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ABSTRACT

Security patches play an important role in defending against the
security threats brought by the increasing OSS vulnerabilities. How-
ever, the collection of security patches still remains a challenging
problem. Existing works mainly adopt a matching-based design
that uses auxiliary information in CVE/NVD to reduce the search
scope of patch commits. However, our preliminary study shows
that these approaches can only cover a small part of disclosed OSS
vulnerabilities (about 12%-53%) even with manual assistance.

To facilitate the collection of OSS security patches, this paper
proposes a ranking-based approach, named PatchScout, which
ranks the code commits in the OSS code repository based on
their correlations to a given vulnerability. By exploiting the broad
correlations between a vulnerability and code commits, patch
commits are expected to be put to front positions in the ranked
results. Compared with existing works, our approach could help to
locate more security patches and meet a balance between the patch
coverage and themanual efforts involved.We evaluate PatchScout
with 685OSSCVEs and the results show that it helps to locate 92.70%
patches with acceptable manual workload. To further demonstrate
the utility of PatchScout, we perform a study on 5 popular OSS
projects and 225 CVEs to understand the patch deployment practice
across branches, and we obtain many new findings.

CCS CONCEPTS

• Security and privacy → Software and application security;
• Software and its engineering→Maintaining software.
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1 INTRODUCTION

With the increase of open source software (OSS), the number of
reported OSS vulnerabilities has also experienced rapid growth.
As reported by WhiteSource [2], the number of disclosed OSS
vulnerabilities in 2019 skyrocketed to over 6,000, which rose by
nearly 50% compared to 2018. To mitigate these vulnerabilities,
developers usually resort to security patches.

In practice, security patches are central in defending against
security threats. First, the patches can be directly applied to fix the
corresponding vulnerabilities. Second, hot-patches can be derived
from the original security patches to ease the deployment of security
patches, with the help of hot-patching frameworks [13, 15, 24, 52].
Third, security patches are useful in facilitating downstream tasks,
such as vulnerable code clone detection [38, 43, 47, 73, 74], patch
presence testing [27, 32, 39, 79]. Finally, due to their importance,
security patches have become an important target to study, such as
understanding their development process and complexities [45,
64, 80] and their perceptions by end-users [62]. Therefore, the
collection of security vulnerabilities, as well as their corresponding
patches, become an important asset for the community.

CVE [25] and NVD [55] are two popular public references for
security vulnerabilities. In particular, CVE gives every reported vul-
nerability an identification number (called CVE-ID), a description,
and at least one public reference. Further, NVD incorporates all
vulnerabilities in CVE with enhanced vulnerability information
such as severity scores (CVSS), vulnerability type (CWE), and
affected software configurations (CPE). Based on these vulnerability
databases, existing and emerging security vulnerabilities have been
efficiently shared with interested users; however, how to accurately
locate their security patches still remains an open problem.
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In essence, security patches are code commits that are develope-
d/deployed by OSS developers in their code repositories. However,
due to the large number of code commits in a code repository
(e.g., there are about 936k commits in Linux kernel till version 5.8),
locating security patches is quite laborious. To reduce the search
scope, existing works usually turn to extra auxiliary information in
the vulnerability database. For example, Perl et al. [57] and Kim et
al. [43] locate security patches from the code commits that mention
the corresponding CVE-ID; other works [10, 45, 57, 69, 70] locate
security patches from the external reference URLs in the CVE/NVD
pages. As it will be demonstrated in our preliminary study (see §2),
these approaches only cover a small part of disclosed vulnerabilities
due to two reasons: 1) only few vulnerability information in
CVE/NVD is used to reduce the search scope, which is usually
incomplete (and sometimes incorrect); 2) these approaches are
matching-based, whichmeans they either give few candidates when
matched or give no results when unmatched.

In the field of mining software repositories (MSR), there is a line
of research that aims to predict the components (e.g., files) to be
fixed for a bug [12, 37, 42, 44, 46, 61, 68, 71, 76, 78, 81]. By mining
the correlations between a bug and different software components,
theseworks rank the software components to reflect their likelihood
of being fixed for this bug. Inspired by these works, we propose to
transform the search problem of locating security patches into a
ranking problem on code commits, and we design a system called
PatchScout to incorporate this idea. For code commit ranking,
PatchScout features a new technique, called vulnerability-commit
correlation ranking, which exploits the broad correlations between
the vulnerability and the code commits to put more relevant
code commits to the front. Different from existing approaches,
PatchScout leverages more types of vulnerability information to
estimate the relevance of a code commit to a given vulnerability.
In general, four groups of correlation features between a code
commit and a vulnerability are considered, namely, vulnerability
identifier, vulnerability location, vulnerability type, and vulnerability
descriptive texts. Based on these features, PatchScout further trains
a RankNet [20] model to rank code commits. Since patch commits
share a lot of relevant information with the vulnerability, they are
expected to be put to front positions in the ranked results. With
the code commits ranked, the efforts to locate security patches are
dramatically reduced than those exploring all code commits.

Compared with existing approaches, PatchScout has several
advantages. First, it uses a wide range of vulnerability information,
so it can tolerate more on the incomplete/incorrect vulnerability
information in CVE/NVD pages. Second, the ranking-based solution
has a higher chance to extract security patches than the existing
matching-based solutions since it always gives ranked results while
existing solutions only provide results when matched. Third, by
exploiting the underlying connections (even weak ones) between a
vulnerability and code commits, the vulnerability-commit correlation
ranking mechanism in PatchScout is capable of locating patches
formore vulnerabilities. Similar to existingworks, PatchScout also
requires manual efforts to finally locate the security patches from
the ranked code commits; however, it can be used as a search engine
to facilitate the locating of security patches from a large number of
code commits. Without PatchScout, security experts may need to
explore thousands of commits to locate the security patch(es) for

one vulnerability. With PatchScout, since the commits are ranked,
only a few high-ranked commits are expected to be checked before
the security patches are located.

We evaluate the effectiveness of PatchScout on locating secu-
rity patches for real-world OSS vulnerabilities. Specifically, we train
a ranking model for PatchScout with 943 CVEs and their patches
and test its performance with other 685 CVEs. The results show
that PatchScout successfully ranks the patch commit for 69.49%
CVEs at the first position among all the code commits and helps to
locate the security patches for 92.70% CVEs at the cost of checking
4.32 commits on average. Compared with existing approaches
that can locate the patches for at most 47.59% CVEs and require
to check 1.83 commits per CVE, PatchScout can locate 85.40%
patches with almost the same amount of manual work involved.
Our evaluation shows that PatchScout effectively facilitates the
locating of security patches by delicately balancing the coverage of
the security patches and the manual efforts involved.

