3.2, by analyzing the
CREATE TABLE SQL statements in the database file, we
discover a foreign key connection between the member table
and the order table in Figure 3, thus recognizing the order
table as an explicit user-owned table.

Third, our approach infers implicit user-owned tables.
The red line in Figure 4 illustrates the data flow between
the order table and the order item table. Specifically,
the selectByUserId database operation queries the id
column of the order table (line 2 of Figure 4(b)) and
stores the results in the ids variable within the Java code
(line 1 of Figure 4(c)). Thus, we link the id column of
order table in the SQL layer with the ids variable in
the Java layer, i.e., order.id → ${ids}. Then, in line 2
of Figure 4(c), the ids variable is passed as a parameter
to the selectByOrderIds method and used as a condi-
tion for the order id column, i.e., where order id in
${ids}(line 5 of Figure 4(b)). Consequently, we estab-
lish a data flow connection between the ids parameter
and the order id column of the order item table, i.e.,
${ids} → order item.order id. By integrating these
data flow connections, we successfully establish the connec-
tion between the order table and the order item table,
thus deducing the order item table as a user-owned table.
Please note that we mark the ‘ids’ variables as sensitive
variables.

MOC Vulnerability Detection. We now describe how our
approach detects the MOC vulnerability in Figure 5. First,
as described using §3.2. Our approach extracts all source-
to-sink paths that access user-owned tables. Figure 5(b)
shows that the detail method on line 2 is a program
entry point, where users can view order details by passing
the orderId parameter. Through data flow analysis, we
found that the user-input orderId parameter flows into the
selectByOrderId method on line 7, establishing a source-
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Figure 6: The Architecture of MOCGuard.

to-sink path. Then, by delving into the method body of the
selectByOrderId method, we found that it executes the
SQL statement shown in Figure 5(a), i.e., select * from
order item where order id = #{orderId}. It oper-
ates on the previously inferred implicit user-owned table,
namely order item.

Second, our approach determines whether the MOC
sinks are protected by owner checks and reports vulnera-
bilities where these checks are absent. By examining the
context of the operation, we found that there are no owner
checks at either the Java layer or the SQL layer. Therefore,
malicious users can retrieve the order details of other users
by supplying any order number. This means, access(ui, dj)
holds while own(ui, dj) does not, thereby leading to a MOC
vulnerability.

4. MOCGuard Design

Following our idea presented in §3, we propose
MOCGuard, an end-to-end approach for detecting MOC
vulnerabilities in Java web applications. As illustrated in
Figure 6, MOCGuard primarily consists of two phases.

• User-owned Data Inference (§4.1) employs data structure
analysis and cross-layer data flow analysis to infer user-
owned data automatically.

• MOC Vulnerabilities Detection (§4.2) identifies the owner
checks and detects MOC vulnerabilities within the target
application.

4.1. User-owned Data Inference

4.1.1. User Table Identification. In this phase, MOCGuard
proceeds with database semantic analysis to infer user
tables. Specifically, MOCGuard first parses the SQL file
within the target application to pinpoint all the tables and
columns. The SQL File denotes the files ending with a .sql
suffix, intended for the initialization of the database structure
within the application. It is noteworthy that the .sql files
for database creation are readily available in our dataset,
encompassing 37 applications.

Then, MOCGuard identifies user tables through keyword
matching. We find that web developers often use similar
column-naming styles to save credentials and authentication

information. Thus, we create an expandable list of associated
keywords (e.g. password) to pinpoint authentication-related
columns in database tables. These keywords originate from
our observation in §3.1, i.e., the column names used to rep-
resent login credentials often have consistent naming words
across different applications, such as ‘password’. Inspired by
this, our dictionary consists of three commonly used word
stems for naming user login credentials, i.e., ‘pass’, ‘token’,
and ‘auth’. We can directly search the table columns using
these keywords and thus find user tables. Furthermore, to
improve the matching rate, MOCGuard employs program
analysis to locate the call sites to database operations that
manipulate these tables, and extract these caller methods’
names. If these method names are authentication-related,
the corresponding database tables (these methods access)
can also be user tables.

4.1.2. Foreign Key Analysis. In this phase, upon the found
user tables, MOCGuard utilizes foreign key analysis to infer
explicit user-owned tables. The first step is to extract the
foreign keys between tables in the target application. To
ensure referential integrity of the data stored in the database
and enhance performance, development guidelines often
recommend adding foreign keys to columns that have data
dependency with other tables [15]. Typically, these foreign
keys are explicitly defined in .sql database files. Therefore,
MOCGuard extracts the foreign key relationships in the tar-
get application by parsing the user-provided database files.
Specifically, MOCGuard extracts SQL statements from the
database file and performs syntactic analysis on the CREATE
TABLE statements. Then, MOCGuard identifies foreign key
relationships between two tables through the FOREIGN KEY
and REFERENCES clauses. Taking Figure 7 as an exam-
ple, by parsing the foreign key clause (lines 5-6) in the
create table statement, MOCGuard identifies that there is
a foreign key relationship between the user id column
of the comments table and the id column of the member
table. Then, leveraging the extracted foreign key constraints,
MOCGuard identifies tables that are associated via the for-
eign key to the primary key of the user table as the explicit
user-owned tables.