To further illustrate the security benefits of PatchScout, we
apply it to conduct a study on the patch deployment practice
across branches. Our study collects 225 CVEs from 5 OSS projects
and uses PatchScout to locate the security patches for these
vulnerabilities on 83 branches. With the help of PatchScout, we
successfully locate 1,985 patches while existing approaches can only
locate 1,087 patches. Our study discovers that a large portion of
branches are vulnerable and still stay unpatched, and some patched
branches suffer from a quite long patch lag. Besides, we find that
38 CVEs miss the reporting of 152 affected versions in CVE/NVD.
CVE maintainers have confirmed our findings and updated their
database accordingly. In addition, our study gives a landscape
about the different types of patch backporting situations across
branches and analyzes different levels of technical difficulties in
patch backporting, which raises some new research problems.

In summary, we make the following contributions.

• We propose a new idea of locating security patches for disclosed
OSS vulnerabilities, which transforms the search problem of
patch commits into a ranking problem.

• We present a new technique, i.e. vulnerability commit correlation
ranking, which ranks code commits based on their relevance to a
vulnerability from multiple correlation features.

• We evaluate the effectiveness of our proposed approach, and the
results show that our approach significantly outperforms existing
ones in both patch coverage and required manual efforts.

• We conduct the first study on the patch deployment practice
across branches, which draws many interesting findings and
concludes several important research opportunities.

2 PRELIMINARY STUDY

Security patches play a central role in defending against secu-
rity vulnerabilities; however, many vulnerabilities are disclosed
without their patches being published at the same time. Moreover,
locating patches from tens of thousands of code commits is an
extremely time-consuming and laborious job. To avoid searching
the patches in a large scope, researchers usually leverage some extra
references [10, 45, 57, 69, 70] or keywords [43, 57] in CVE/NVD
databases.



From existing works, we identify three methods that can be used
to locate the security patches of publicly reported vulnerabilities.
• M1: searching commit messages with CVE-ID. Sometimes, develop-
ers may declare the CVE-ID in the commit message of the security
patch, so the search scope of security patches can be reduced
by using the CVE-ID as the keyword to filter those irrelevant
code commits. Some previous works [43, 57] apply this method
to collect patches for further research.

• M2: checking commit-like URLs in CVE/NVD. External resources
that are related to each CVE are provided as reference links
in CVE/NVD. Since security patches may also be collected as
reference links, previous works [45, 57, 69, 70] rely on identifying
the reference URLs in a commit format1 as patches.

• M3: checking patch-tagged URLs in the NVD. In addition to
collecting reference links for each CVE, the NVD tags some links
to indicate what type of resources they provide. In particular,
the NVD assigns a “Patch” tag for a link that refers to a security
patch2. Therefore, the patch-tagged URLs in NVD pages have
been used [10] to identify the security patches.
Though the above approaches reduce the efforts in locating

security patches, their performances have not been systematically
explored. To further understand the difficulties in locating security
patches and the performance of existing approaches, we perform a
preliminary study that consists of the following two experiments.
Experiment-1: How many security patches can be located

by existing approaches? To conduct the experiment, we first
need a vulnerability dataset. As reported by WhiteSource [1], more
than half of disclosed vulnerabilities are C/C++ vulnerabilities.
Therefore, our experiment chooses C/C++ vulnerabilities as the
target. In particular, we take four steps to collect a large set of
disclosed C/C++ OSS vulnerabilities and the code repositories of
these OSS projects: 1) we crawl all the vulnerabilities reported
between January 2015 and July 2020 from the NVD; 2) we select
C/C++ vulnerabilities from them by using file suffix (e.g., .c, .cpp,
.cxx, etc.) as the keywords to match the vulnerability description; 3)
we combine keyword searching and manual inspection to keep only
C/C++ OSS vulnerabilities and confirm their affected OSS projects;
4) we manually locate the code repository for each affected OSS
project and automatically clone these repositories. In all, we collect
6,628 C/C++ vulnerabilities belonging to 798 OSS projects.

The above three approaches (aka M1, M2, and M3) are applied
to locate the security patches of the collected OSS vulnerabilities.
Since these approaches may report wrong patch commits, their
results should be manually verified. To limit the manual efforts in
verifying the results, we first count the number of CVEs that at least
one candidate patch could be located using each of these methods.
Note that this result measures the upper bound of the coverage for
each method in locating security patches. As shown in Table 1, all
three approaches have a low coverage. Searching commit messages
with CVE-ID (M1) only covers 12.01% of the CVEs, which implies
that most developers do not explicitly declare the fixed vulnerability
in the patch commit. With the help of the manually-collected
external URLs in CVE/NVD, checking commit-like URLs (M2) and
checking path-tagged URLs (M3) achieve the coverage of 43.33%

1e.g., https://gitlab.gnome.org/GNOME/libxml2/commit/0e1a49c89076
2e.g., https://nvd.nist.gov/vuln/detail/CVE-2015-1474

Table 1: The patches located for 6,628 CVEs.

Approach
Covered

CVEs

AVG Commits

to Check

Commits

to Verify

Commits Verified

as Patches

M1 796 (12.01%) 1.93 317 273
M2 2,872 (43.33%) 1.26 721 688
M3 3,506 (52.90%) 1.63 1,162 551

M1+M2+M3 4,412 (66.57%) 1.78 1,531 1,029

and 52.90%, respectively. Besides, even we combine all these three
methods, we can only cover the patches for 66.57% of the CVEs.
This experiment illustrates the patching information provided by
CVE/NVD is incomplete, and existing approaches cannot locate
security patches for a large part of the disclosed vulnerabilities.
Experiment-2: How many manual efforts are needed in

confirming the security patches and what is the precision

of these approaches?We randomly select 20% potential patches
reported by each approach and manually verify them. Besides,
from the potential patches that are covered by the combination
method of M1, M2, and M3, we also randomly select 20% for manual
confirmation. In all, it takes three security researchers 155 man-
hours to verify these commits. To verify if an identified commit is
a correct patch for the corresponding vulnerability, participators
carefully examine the commit and the vulnerability information
and refer to public materials (e.g., bug reports) when needed.

The detailed verification results are presented in Table 1. It turns
out that though these approaches require users to check no more
than 2 commits per CVE, incorrect patch commits are common in
their results. For example, although M3 gives patch candidates for
52.90% CVEs, only 47.42% of them are correct patches. Besides, M1
and M2 were used by Perl et al. [57] and Li et al. [45] to collect
security patches, because they found no false positives of the two
approaches in a small test set which includes less than 100 results.
However, in our evaluation with a larger test set, we find that both
approaches report incorrect patch results, rendering that existing
works may suffer from using incorrect patches in their works.
This finding also demonstrates that collecting large-scale security
patches is necessary and challenging. Note the common reasons for
the false positives of these methods are: i) non-patch commits (e.g.
test cases) may mention CVE-ID/Bug-ID in the commit messages
(M1); ii) commit-like URLs in NVDmay relate to non-patch commits
(M2); iii) NVD maintainers may incorrectly tag patches (M3).
Key Findings. Our preliminary study shows that all existing
approaches suffer from a low coverage in locating security patches
and require manual efforts to verify their results. We find two main
limitations for existing approaches. First, they do not efficiently use
the vulnerability information in CVE/NVD. When only leveraging
little information (e.g., CVE-ID, reference URLs) that is usually
incomplete and sometimes incorrect to identify patch commits,
existing approaches cannot cover a large portion of security patches.
Second, they all leverage matching-based approaches, which lead
to either few matched commits or no results at all.

3 APPROACH OVERVIEW

As shown in §2, existing approaches cannot effectively locate the
security patches for a large number of disclosed vulnerabilities.
To address this problem, this section first illustrates our new idea



of locating security patches, i.e. vulnerability-commit correlation
ranking, and then describes the core features used by our ranking.

3.1 Key Idea

Goals. Before introducing our new approach of locating security
patches, we first clarify the goals that our approach should meet.
• Goal-1: Help to locate more patches. As our preliminary study
shows, existing works cannot cover a large number of vulner-
abilities. Therefore, our primary goal is to cover more patches
for better fighting against vulnerability threats and preparing for
more representative patch studies [39, 45, 57, 79].

• Goal-2: Limit the involvedmanual efforts. It is difficult to determine
if a security patch is the correct one for a specific vulnerability,
except that patch developers explicitly state it. As a result, it
usually requires manual efforts to verify the results. Our goal is
to reduce the manual efforts involved in confirming the security
patches. In other words, our approach targets locating more
patches with the same amount of manual work.

Observations.We have the following observations that can help
to achieve our goals.

Observation-1: security patches are usually found as code commits
in the OSS code repositories. In essence, a security patch is written
by the OSS developers or submitted by security experts. To fix
the vulnerability, it should be merged into the code repository.
Therefore, security patches can be usually found as code commits.
In other words, the patch for a security vulnerability can be located
by exploring all code commits as long as the patch exists.

Observation-2: there are broad correlations between the vulner-
ability and its security patch commit. In a security patch commit,
developers may refer to the fixed vulnerability in various ways,
such as directly mentioning it, explaining how this commit fixes the
vulnerability, and describing the impact of this commit. Meanwhile,
the vulnerability information in CVE/NVD usually describes the
vulnerability from many aspects, such as the vulnerability type, vul-
nerability location, vulnerability impact, etc. Thus, there exist broad
correlations between the vulnerability and its patch, facilitating the
locating of security patches for a given vulnerability.

Figure 1 gives an example to illustrate the correlations be-
tween the vulnerability description of CVE-2016-4417 [54] and its
patch [72], including vulnerability location, vulnerability type, and
descriptive texts. First, both the vulnerability description and the
commit message mention the same vulnerability location (words in
green). In addition, the code change location in the code diff is also
consistent with the vulnerability location. Second, the vulnerability
description introduces the type and impact (words in red) of the
CVE, while the commit message also claims it fixes a “buffer
overrun” bug. Besides, the code diff also indicates it fixes a buffer-
overrun bug by updating the buffer size from 0xff to 0x100. Third,
the vulnerability description describes some other characteristics of
the vulnerability, such as how to trigger the vulnerability (words in
blue), while the commit message also contains similar descriptive
texts. Considering all these correlations, we can easily mark it as
the security patch for CVE-2016-4417.

Observation-3: The correlations between a vulnerability and a code
commit enable us to locate security patches that cannot be located by
the matching-based solutions. Since existing solutions introduced

Off-by-one error in epan/dissectors/packet-gsm_abis_oml.c in the GSM A-bis 
OML dissector in Wireshark 1.12.x before 1.12.10 and 2.x before 2.0.2 allows 
remote attackers to cause a denial of service (buffer over-read and application 
crash) via a crafted packet that triggers a 0xff tag value.

(a) NVD Description of CVE-2016-4417

gsm_abis_oml: fix buffer overrun
Do not read outside boundaries when tag is exactly 0xff.
        tag = tvb_get_guint8(tvb, offset);
        tdef = find_tlv_tag(tag);
               ...
               return &nm_att_tlvdef_base.def[tag];
...

 1  diff --git a/epan/dissectors/packet-gsm_abis_oml.c b/epan/dissectors/packet-gsm_abis_oml.c
 2  index a6158c3..543b034 100644
 3  --- a/epan/dissectors/packet-gsm_abis_oml.c
 4  +++ b/epan/dissectors/packet-gsm_abis_oml.c
 5  @@ -618,7 +618,7 @@ struct tlv_def {
 6   };
 7   
 8   struct tlv_definition {
 9  -       struct tlv_def def[0xff];
10 +       struct tlv_def def[0x100];
11  };
12   
13  enum abis_nm_ipacc_test_no {

(b) Patch Commit of CVE-2016-4417

Figure 1: Amotivating example to illustrate the correlations

between a vulnerability and its patch commit.

in §2 adopt a matching-based approach that only gives results
on exactly matching, they cannot locate the patch commit in the
example of Figure 1, which does not specify the CVE-ID and is not
specified in CVE/NVD. In contrast, we can locate it by exploiting
the correlations between the vulnerability and the code commit.
New Approach. Based on the above observations, we propose a
vulnerability-commit correlation ranking approach, which locates
security patches by ranking all the code commits according
to the correlation between one commit and the corresponding
vulnerability information. Our approach works like a search engine,
which finds and ranks all the pages (code commits) that are highly
correlated to a given short description (vulnerability).

Compared to matching-based solutions, our approach has the
chance to locate patches for more vulnerabilities since it considers
broad correlation features (even weak ones) between a vulnerability
and code commits. Besides, it uses a learning-based design to assign
the weights to these correlation features, so it has a better tolerance
for incomplete and incorrect vulnerability information. Further,
even if our approach does not put the correct security patch at
the first position of the ranked results, users can verify the ranked
results one by one just as what they do with the search engine.
Therefore, our approach can meet a better trade-off between the
coverage of the security patches and the manual efforts involved.