4.1.3. Cross-layer Code Analysis. In the third phase,
MOCGuard further infers implicit user-owned data within



CREATE TABLE comments (
    id,
    user_id,
    ...
    FOREIGN KEY (user_id) 
    REFERENCES member (id)
)

1
2
3
4
5
6
7

TABLE member (
    id,  
    username,                  
    password,
    email
     
)

1
2
3
4
5
6
7

Figure 7: An example of foreign key.

the application using cross-layer code analysis, which effec-
tively bridges the data flow between SQL and Java layers.

� In the Java layer, the data flow analysis is applied.
One important issue is the data flow interruption caused
by broken edges in these tools significantly affects the
effectiveness of data flow analysis. To mitigate this problem,
we have expanded the data flow capabilities by incorporating
additional taint steps. We have modeled typical scenarios of
broken edges, i.e., transfer rules [16]. For instance, for the
frequently used valueOf method in Java, MOCGuard adds
a data flow edge between the method’s parameters and its
return value, allowing the parameters of valueOf to taint
its return value. In the case of the commonly used for-
loop statement for (Long num : nums), which implicitly
declares the num variable, MOCGuard adds a data flow edge
between nums and num.

� In the SQL layer, MOCGuard establishes the data
flow association between the variables flowing from/into the
SQL statements and the corresponding columns, such as
the queried column of database operations. Specifically, the
data flow in the SQL layer can be categorized into outflows
and inflows. For outflows, MOCGuard identifies and extracts
the tables and columns queried through SELECT statements.
It then establishes data flow associations between the vari-
ables used in Java code to store results and the columns
queried in these SQL statements. It is important to note
that MOCGuard primarily focuses on SELECT statements
because the return values from other SQL statement types,
such as UPDATE and DELETE, generally only indicate the
success or failure of the operations rather than providing
data outputs.

Regarding inflows, MOCGuard initially analyzes the
structure of SQL statements related to database operations to
ascertain whether parameters from the database operations
are integrated into the SQL statements, thereby bridging the
gap between the two layers. Following this, MOCGuard
examines which parts of the SQL statement receive pa-
rameters and establishes data flow relationships between
these incoming variables and the corresponding columns.
For instance, for variables that flow into the WHERE clause,
MOCGuard analyzes the syntax of the WHERE clause to
identify the specific columns associated with these incoming
variables.

Inferring Implicit User-Owned Table. Now, we utilize
cross-layer analysis to infer implicit user-owned tables
within the application. To more clearly illustrate the design
of MOCGuard, we use Algorithm 1 to demonstrate the
algorithm for inferring implicit user-owned data. Based

Algorithm 1: Implicit User-owned Data Inference

Input : Set of inferred user-owned tables T
Output: Set of implicit user-owned data D

1 Function CrossLayerAnalysis(vars):
2 pt ← ∅;
3 relatedTables ← TraceDataFlowToSQL(vars);
4 foreach rt ∈ relatedTables do
5 pt ← pt ∪ {rt};
6 end
7 return pt;

8 D ← ∅;
9 pending ← T ;

10 while pending 	= ∅ do
11 t ← Pop(pending);
12 vars ← RetrieveSQLResult(t);
13 pt ← CrossLayerAnalysis(vars);
14 foreach p ∈ pt do
15 if p /∈ D then
16 D ← D ∪ {p};
17 pending ← pending ∪ {p};
18 end
19 end
20 end

on key observations described in §3.1, MOCGuard infers
these implicit user-owned tables by conducting cross-layer
data flow analysis centered around the inferred explicit user-
owned tables. Specifically, this analysis examines the data
flow between the SQL and Java layers, proceeding through
the following three steps.

• First, MOCGuard correlates database operations with
SQL statements within the application, and extracts all
database operations that interact with inferred explicit
user-owned tables. As shown in lines 11-12 of algo-
rithm 1, the RetrieveSQLResult function retrieves all
database operations that manipulate explicit user-owned
tables.

• Next, MOCGuard considers the return value of callsites
for these database operations that manipulate user-owned
tables as the starting points for cross-layer data flow
analysis, and takes the variables in WHERE clauses of
other SQL statements as the endpoints. Lines 1-7 of
algorithm 1 describe the CrossLayerAnalysis function.
This function performs the cross-layer data flow analysis
to track variable data flows between the Java layer and
SQL layer, effectively tracking all data flows from the
starting points to these endpoints.

• Lastly, drawing from the results of cross-layer data flow
analysis, MOCGuard identifies tables that have data flow
associations with explicit user-owned tables as implicit
user-owned tables(Line 14-19 of algorithm 1).



4.2. MOC Vulnerability Detection

Based on the user-owned tables inferred from the previ-
ous stage, MOCGuard identifies the owner checks and de-
tects MOC vulnerabilities. Below we present more technical
details.