3.2 Correlation Features

Our approach takes the vulnerability information as input and
outputs the ranked code commits based on their correlations with
the vulnerability. To acquire the vulnerability information, we refer
to the CVE/NVD databases. Since the NVD covers more information
than the CVE, we mainly choose the NVD page of a vulnerability
as input to extract correlated vulnerability features. To formulate
the correlation features between the code commits and a given
vulnerability, we first investigate what types of information an
NVD page contains and then check if these information may also



Table 2: The features that are used by PatchScout to represent the correlations between a vulnerability and a code commit.

Feature Group Features Description

Vulnerability Identifier CVE-ID Whether the code commit mentions the CVE-ID of the target vulnerability.
Software-specific Bug-ID Whether the code commit mentions the software-specific Bug-ID in the NVD Page.

Vulnerability Location

Same Function Num # of functions that appear in both code commit and NVD description.
Same Function Ratio # of same functions / # of functions that appear in the NVD description.
Unrelated Function Num # of functions that appear in code commit but not mentioned in the NVD description.
Same File Num # of files that appear in both code commit and NVD description.
Same File Ratio # of same files / # of files that appear in the NVD description.
Unrelated File Num # of files that appear in code commit but not mentioned in the NVD description.

Vulnerability Type Vulnerability Type Relevance The relevance of the vulnerability type-related texts between NVD information and commit message.
Patch Likelihood The probability of a commit to be a security patch.

Vulnerability
Descriptive Texts

Shared-Vul-Msg-Word1Num # of shared words between NVD description and commit message.
Shared-Vul-Msg-Word Ratio # of Shared-Vul-Msg-Words / # of words in NVD description.
Max of Shared-Vul-Msg-Word Frequency The max of the frequencies for all Shared-Vul-Msg-Words.
Sum of Shared-Vul-Msg-Word Frequency The sum of the frequencies for all Shared-Vul-Msg-Words.
Average of Shared-Vul-Msg-Word Frequency The average of the frequencies for all Shared-Vul-Msg-Words.
Variance of Shared-Vul-Msg-Word Frequency The variance of the frequencies for all Shared-Vul-Msg-Words.
Shared-Vul-Code-Word2Num # of shared words between NVD description and code diff.
Shared-Vul-Code-Word Ratio # of Shared-Vul-Code-Words / # of words in NVD description.
Max of Shared-Vul-Code-Word Frequency The max of the frequencies for all Shared-Vul-Code-Words.
Sum of Shared-Vul-Code-Word Frequency The sum of the frequencies for all Shared-Vul-Code-Words.
Average of Shared-Vul-Code-Word Frequency The average of the frequencies for all Shared-Vul-Code-Words.
Variance of Shared-Vul-Code-Word Frequency The variance of the frequencies for all Shared-Vul-Code-Words.

1 Shared-Vul-Msg-Word: shared words between NVD description and commit message.
2 Shared-Vul-Code-Word: shared words between NVD description and code diff.

be described by developers in the patch commits. As presented
in Table 2, we conclude four groups of correlation features that may
be commonly shared between the vulnerability information and the
patch commits. Each feature group depicts the correlations between
a commit and a vulnerability from one perspective. From the four
feature groups, we further formulate 22 correlation features. We
elaborate on these features below.

❶ Vulnerability Identifier.We consider two types of vulnerability
identifiers — CVE-ID and software-specific Bug-ID. Mostly, dis-
closed vulnerabilities are publicly referred to by the CVE-ID. In
addition, before being granted a CVE-ID, a vulnerability may be
assigned with a software-specific Bug-ID which is used internally
to track the life cycle of the vulnerability.

❷ Vulnerability Location. The location of a vulnerability is
depicted using the file or the function that includes it. We recognize
6 features between the vulnerability and the code commit from
this perspective. At the file level, we divide the files modified by a
commit into two categories, namely, those that are mentioned in
the vulnerability description and those that are unrelated to the
description.We count the number of each category and calculate the
ratio of the files that are shared between the vulnerability and the
commit, which contributes to 3 features. The other 3 function-level
features are calculated in a similar way.

❸ Vulnerability Type. It indicates the type/impact of the vul-
nerability, such as buffer-overflow, denial-of-service. We extract
2 features between a vulnerability and a code commit. First, we
propose vulnerability type relevance that depicts the relevance of
the vulnerability type-related texts between the NVD vulnerability
information and the commit message. Second, from the code diff
aspect, we calculate patch likelihood to represent the probability of
a commit to be a security patch.

❹ Vulnerability Descriptive Texts. It considers the vulnerability
features that generally describe some types of vulnerability infor-
mation such as critical variables, vulnerability trigger conditions,
and vulnerability causes. We use the shared words between the

vulnerability information and code commits to represent their
correlations. As shown in Table 2, we calculate 6 statistical features
from the shared words between vulnerability description and
commit message, and the other 6 statistical features from the shared
words between vulnerability description and code diff. As we will
elaborate later (see §4), some meaningless words (e.g., stop words)
are removed before calculation.

4 PATCHSCOUT DESIGN

This section presents PatchScout, which leverages the proposed
vulnerability-commit correlation ranking to facilitate the locating of
security patches for disclosed OSS vulnerabilities.We first introduce
the workflow of PatchScout, and then elaborate its key modules.
Workflow. Given a target vulnerability, PatchScout takes the
NVD database and the code repository as input and then ranks all
the commits in the repository according to their correlations with
the given vulnerability. There are mainly three phases:

(1) Information Extraction. PatchScout extracts some basic in-
formation elements from both NVD pages and code commits,
which are used to generate features;

(2) Feature Generation. PatchScout generates the correlation
features (that are introduced in §3.2) between a vulnerability
and a code commit from the extracted information elements;

(3) Commits Ranking. PatchScout trains a RankNet-based model
with the generated correlation features, to rank all the code
commits based on their relevance to a specified vulnerability.

4.1 Information Extraction

As shown in Table 3, PatchScout extracts 8 kinds of information
elements from NVD pages and code commits (including commit
message and commit code), which are further used in the phase of
feature generation. In particular, we adopt pattern-matching and
named-entity recognition (NER) [29] to extract these information
elements from these sources. ❶ From NVD pages, we directly



Table 3: The elements extracted from different sources.

Information

Source

Extracted

Element

Feature Goup
1

(Used By)

Extraction
2

Method

NVD Page

description VDT Extract
vulnerability identifier VID Pattern
file location VL Pattern
function location VL NER
vulnerability type VT NER, Extract
vulnerability impact VT NER

Commit Message

message VDT Extract
vulnerability identifier VID Pattern
vulnerability type VT NER
vulnerability impact VT NER

Commit Code
code diff VDT, VT Extract
file location VL Pattern
function location VL Pattern

1 VDT represents vulnerability descriptive texts; VID represents vulnerability
identifier ; VL represents vulnerability location; VT represents vulnerability type.

2 Extract: this information can be directly extracted; Pattern: extract information
via pattern-matching; NER: extract information via named-entity recognition.

extract the vulnerability description, CVE-ID, and vulnerability type
(CWE). Further, from the extracted vulnerability description, we
further extract file location via pattern-matching and leverage NER
to identify function location, vulnerability type, and vulnerability
impact. Besides, we also use pattern-matching to extract the
software-specific bug-ID from the reference URLs of an NVD page
as the complementary vulnerability identifier. ❷ From the commit
message, we extract vulnerability identifier via pattern-matching
and identify vulnerability type and vulnerability impact via NER.
❸ From the commit code, we can directly extract the code diff
and the file location and function location can be extracted via
pattern-matching.

During the information extraction phase, we mainly use pattern-
matching and NER, which are detailed below:
• Pattern-matching. We summarize common patterns of some
information elements (file location, function location, software-
specific bug-ID) and use regular expressions to extract such
elements. For example, wematch file suffix (e.g., .c, .h, .cpp, etc.) to
identify file location in vulnerability description with the regular
expression: ([a-zA-Z0-9]|-|_|/)+\.(cpp|cc|cxx|cp|CC|hpp|hh|C|c|h).

• Named-entity Recognition. In order to construct a training set, we
collect 600 NVD descriptions and 164 patch commit messages
and manually label the vulnerability type, vulnerability impact,
and function location in these texts. Thereafter, we train an NER
model on this dataset and apply the trainedmodel in PatchScout
to extract these elements.

4.2 Feature Generation

From the 8 kinds of information elements extracted between a
vulnerability and a code commit, PatchScout further generates 22
correlation features (as listed in Table 2).

4.2.1 Vulnerability Identifier & Vulnerability Location. As described
in Table 2, the features in the vulnerability identifier group and
vulnerability location group are easy to generate. For vulnerability
identifier group, we can directly determine whether a code commit
and an NVD page refer to the same CVE-ID or the same software-
specific bug-ID based on the extracted elements of vulnerability

identifier. For vulnerability location group, based on the extracted
elements of file/function location, we count the shared elements
between a code commit and an NVD page and compute the 6
vulnerability location features as their definitions in Table 2.

4.2.2 Vulnerability Type Relevance. For a vulnerability, its type is
usually mentioned in the vulnerability description and the CWE
information of its NVD page, as well as in the commit message of
its patch. Meanwhile, the impact of a vulnerability which is closely
related to its vulnerability type, may also be mentioned in its NVD
page and patch commit. Therefore, we use the two kinds (i.e., the
vulnerability type and the vulnerability impact) of vulnerability
type-related texts in an NVD page and a code commit to predict
their vulnerability type relevance. These features help PatchScout
to narrow down the search scope of patch commits.
TaxonomyofTypeRelevance.As introduced in §4.1, PatchScout
has extracted vulnerability type-related entities (i.e., vulnerability
type and impact) from NVD pages and commit messages. However,
little is known about what kind of relevance may exist between
these entities. To this end, we conduct a study to find it out.

First, we randomly select 500 vulnerabilities that cover 47
CWEs in our training set (see §6.1) and collect a set of 1,219
vulnerability type-related entities from their NVD pages and
security patch commits. Second, we normalize each entity to
a word bag. Specifically, the normalization process consists of
splitting the extracted entities into word sequences, removing the
stop words, stemming, lemmatizing, and substituting synonym on
the remaining words with the help of Natural Language Toolkit
(NLTK) [48]. Third, we group the entities with the same word bag,
which generates 31 entity groups. Note that there are 41 entities
that do not belong to any group. Finally, from the 31 entity groups
and 41 entities, we manually summarize three kinds of relevance
that may exist between every two entity:
• Inclusion relationship describes the relationship between two vul-
nerability type entities or two vulnerability impact entities. There
are two situations: 1) the vulnerability type/impact described by
the two entities is the same or quite similar (e.g., buffer overflow
and buffer overrun); 2) the vulnerability type/impact described
by one entity is covered by the other entity (e.g., stack buffer
overflow and buffer overflow).

• Causality relationship depicts the relationship between a vulner-
ability type entity and a vulnerability impact entity, when the
former one may lead to the latter one. For example, there is a
causality relation between stack-overflow and denial-of-service.

• Irrelevance relationship represents that there is no relation
between the two entities.

Generating the Type Relevance Feature. Given the taxonomy
of type relevance, PatchScout generates the vulnerability type
relevance feature between a vulnerability and a code commit from
two sets of vulnerability type-related entities (i.e., one is extracted
from the NVD page and the other is extracted from the commit
message) and represents this feature with a three-tuple which
indicates the proportion of every kind of relevance between the two
sets. There are three steps in generating this feature: 1) it transforms
the two sets of entities into two sets of normalized word bags (as
what we do in the above study); 2) it enumerates every word bag
in the two sets to identify the relevance between a word bag in



one set and another word bag in the other set (the identification
method is explained later); 3) based on the frequencies of every
kind of relevance, it computes the proportion for each of them and
encodes these proportions into a three-tuple. To be specific, we
identify the relevance between two entities (word bags) as follows:

(1) We use set operation to test if there exists an inclusion relation
between two word bags.

(2) Since most (96.64%=1,178/1,219) of the collected vulnerability
type-related entities in the previous study can be grouped into
31 unique normalized word bags, it is affordable to manually
label the causality relationships between the 240 (16 × 15)
word bag pairs. As shown in Table 13 (in §A.3), there are 16
vulnerability type groups (e.g., buffer overflow, integer overflow,
use after free) and 15 vulnerability impact groups (e.g., denial of
service, segmentation fault), and we label 150 causality relations
between them. Based on these labels, it is straightforward to
test if there exists a causality relation between two word bags.
For those unlabelled word bags (3.36%), we simply consider
there is no causality relation between them.

(3) If there is no causality or inclusion relation between two word
bags, they are considered to be irrelevant.

4.2.3 Patch Likelihood. Code commits in an OSS project have
various purposes, such as fixing performance bugs, fixing vulner-
abilities, functionality updates, code clean-up [35]. As presented
in Table 2, we use the patch likelihood feature to represent the
probability of a code commit to be a security patch, which helps to
put the patch commits in front of other commits.