4.2.1. Source-to-Sink. According to §2.4, the first step in
detecting MOC vulnerabilities is to identify source-to-sink
paths. It is evident that only database operations accessing
user-owned tables can potentially have MOC vulnerabilities.
Therefore, MOCGuard leverages inferred user-owned tables
to identify MOC sinks. Specifically, MOCGuard first ex-
tracts all database operations within the application, and then
analyzes the corresponding SQL statements to determine
whether they manipulate user-owned tables. For database
operations that manipulate user-owned tables, MOCGuard
conducts a backward data-flow dependency analysis on their
parameters, tracing back to the program’s entry point to
further identify the MOC sources. Finally, MOCGuard ex-
tracts these identified source-to-sink paths that contain user-
controllable variables for further analysis in the next step.

4.2.2. Owner Check Identification. MOCGuard identifies
the owner checks within the application. Typically, these
checks should include two components: the user-owned
tables and their corresponding users. When interacting with
user-owned tables, owner checks are implemented to protect
them by verifying whether the currently logged-in user
matches the designated owner of these data. However, iden-
tifying these checks based on the inferred user-owned tables
within the application is not a straightforward task. This
complexity arises from the diverse practices of developers,
leading to the owner check being implemented in various
highly flexible ways. Below we detail how MOCGuard
utilizes inferred user-owned tables to identify owner checks
at the SQL and Java layers, respectively.

SQL Layer Analysis. SQL-layer check is a common prac-
tice for owner checks. When operating on user-owned data,
developers restrict the user of these data within the con-
ditional expression of the SQL statement, thereby limiting
operations to user-owned data that belong to others. Take the
WHERE clause as an example, for each database operation,
MOCGuard extracts the WHERE clause of the SQL statement.
Then, MOCGuard analyzes the columns contained in the
WHERE clause. Through column name matching analysis, if it
contains restrictions related to the user column, MOCGuard
considers it as an owner check. As previously illustrated
in line 4 of Figure 1, developers can restrict users to
only delete their owned address by including the user id
column in the WHERE clause, i.e., where id=#{addrId}
and user id=#{userId}. Note that MOCGuard requires
the variable passed into the user column for SQL-layer
checks to be beyond user control. If this criterion is not
met, MOCGuard will not recognize it as an owner check.

Java Layer Analysis. Java-layer check is another type of
owner check conducted at the source code level, which is of-

ten achieved through conditional statements [7], [9]. Specif-
ically, before accessing user-owned data through database
operations, developers utilize common permission-checking
methods in the Java layer, such as if statements, to en-
sure the accessed user-owned data belongs to the currently
logged-in user.

To identify these Java-layer owner checks, MOCGuard
first extracts conditional statements commonly used for
permission checks. Then, MOCGuard employs data flow
analysis to examine the association between these statements
and the return value of SELECT database operations. Take
if statements as an example, which are commonly used for
permission checks [6]. MOCGuard extracts methods used
to evaluate equality within if-conditions, such as equals
method, and conducts data flow analysis on the arguments
of these methods. For one of the arguments, MOCGuard
requires that it has data flow association with the return
value of the database operation. Furthermore, MOCGuard
leverages the inferred user column to determine whether
the argument accesses the corresponding field of the class,
which represents the user column, via getter method in
Java. For the other argument, MOCGuard requires it to be
uncontrollable by the user. Besides, for developer-defined
functions, MOCGuard can determine whether it is a wrapper
for the owner check by analyzing whether an identified
if-statement post-dominates the function’s entry point [7].
Finally, MOCGuard considers conditional statements that
satisfy the above criteria as an owner check.

We illustrate the owner check analysis using lines 5-7
of Figure 2. The equals method in line 5 involves two
parameters. One of them is derived from user credentials
that represent the identity of the currently logged-in user.
The other comes from database operations, representing the
user corresponding to the operated data. By comparing these
two, the equals method can verify whether the data operated
by the SELECT operation belongs to the currently logged-
in user. Specifically, the order variable in the equals
comes from the result of the SELECT database operation,
which retrieves order details based on the order number
(line 4). The userId variable represents the identity of the
currently logged-in user. By comparing the value of two
variables, the equals method can verify whether the queried
order belongs to the current user. If the two values are
not equal, the throw statement in the if block will raise
an exception and terminate the execution of the program,
thereby restricting unauthorized operation to the user-owned
data.

4.2.3. MOC Vulnerability Determination. Based on
the identified owner checks and source-to-sink paths,
MOCGuard conducts a two-tiered analysis from both the
Java code and SQL layer to detect MOC vulnerabilities
in the target application. Specifically, for each source-to-
sink path, MOCGuard analyzes whether there are owner
checks protecting user-owned data. For the SQL layer,
MOCGuard examines whether the SQL statement executed
by the database operation includes an SQL-layer check. For
the Java layer, MOCGuard inspects whether a Java-layer



check is conducted within the control flow of the database
operation. If neither type of check is present, MOCGuard
will report a MOC vulnerability.

5. Evaluation

Our evaluation is organized by answering the following
four research questions:

• RQ1: How effective is MOCGuard at detecting MOC
vulnerabilities in real-world applications? (in §5.2)

• RQ2: How does the effectiveness of MOCGuard compare
with the state-of-the-art approach? (in §5.3)

• RQ3: How do the different layer owner checks considered
by MOCGuard contribute to its success? (in §5.4)

• RQ4: How efficient is MOCGuard in performing the end-
to-end analysis? (in §5.5)

5.1. Experimental Setup

Implementation. We implemented a prototype of
MOCGuard for Java web applications. As for now, our
prototype supports commonly used Java web technologies,
such as J2EE Servlets [17] and the Spring framework [12].
For database operations, the prototype can process JDBC
APIs [18] and commonly used ORM frameworks, such
as MyBatis [19] and Hibernate [20]. For various static
analysis tasks, we utilized the CodeQL static analysis
framework [21]. For tasks involving database semantics and
foreign key analysis, Python was employed. Specifically,
the CodeQL scripts are primarily used for data flow analysis
and for collecting essential code and database features. The
prototype stores the information obtained from CodeQL
scripts in SARIF files [22], which are then parsed by Python
scripts for further analysis. In total, the entire prototype
consists of 4,520 lines of code. All experiments run on a
Ubuntu 20.04 machine, equipped with 64 cores CPU and
245 GB memory.

Dataset. Our dataset includes 30 open-source Java web ap-
plications and 7 industrial Java web applications. We provide
detailed information about these applications in Table 5 of
the Appendix §A.1.

For the open-source applications, we collected 30
widely-used Java web applications from popular open-
source repositories (e.g., GitHub [23]) based on the follow-
ing steps. First, we applied GitHub’s Java language filter
and sorted them by their star numbers, which reflected their
popularity. Note that collecting popular open-source appli-
cations as datasets based on stars on GitHub is a common
practice [24], [25]. Next, we used various keywords to gather
open-source web applications from different categories, such
as ‘CMS’, ‘blog’, ‘development’, and ‘e-commerce’. Finally,
we selected the 30 applications with the highest star counts,
and excluded tutorial applications, such as demos and study
projects, to ensure the practicality of the applications. As a
result, our dataset includes 18 applications with over 1k stars
and 4 applications with over 10k stars. These applications
span across multiple domains, including e-commerce web-
sites, content management systems, blog systems, backend

management systems, and development platforms, which
we believe are representative. It is worth noting that the
majority of these applications have been utilized in existing
research [24], [26], [27], thereby validating the reliability of
the dataset.

We also included 7 industrial Java web applications in
the dataset. Specifically, to evaluate the effectiveness of
MOCGuard in an industrial context, we collaborated with a
world-leading tech company that provides services to over a
billion users. For code security considerations, the company
selected 7 of its core applications which represent complex
business scenarios, and applied MOCGuard to analyze them.
Therefore, we believe that evaluating such a representative
dataset can effectively assess MOCGuard’s precision rates,
thereby demonstrating its generality and effectiveness.

5.2. Effectiveness: MOC Detection (RQ1)

In this experiment, we evaluated the effectiveness of
MOCGuard in detecting MOC vulnerabilities across the
entire dataset.

Results Overview. Table 1 presents the detailed detection
results of MOCGuard. Overall, MOCGuard successfully
identified 180 vulnerable MOC sinks that lack proper own-
ership verification, which were reported as potential MOC
vulnerabilities. Finally, through manual PoC construction
and testing, we confirmed 161 MOC vulnerabilities across
the entire dataset, achieving a recall rate of 89.44%.

Table 2 provides a detailed breakdown of the dis-
tribution of these vulnerabilities in both open-source and
industrial applications. Specifically, for the 30 open-source
applications, MOCGuard reported a total of 128 MOC vul-
nerabilities within 17 open-source applications, of which
116 were true positives, resulting in an accuracy rate of
90.63%. For the 7 industrial applications, MOCGuard re-
ported a total of 52 MOC vulnerabilities with an accuracy
rate of 86.54%.

Vulnerability Verification. To verify the accuracy of the
tool’s report, we established the runtime environment for
each application. For open-source applications, we opted for
local deployment testing during the vulnerability verification
phase. For the industrial web applications, we conducted
testing in a mirrored environment in collaboration with our

TABLE 1: Effectiveness of MOCGuard in MOC detection
(RQ1).

Type # MOC Sinks
# Reported Vulnerabilities

TP FP Prec(%)

SELECT 1,113 79 19 80.61%

DELETE 482 23 0 100.00%

UPDATE 637 42 0 100.00%

INSERT 361 17 0 100.00%

Total 2,593 161 19 89.44%



TABLE 2: Distribution of detected MOC vulnerabilities in
open-source and industrial applications (RQ1).

Application TP FP Prec(%)

Open-source 116 12 90.63%

Industrial 45 7 86.54%

Total 161 19 89.44%

partner company. It is important to note that this process did
not involve any user privacy or sensitive data.