With a similar purpose,Wang et al. [69] have proposed a learning-
based classification algorithm to identify security patches from OSS
code commits. Their classification is based on the changed code
lines and program elements (e.g., conditional statement, function
call, etc) in a commit. Inspired by this work, PatchScout also
leverages a learning-based approach to predict the patch likelihood
of a code commit. Our work differs from this one in two aspects.
First, from the perspective of the used features, we introduce two
new features (detailed in §A.1) and collect a set of 62 features
(see Table 12 in §A.1) from a code commit for patch likelihood
prediction. Second, different from existing works [69] which aim to
identify only security patch commits, we want to predict the patch
likelihood for every commit.

In short, PatchScout predicts the patch likelihood of a code
commit in three steps. First, it generates the text features (No.1-8
in Table 12) from the texts in the code diff. Second, it performs
an AST-based code diff analysis to identify the added/removed/up-
dated/moved program elements and syntactic hunks, and then
generates the syntactic features (No.9-62 in Table 12) from them.
Finally, it trains 5 binary classification models [17, 18, 33, 36, 58]
with these features and gives a patch likelihood for every code
commit. To construct a training set, we use 943 security patch
commits and 943 non-security patch commits that are verified in
our preliminary study (see §2).

4.2.4 Vulnerability Descriptive Texts. The features in the group
of vulnerability descriptive texts are used to capture the textual
relevance between vulnerability descriptions and code commits
via their shared words. Specifically, we collect shared words from

two separated groups: one is between vulnerability description
and commit message, and the other one is between vulnerability
description and commit code. The sharedwords are identified in two
steps. First, we split the descriptive texts with non-letter characters
and then remove the stop words (e.g., prepositions and articles).
Second, we take the intersection of two word sets to identify the
shared words between them. Since a word may appear several times
in a text, we not only count the shared words but also count the
frequency of each shared word. Based on these words, we calculate
12 statistical features according to the definition in Table 2.

4.3 Commits Ranking

With the generated 22 correlation features, PatchScout trains a
machine learningmodel to rank the code commits. To be specific, we
choose to use RankNet [19], a pairwise learning-to-rank algorithm
for code commits ranking based on two observations. First, we
observe that code commit ranking is a classification problem on
an extremely imbalanced dataset, where only few commits are
security patches (aka positive cases) for a given vulnerability and
the rest of the commits are all negative cases. Though classifying
imbalance data is quite challenging [34, 49], RankNet is shown to
be a promising solution to tackle the class imbalance problem [26].
Second, RankNet has been demonstrated its effectiveness in real-
world ranking problems, such as Web page ranking [22], search
engine personalization [63] and product recommendation [41].

Technically, RankNet trains a neural-network-based scoring
model to give a score for every object (e.g., code commit), and
then ranks all the objects based on their scores. In particular, to
train a RankNet model, we need to prepare a set of object pairs <𝑥𝑖 ,
𝑥 𝑗> with labels (i.e., whether 𝑥𝑖 or 𝑥 𝑗 is a correct patch commit).
Thereafter, RankNet initializes a neural network with random
parameters and trains the model based on the labeled object pairs.
In all, the training process consists of the following steps:
(1) For each fed object pair <𝑥𝑖 ,𝑥 𝑗>, we calculate the true probability

that 𝑥𝑖 ranks higher than 𝑥 𝑗 as:

𝑃𝑖 𝑗 =


1 𝑖 𝑓 𝑥𝑖 𝑖𝑠 𝑝𝑎𝑡𝑐ℎ 𝑎𝑛𝑑 𝑥 𝑗 𝑖𝑠 𝑛𝑜𝑡

0.5 𝑏𝑜𝑡ℎ 𝑥𝑖 𝑎𝑛𝑑 𝑥 𝑗 𝑎𝑟𝑒 (𝑛𝑜𝑛−)𝑝𝑎𝑡𝑐ℎ𝑒𝑠
0 𝑖 𝑓 𝑥 𝑗 𝑖𝑠 𝑝𝑎𝑡𝑐ℎ 𝑎𝑛𝑑 𝑥𝑖 𝑖𝑠 𝑛𝑜𝑡

(2) By representing an object as a feature vector, the neural network
gives a score for every object. With the given scores for an
object pair <𝑠𝑖 , 𝑠 𝑗> (𝑠𝑖 for 𝑥𝑖 , 𝑠 𝑗 for 𝑥 𝑗 ), we calculate the learned
probability that 𝑥𝑖 should be ranked higher than 𝑥 𝑗 as:

𝑃𝑖 𝑗 =
1

1 + 𝑒−(𝑠𝑖−𝑠 𝑗 )

(3) With the true probability (𝑃𝑖 𝑗 ) and the learned probability (𝑃𝑖 𝑗 ),
a cross entropy cost function 𝐶 is calculated as:

𝐶 = −𝑃𝑖 𝑗 𝑙𝑜𝑔𝑃𝑖 𝑗 − (1 − 𝑃𝑖 𝑗 )𝑙𝑜𝑔(1 − 𝑃𝑖 𝑗 )
(4) Using this cost function, the neural network scoring model is

trained to minimize the cost in the training set.

5 IMPLEMENTATION

We implement a prototype of PatchScout, which contains 2,243
lines of Python code and 451 lines of Java code. Specifically, we



leverage GitPython [4] to traverse code commits in OSS code
repositories, and build an NER model based on NeuroNER [29]
to extract vulnerability type-related entities and function entities
from NVD description and commit messages. For type relevance
analysis, we use NLTK (a Python NLP toolkit) [48] to normalize
entities. We use its nltk.tokenize module to split the entities into
word sequences, filter the stop words according to the stop word
list in the nltk.corpus module, use its nltk.stem module to perform
stemming and lemmatizing, and leverage theWordNet database [67]
in the nltk.corpus module to find the synonyms and perform
synonym substitution. For patch likelihood prediction, we use
Gumtree [31] to perform AST-based code diff analysis. For commit
ranking, we implement the RankNet algorithm [19] on PyTorch [56].
Our prototype is extensible to support vulnerabilities in various
programming languages, since most of the features we select are
language-independent. The major extension effort is to train a new
NER-based parser and enhance the AST-based code diff analysis
for the new language.

6 EVALUATION

This section evaluates PatchScout in locating patches for disclosed
OSS vulnerabilities. It first introduces the experimental setup
and then presents the evaluation results on the effectiveness of
PatchScout, the contributions of the proposed features, and the
possibility of enhancing PatchScout by predicting the bug fix files.