Moreover, the output of MOCGuard provides the key
details needed to verify the detected vulnerabilities, includ-
ing the exact path from user input to database operations
and the user-controlled parameters. This report facilitates
the efficient construction of PoC. For instance, the output
for the MOC vulnerability depicted in Figure 5 includes
the path to access the endpoint ("/detail") and the user-
controlled parameter (orderId). As a result, constructing
a PoC becomes straightforward using the provided details:
/detail?orderId=${OrderId owned by others}.

Vulnerability Disclosure. After evaluating these vulner-
abilities through specifically crafted exploits, we believe
they pose a serious security risk. For open-source appli-
cations, attackers can exploit these vulnerabilities to cause
the leakage of user privacy or even delete data stored
within the application, thereby severely compromising data
confidentiality and integrity. Moreover, attackers can lever-
age identified payment hijacking vulnerabilities to facilitate
unauthorized transactions, which can result in substantial
financial losses. These security breaches highlight the crit-
ical need for effective vulnerability detection mechanisms
to safeguard both user privacy and assets. Therefore, we
promptly reported all the confirmed vulnerabilities to the
developers of the vulnerable applications where they were
found. As of now, 73 vulnerabilities have been granted CVE
identifiers. For industrial applications, the detected 45 MOC
vulnerabilities are all newly identified. These vulnerabilities
pose a significant threat to the company’s data security,
potentially resulting in the leakage of substantial employee
and user information and adversely impacting the business
functionality of applications. These findings demonstrate
MOCGuard’s practical utility.

False Positive Analysis. Next, we introduce the 19 false
positives that MOCGuard reported during vulnerability de-
tection. After conducting a thorough analysis, we found that
they all stem from the same reason: it’s hard to discern
the intentions of developers regarding data accessibility.
Specifically, these false positives all originate from database
query operations (i.e., SELECT type). Let us consider a
scenario involving an e-commerce website. When sellers
update product prices, it is crucial to perform an owner
check to prevent them from arbitrarily changing the prices of
products that belong to others. However, buyers can view
the price of any product, which implies that the database
operation of viewing product prices does not require an

owner check. Therefore, for the product table, MOCGuard
would consider the database operations querying product
information via SELECT as a MOC vulnerability, which
could result in false positives. We argue that discerning de-
velopers’ intentions regarding resource access is an inherent
challenge in static analysis, which has been mentioned in
many existing works [9], [28].

5.3. Effectiveness: Comparison (RQ2)

In this experiment, we compare the effectiveness
of MOCGuard with the state-of-the-art technique (i.e.,
MACE [9]) across the entire dataset.

Baseline Setup: MACE-Java. MACE [9] is the current
state-of-the-art approach, which considers protection at both
the code-layer and the SQL-layer during MOC vulnerability
detection. Therefore, we adopt it as our baseline. Given
its design for PHP and not open-source, we followed the
methodology detailed in its original paper and implemented
a Java version of MACE, named MACE-Java. However,
we find there are several difficulties that should be carefully
dealt with.

Applying MACE to Java is not a trivial task, the chal-
lenges come from two aspects. On one hand, the inputs
required by MACE are very difficult to provide, within the
context of Java web applications. MACE relies on PHP
language features, such as super-global variables, and re-
quires manual annotation to identify users. However, similar
super-global variables do not exist in Java, and manually
identifying variables that represent users from the thousands
of variables in Java code is undoubtedly a challenging task.
Therefore, we use the user columns automatically inferred
by MOCGuard as input to MACE-Java.

On the other hand, the implementation of MACE’s
inconsistency analysis detection strategy requires a large
amount of engineering work compared to MOCGuard. Due
to the flexible coding practices adopted by developers, de-
termining whether owner checks are consistent across two
paths is a complex task. To achieve this, MACE-Java first
formalizes the extracted owner checks to enable accurate
determination of consistency in checks across different paths
during inconsistent analysis. Specifically, MACE-Java ex-
tracts variable and method names from the owner checks
and replaces variable names with specific class names.
Then, MACE-Java sorts these symbols lexicographically
and performs a hash operation on the sorted list. If the
hashes are identical, it is considered that the same owner
check is present in both paths. In total, the implementation
of MACE-Java used 941 lines of code.

Ground Truth Construction. Comparing the effectiveness
of each work in vulnerability detection ideally requires a
comprehensive enumeration of all vulnerabilities within the
dataset, which is infeasible [29], [30]. Therefore, to ensure a
fair comparison, we followed the widely used method [31]
of constructing a ground truth aggregating all vulnerabil-
ities detected by both MOCGuard and MACE-Java in
our dataset. It’s worth noting that all the vulnerabilities



TABLE 3: Comparison between MOCGuard and
MACE-Java (RQ2).

Baselines TP FP FN Prec(%) Recall(%)

MACE-Java 47 22 114 68.12% 29.19%

MOCGuard 161 19 0 89.44% 100.00%

TABLE 4: Ablation study for two variants of MOCGuard
(RQ3).

Baselines TP FP Prec(%)

MOCGuard-NoSQLCheck 161 91 63.89%

MOCGuard-NoJavaCheck 161 72 69.10%

MOCGuard 161 19 89.44%

involved in the ground truth are carefully manually con-
firmed and tested with PoC, ensuring that they are indeed
real vulnerabilities. In all, our ground truth consists of 161
vulnerabilities.