6.1 Experimental Setup

Our evaluation requires a number of OSS vulnerabilities including
their security patches for the purpose of training and testing. In
our preliminary study (see §2), we have collected a large number
of OSS CVEs as a vulnerability dataset. Therefore, our evaluation
also uses this dataset.
Model Training. PatchScout needs labelled samples to train
the commit ranking model. Since we have manually verified
2,200 potential patch commits (see experiment-2 of §2) in our
preliminary study, we use the verified patch commits as positive
samples. Specifically, after removing the duplicate patch commits,
the positive samples consist of 943 unique patch commits as well
as 943 disclosed vulnerabilities. For each positive sample (𝑥𝑝𝑎𝑡𝑐ℎ),
we randomly select 5,000 other commits from the Git repository as
negative samples, and then construct 5,000 sample pairs <𝑥𝑝𝑎𝑡𝑐ℎ ,
𝑥𝑜𝑡ℎ𝑒𝑟𝑖>, where 𝑥𝑜𝑡ℎ𝑒𝑟𝑖 is a negative sample for 𝑥𝑝𝑎𝑡𝑐ℎ . Note that
when a repository contains less than 5,000 commits, we take all the
other commits of the repository as negative samples in that case. In
all, our training set has 3,329,286 sample pairs. We use an Ubuntu
16.04 64-bit machine (with 314 GB memory, 4 Intel Xeon Gold 5215
processors, and 1 GeForce RTX 2080Ti GPU) for model training. By
feeding the training set into a RankNet algorithm, it takes about 3
hours to train the ranking model for PatchScout.
Testing Set. We construct a testing set consisting of 685 disclosed
vulnerabilities and their patch commits within two steps. First, we
randomly pick out 800 CVEs which do not overlap the training set.
Second, we try our best to locate their patches, by not only taking
the three intuitive approaches mentioned in §2 but also checking
other resources, such as bug tracking reports and vulnerability-
related code commits. At last, we successfully locate the security

patches for 685 CVEs (belonging to 187 OSS), and use them as the
testing set. The remaining 115 CVEs are considered as unpatched
and thus ignored in the testing set. In all, three security researchers
participate in constructing the testing set and double-checking all
the security patches, which costs 240 man-hours.
Baselines. To the best of our knowledge, our work is the first one
that provides a systematic way to locate the security patches of
disclosed OSS vulnerabilities. As described in §2, existing works
mainly adopt three intuitive methods for such a task. Therefore,
we include these intuitive methods as the baselines. To further
demonstrate the benefits of the ranking-based design, we also devise
an enhanced keyword matching-based method as the baseline,
named M4. It works as follows. First, it uses the same method as
PatchScout to extract vulnerability identifiers, locations, and types
from NVD pages. Second, to make a fair comparison, it uses the
techniques in §4.2.2 to extend synonyms for extracted vulnerability
types. Third, it uses the extended vulnerability types, identifiers,
and locations as keywords to search the commits and ranks the
matched commits by the number of keywords they hit. Note that
for commits with the same number of matched keywords, they
are ranked randomly and the experiment is repeated six times to
reduce the effect of randomness.
Metrics. We use the following two metrics to evaluate the effec-
tiveness of PatchScout and baselines.

• Recall. For M1, M2 and M3, if a patch is covered by their return
results, we consider they successfully locate the patch. For
PatchScout and M4, if a patch is in its top N (a parameter set
by users) results, we consider the patch is successfully located
and we name it as top-N recall.

• Manual Efforts. For M1, M2 and M3, since they are matching-
based rather than ranking-based, all the matched commits have
the same priority to the users. Since all the matched commits
need to be manually verified, we use the number of matched
commits to measure the involved manual efforts. When using
PatchScout and M4, users check the ranked code commits one
by one to look for a patch commit. Therefore, we use the number
of commits that need to be manually checked before finding
the patch commit to calculate the required manual efforts. In
particular, if the correct security patch for a CVE is ranked 𝑅-
th by PatchScout and the users are asked to check the top N
commits given by PatchScout to locate the patch, the manual
efforts for locating the security patch of this CVE is𝑚𝑖𝑛(𝑅, 𝑁 ).
Accordingly, the average involved manual efforts for 𝑛 CVEs can
be calculated as

∑𝑛
𝑖=1𝑚𝑖𝑛 (𝑅𝑖 ,𝑁 )

𝑛 .

6.2 Effectiveness

Table 4 presents the overall results. We find that PatchScout
ranks the security patches of 69.49% CVEs at the first position.
Moreover, by checking 4.32 commits on average over the top
30 commits ranked by PatchScout, we can locate the security
patches for 92.70% CVEs. Since locating the security patches by
searching numerous code commits is extremely time-consuming
and laborious, the involved manual effort here is acceptably low. In
contrast, evenwhen combining all the three baselines (M1+M2+M3),
only 47.59% patches can be located with 1.83 commits on average
to be checked. Interestingly, if users are asked to only check the



Table 4: Performance of PatchScout and baselines on

locating security patches.

Approaches Recall Manual Efforts

M1: searching with CVE-ID 11.53% 2.30
M2: checking commit-like URLs 40.00% 1.14
M3: checking patch-tagged URLs 31.53% 1.61
M1+M2+M3 47.59% 1.83
M4: enhanced keyword matching (N=1) 40.88% 1.00
M4: enhanced keyword matching (N=5) 61.80% 2.92
M4: enhanced keyword matching (N=30) 80.10% 9.37
PatchScout (N=1) 69.49% 1.00
PatchScout (N=5) 85.40% 1.86
PatchScout (N=30) 92.70% 4.32

top 5 commits given by PatchScout, they only need to check 1.86
commits per CVE (close to that of M1+M2+M3), while they can
locate 85.40% patches (37.81% more than M1+M2+M3). Though M4
is enhanced with the keywords extracted by PatchScout, it can
only rank 40.88% patches at the first position. Even when we check
the top 30 commits give by M4, we can only locate 80.10% patches
but pay more than twice manual efforts than PatchScout. These
results clearly demonstrate the strength of PatchScout on locating
security patches for more vulnerabilities with less manual efforts.
False Negatives Breakdown. Though PatchScout has covered
the patches for most of the disclosed vulnerabilities, it still fails on
7.30% (50) CVEs in the testing set, even when the parameter N is
set to 30. We manually check all the 50 false negatives (FN) and
discover the following two causes. In §8, we further discuss how to
mitigate these FNs.

• Low-quality vulnerability information in the NVD. Although
PatchScout utilizes broad correlations between the vulnera-
bility information and the code commits, it requires to extract
meaningful information. However, in some CVEs, we found their
NVD pages only contain low-quality information that describes
no specific features of a vulnerability. In these cases, PatchScout
cannot extract useful features (those depicted in Table 2) from
the NVD, thus failing to rank their security patch commits in
front of other commits.