Result Overview. Table 3 describes the results of the effec-
tiveness comparison between MOCGuard and MACE-Java
across the entire dataset. Overall, MOCGuard surpasses
MACE-Java by 31.31% in precision and 242.55% in recall.
Notably, against the ground truth of 161 vulnerabilities,
MOCGuard successfully identifies all of them, whereas
MACE-Java detects only 47 MOC vulnerabilities and re-
ports 22 false positives. This clearly illustrates the superior
capability of MOCGuard in effectively identifying MOC
vulnerabilities.

False Positive Analysis. In total, MACE-Java reported
22 false positives. After rigorous analysis, we identified
that apart from 10 cases also reported by MOCGuard,
MACE-Java detected 12 additional false positives. The
primary reason for this is that MACE-Java lacks the capa-
bility to comprehend the ownership relationship between the
user and the user-owned data. Consequently, MACE-Java
is unable to precisely determine whether there are owner
checks when a database operation accesses user-owned data,
ultimately leading to false positives.

False Negative Analysis. For 114 false negatives, we now
detail why MACE-Java failed to detect them. As previ-
ously mentioned in §2.5, MACE employs an inconsistent
protection analysis strategy to detect vulnerabilities. How-
ever, this strategy relies on the assumption that developers
aim to get most checks right, with only some occasional
checks performed incorrectly. Therefore, in cases where the
developer fails to implement any of the checks correctly,
MACE will be unable to detect all vulnerabilities in the
target application. As described in [7], more than 60%
of vulnerabilities are triggered by operations that are not
guarded anywhere in the program. Consequently, this has
led to 114 false negatives in MACE-Java.

5.4. Ablation Study (RQ3)

In this experiment, we separately disabled the owner
check analysis module of MOCGuard at the Java-code layer
and SQL-code layer, to demonstrate its importance for high-
precision detection of MOC vulnerabilities. The details of
the two variants are as follows:

• MOCGuard-NoSQLCheck: In this variant, we disabled
the owner check analysis module at the SQL-layer of
MOCGuard, making it consistent with many existing
techniques [6], [28], focusing only on the code layer’s
protection during vulnerability detection.

• MOCGuard-NoJavaCheck: In this variant, we disabled
the owner check analysis module at the Java code-layer of
MOCGuard, to evaluate the precision of MOC detection
when only considering protection at the SQL-layer.

Table 4 presents the comparison results of MOCGuard
and its two variants against the entire dataset. It is evident
that the owner checks analysis modules at both the Java
code-layer and the SQL-layer are crucial for the precise
detection of vulnerabilities by MOCGuard. When the owner-
check analysis at the SQL-layer is disabled, the detection
precision decreases by 28.57% compared to the original
one. Similarly, when the owner checks analysis at the Java
code-layer is disabled, the detection precision also drops
significantly by 22.74%. The newly introduced false posi-
tives would greatly increase the analysis requirements for
MOCGuard end-users, involving substantial human efforts.

5.5. Efficiency (RQ4)

In this experiment, we evaluated the efficiency of
MOCGuard in performing the end-to-end analysis across
the entire dataset. In total, MOCGuard took about 47 min-
utes to finish the analysis task of 37 target applications,
with an average of 76.22 seconds per application. The
efficiency of the analysis is attributed to our database-
semantic analysis approach. Compared to traditional static
analysis, MOCGuard does not require heavyweight analysis
of the source code of the target application, nor does it
rely on any human efforts to provide application-specific
inputs. In contrast, the related work, MACE [9], as described
in its original paper, necessitates manual annotation, with
each application averaging several tens of minutes for this
process. In comparison, MOCGuard is more lightweight and
efficient in detecting MOC vulnerabilities.

6. Case Study

Here, we showcase two MOC vulnerabilities identified
by MOCGuard in highly popular applications, further il-
lustrating the high risk posed by MOC vulnerabilities and
demonstrating the practical utility of MOCGuard in real-
world scenarios.



1 //PoC:/pay?orderId=${OrderId owned by others}
2 public Integer pay(Long orderId) {
3 Order order = new Order();
4 order.setId(orderId);
5 order.setPayStatus(1);
6 ...
7 // update order set pay_status=1 where id=#{

↪→ id}
8 orderMapper.updateByPrimaryKey(order);
9 ...

10 }

Figure 8: The vulnerable code of payment hijacking in mall
application (over 70k stars on GitHub).

6.1. Payment Hijacking in mall Application (over
70k stars on GitHub)

The mall is an open-source and widely used e-commerce
application with over 70,000 stars on GitHub. As shown
in Figure 8, MOCGuard detected a MOC vulnerability
within the application that could lead to payment hijacking.
The vulnerable database operation updateByPrimaryKey
is located within the pay() method, which manipulates the
user-owned table order. This database operation is respon-
sible for setting the payment status of an order, achieved
by modifying the pay status column through an update
statement (line 8). The parameter of the setPayStatus
method is set to ”1”, which signifies that the order has been
paid for (line 5). Due to the lack of owner checks for the
order, attackers can input any order number to set an unpaid
order to a paid status, which can cause serious financial loss
to the merchant. Given the extensive potential damage posed
by this vulnerability, we immediately reported this critical
issue to the developers and received a CVE (CVE-2023-
49***).

1 //PoC:/detail?orderId=${OrderId owned by others}
2 @PostMapping("detail")
3 public Object detail(Integer orderId) {
4 ...
5 Map orderGoodsParam = new HashMap();
6 orderGoodsParam.put("id", orderId);
7 // select * from nideshop_order_goods where

↪→ order_id=#{id}
8 List<OrderGoods> orderGoods =

↪→ orderGoodsService.queryList(
↪→ orderGoodsParam);

9 ...
10 }

Figure 9: The vulnerable code of arbitrary order details
leakage in platform application (over 20k stars on Gitee).

6.2. Arbitrary Order Details Leakage in platform
Application (over 20k stars on Gitee)

The platform is a highly popular application with over
20k stars on Gitee, widely used for deploying e-commerce

websites. Figure 9 illustrates a MOC vulnerability reported
by MOCGuard in this application that could lead to arbitrary
order details being stolen. In the detail() method, users
can query goods in order by providing the orderId parame-
ter, which is stored in the nideshop order goods table.
Due to the developer’s oversight, there was no validation of
ownership for the nideshop order goods table. Attack-
ers can arbitrarily access goods in other users’ orders by
iterating through all stored order numbers in the database.
Given the severity of this vulnerability, we immediately
reported it to the developers of the vulnerable application
and actively discussed a solution. As a result, we were
granted a CVE identifier, i.e., CVE-2023-37***.

7. Discussion

Adaptability. We devised MOCGuard to efficiently detect
MOC vulnerabilities. Since Java web applications typically
store user-owned data in relational databases to ensure their
integrity and reliability, our design primarily targets rela-
tional databases. Currently, the prototype of MOCGuard is
capable of detecting MOC issues in Java web applications
that are built upon mainstream relational database manage-
ment systems (DBMS), such as MySQL and PostgreSQL.
Since our MOCGuard approach is general, it can be easily
extended to other relational databases. Furthermore, due to
its database-centered analysis, MOCGuard’s dependency on
the programming language is minimal. Consequently, we
believe that the key idea of the MOCGuard approach can
be extended to other domains, including PHP applications.

Owner Inference Improvement. Authentication-related se-
mantic analysis has significantly assisted us in inferring the
owner column in MOCGuard. However, a minor portion of
false positives still occur due to unusual naming conven-
tions. One important reason is the difficulty in determining
whether an owner column name pertains to authentication,
making it challenging to identify as an owner column. In the
future, we plan to employ more robust analysis technologies
(such as Large Language Models (LLM) [32] for compre-
hending column name meanings) to mitigate this issue.

Legality and ethicality. This study has not presented any
legal or ethical issues. We obtained the source code for local
analysis and responsibly reported all detected vulnerabilities
in open-source applications to the CVE Numbering Au-
thority (CNA) [33], and also assisted companies in fixing
vulnerabilities in industrial applications. Additionally, we
have contacted all the developers regarding the MOC vulner-
abilities found in §5.2, and will continue to communicate
with them throughout the vulnerability disclosure process.

8. Related Work

Broken Access Control Detection. There are several tools
[34], [35], [36], [6], [7], [28], [37], [38], [39], [40], [9]
that employed various techniques to detect access control
vulnerabilities. Specifically, some of them [34], [35], [36],
[6], [7], [28], [40] utilized language-specific native methods



or software engineering patterns to identify security checks
and detect broken access control vulnerabilities through
inconsistent or missing security checks detection. However,
these tools overlooked the critical owner check within appli-
cations. Another category of tools [37], [39] paid attention
to the user-owned data, using this insight to identify bro-
ken access control vulnerabilities with a dynamic approach.
Specifically, they access privileged operations with different
user identities and infer the user-owned tables based on
whether the user-specific data in the databases appears in
the response of the web pages. However, this method relies
heavily on the website’s runtime environment and config-
ured user information, which significantly limits its scala-
bility. Unlike these previous efforts, MOCGuard eliminates
the need for extra input or runtime environment, employing
a novel approach to accurately detect MOC vulnerabilities
within Java web applications.

Web Vulnerabilities Detection. In recent years, the tech-
niques for automatically detecting vulnerabilities within web
applications have been extensively studied. A commonly
used technique is static analysis [41], [42], [43], [44],
[45], [46]. However, the scope of these tools has generally
been confined to identifying injection-based vulnerabilities,
thereby lacking effectiveness in detecting access control
vulnerabilities that require analysis of access control-related
features within the program. Another widely employed
technique is dynamic analysis [13], [47], [29], [48]. This
technique, however, encountered inherent limitations stem-
ming from the code coverage, which may lead to numerous
false negatives. To harness the benefits of both static and
dynamic analysis, hybrid analysis [49], [50], [31], [30], [51]
has gained increasing popularity in recent years. Similarly,
this technique is still constrained by inherent limitations of
the code coverage, and therefore faces difficulties in the
detection of access control vulnerabilities.

9. Conclusion

In this paper, we propose MOCGuard, a novel security-
vetting approach that can automatically and effectively
detect the MOC vulnerabilities in Java web applications.
Leveraging a novel database-centric analysis technique,
MOCGuard can effectively infer user-owned data and ver-
ify the security of target applications. Overall, MOCGuard
successfully detected 161 high-risk 0-day vulnerabilities in
real-world applications, with 73 CVE identifiers assigned.
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Appendix A.

A.1. Dataset Details

Table 5 presents detailed information about the 37 Java
web applications in the dataset, including their application
names, popularity (i.e., Github stars), total lines of code,
the number of MOC vulnerabilities, the number of assigned
CVEs, and the categories of the applications.

TABLE 5: Breakdown of our evaluation dataset.

Open-source Applications # Stars # LoCs # CVEs / Vulns # Description

mall 73,362 68,681 2 / 2 E-commerce
platform 20,340 26,466 4 / 5 E-commerce

wechat applet 11,871 32,215 9 / 11 Development Platform
newbee-mall 10,643 4,937 1 / 1 E-commerce

paascloud 9,796 25,149 1 / 3 Backend Management System
basemall 8,907 92,242 7 / 9 E-commerce

xmall 7,056 27,806 8 / 13 E-commerce
SpringBlade 6,397 6,337 0 / 0 Backend Management System
lamp-cloud 5,369 33,478 1 / 2 Development Platform

RuoYi 4,945 22,440 0 / 0 Backend Management System
ForestBlog 4059 5435 0 / 0 Blog
hope-boot 3,254 5,498 0 / 0 Development Platform
dts-shop 2,892 61,128 3 / 5 E-commerce

PaasJava-Platform 2,564 10,075 0 / 5 Development Platform
xbin-store 2,145 16,098 0 / 0 E-commerce

youlai-mall 1,932 26,830 2 / 2 E-commerce
SuperMarket 1,925 3,268 7 / 8 E-commerce

weiit-saas 1,898 26,130 0 / 0 Content Management Systems
mogu blog v2 1,572 26,136 0 / 0 Blog

myblog 1,272 4,887 0 / 0 Blog
novel-cloud 1,170 6,154 0 / 1 Content Management Systems
opsli-boot 1,134 40,177 0 / 0 Development Platform

SpringBootBlog 776 3,582 0 / 0 Blog
itranswarp 774 10,222 0 / 0 Content Management Systems

abixen-platform 679 17852 0 / 0 Development Platform
newbee-mall-plus 588 7,482 5 / 6 E-commerce

my-shop 433 31,772 9 / 19 E-commerce
zscat sw 294 82,200 0 / 0 Content Management Systems

tesco-mall 147 34,309 14 / 23 E-commerce
shop-mall 124 18,985 0 / 1 E-commerce

Total / 777,971 73 / 116 /

Industrial Applications # Stars # LoCs # Vulns # Description

r*** / 14,382 3 Development Platform
s*** / 207,327 29 Development Platform
h*** / 262,732 1 Development Platform
u*** / 28,610 2 Backend Management System
d*** / 21,043 1 Backend Management System
p*** / 24,077 2 Backend Management System
d*** / 37,807 7 Backend Management System

Total / 595,976 45 /



Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper proposes MOCGuard, an approach to detect
missing owner checks in Java applications. The authors rely
on the central understanding that databases are a reasonable
indicator of data ownership, e.g., when a table has a ref-
erence to an element in the user table or when the code
flow involves taking user IDs from a user-owned table and
querying another. MOCGuard leverages this by identifying
user-related tables based on keywords and following data
dependencies both explicitly through the CREATE TABLE
statements and implicitly by analyzing source code. In doing
so, the authors find several vulnerabilities in popular open-
source projects.

B.2. Scientific Contributions

• Creates a New Tool to Enable Future Science.
• Identifies an Impactful Vulnerability.
• Provides a Valuable Step Forward in an Established

Field.

B.3. Reasons for Acceptance

1) Database-centric approach provides an interesting vec-
tor for finding vulnerabilities.

2) This paper improves the state-of-the-art by introducing
a new database-centric approach to detect MOC vul-
nerabilities in Java web applications.

3) Successfully identifies many zero-day vulnerabilities
that have been confirmed and assigned CVEs.

4) Authors plan to open-source tool for reproducibility
and future science.

B.4. Noteworthy Concerns

1) Ground truth evaluation: rather than looking at an
actual real-world ground truth dataset of known vul-
nerabilities, the paper chooses to take the union of its
findings and of the tool to which it is compared.

2) The comparative analysis against MACE could be af-
fected by implementation oversights in the custom port
to Java applications.

3) A noteworthy concern regarding the definition of MOC
(Definition 5): This definition flags any access request
from a user to another user’s data as a vulnerability.
However, the definition does not account for permis-
sions and user capabilities. On the other hand, it is hard
to distinguish between the need for MOC and access
control checks.