• Giant commits.We find that developers sometimes merge mul-
tiple code updates for different purposes into a single (gi-
ant) commit. If a giant commit contains a security patch, its
vulnerability-irrelevant information and code behaviors weaken
its relevance to the corresponding security vulnerability. It makes
PatchScout lower its ranking and eventually causes FNs.

Patch Distribution at Each Rank. To measure the distribution
of patches at each rank, we also vary the parameter N to test the
performance of PatchScout. The results are presented in Table 5.
We find that the more efforts users put in checking the ranked
commits, the more security patches they can locate. Overall, 77.66%
patch commits can be located by checking at most the top 2 commits
ranked by PatchScout, and more than 90% patch commits can be
located by checking about 3 commits on average (3.04 commits per
CVE when N = 15). These results clearly show that PatchScout
effectively balances the coverage of the security patches and the
involved manual efforts, by ranking the code commits that are the
most likely security patches to the front.

Table 5: Performance of PatchScout with different N.

Top N Recall Manual Efforts Top N Recall Manual Efforts

1 69.49% 1.00 8 87.88% 2.27
2 77.66% 1.31 9 88.47% 2.39
3 82.48% 1.53 10 88.76% 2.51
4 84.09% 1.70 15 90.36% 3.04
5 85.40% 1.86 20 91.24% 3.50
6 86.42% 2.01 25 91.82% 3.93
7 87.30% 2.14 30 92.70% 4.32

Table 6: Contribution of each feature group.

Top N Drop Identifier Drop Location Drop Type Drop Texts

1 45.40% (24.09% ↓) 58.54% (10.95% ↓) 62.48% (7.01% ↓) 61.90% (7.59% ↓)
2 57.96% (19.70% ↓) 66.13% (11.53% ↓) 74.31% (3.35% ↓) 73.14% (4.52% ↓)
3 63.94% (18.54% ↓) 69.49% (12.99% ↓) 78.54% (3.94% ↓) 77.23% (5.25% ↓)
4 67.45% (16.64% ↓) 71.82% (12.27% ↓) 80.00% (4.09% ↓) 80.29% (3.80% ↓)
5 70.07% (15.33% ↓) 72.99% (12.41% ↓) 81.90% (3.50% ↓) 82.34% (3.06% ↓)
6 71.97% (14.45% ↓) 74.45% (11.97% ↓) 82.48% (3.94% ↓) 84.23% (2.19% ↓)
7 73.28% (14.02% ↓) 75.77% (11.53% ↓) 83.07% (4.23% ↓) 84.96% (2.34% ↓)
8 73.87% (14.01% ↓) 76.64% (11.24% ↓) 84.23% (3.65% ↓) 85.55% (2.33% ↓)
9 75.18% (13.29% ↓) 77.37% (11.10% ↓) 85.26% (3.21% ↓) 85.99% (2.48% ↓)
10 75.91% (12.85% ↓) 77.96% (10.80% ↓) 85.26% (3.50% ↓) 86.42% (2.34% ↓)
The percentage in parentheses represents the reduction in recall for this model
compared to the original model that takes all the feature groups.

6.3 Feature Group Contributions

As presented in Table 2, PatchScout uses four correlative feature
groups to rank code commits. To measure the contribution of each
feature group to the overall performance, we train four new ranking
models that drop one feature group each. The fourweakenedmodels
are trained and tested with the same dataset of PatchScout.

As Table 6 shows, the vulnerability identifier contributes themost.
For example, it increases the recall by 24.09% when N = 1. This is
because the vulnerability identifier is specific to a vulnerability
and may reveal the most direct relation between a vulnerability
and its patch commit. Similarly, the feature group of vulnerability
location also contributes significantly to the overall performance,
since it helps to exclude a large number of irrelevant code commits.
Besides, we find that even weak correlations (e.g., vulnerability
type, vulnerability descriptive texts) between a vulnerability and
a code commit play very important roles in locating the patch
commits. They not only help to locate the security patches for more
vulnerabilities, but also help to rank them to more front positions.
In summary, we find each feature group effectively improves the
performance of PatchScout in helping to locate the patch commits.

6.4 Possibility of Leveraging Bug Fix Prediction

Security patch is also a type of bug fix. Existing works on predicting
the fix of a bug [37, 42, 44, 46, 81] might help to further reduce the
search scope of security patches. We conduct several experiments
to explore this possibility. Our experiments focus on two questions:
❶ How can an ideal bug fix predictor help PatchScout? ❷ How
do the existing bug fix prediction techniques help?
Leveraging an ideal bug fix predictor. We first investigate
whether an ideal bug fix predictor can help PatchScout reduce the
search scope. In particular, we use the patched file(s) in a security
patch as an ideal bug fix predictor. For the 209 CVEs whose patches



are not ranked as top-1 by PatchScout (§6.2), we analyze the non-
patch commits that are ranked at a more front position than the
patch commits. Under a conservative strategy, PatchScout can
filter out 49.80% non-patch commits that do not modify any file
predicted by the ideal bug fix predictor. Besides, if PatchScout only
keeps the commits that modify the same files predicted by the ideal
bug fix predictor, 79.57% non-patch commits can be removed. By
leveraging the predicted patched files as the vulnerability location
information during the training and testing of PatchScout, its
top-1 and top-5 recall increases by 8.03% and 5.84% respectively. In
summary, we find an ideal bug fix predictor can largely reduce the
search scope of security patches.
Leveraging existing works in bug fix prediction. We then
leverage two existing bug fix prediction techniques, IR-based
bug localization [37, 42, 46, 81] and usual suspect [42, 53], to
improve PatchScout. First, the IR-based bug localization studies
how to predict the files to be fixed from a bug report. In particular,
we use BugLocator3 [81] (an information retrieval-based bug
localization tool) to analyze the bug report of a vulnerability,
and we use the predicted to-be-fixed files as a supplement to the
vulnerability location information extracted from the NVD page.
In our testing set, BugLocator successfully predicts a patch file
in its top-5 ranked results for 347 CVEs (50.66%), and for 409
CVEs (59.71%) in its top-10 ranked results. However, we find the
top-1 recall of PatchScout drops 2.92% when using the top-5
prediction results of BugLocator and drops more (4.23%) when
using the top-10 prediction results of BugLocator. The main reason
is that BugLocator cannot accurately predict the patch files for
a vulnerability. The wrongly predicted patch files decrease the
correlation similarity with the true patch commits, but they may
increase the correlation similarity with the non-patch commits.
Note the recent efforts [37, 46] apply deep learning to improve the
performance of bug localization, successfully predicting a patch file
in its top-10 ranked results for more than 80% bugs. Since these tools
are not available, we cannot directly evaluate them. Meanwhile,
we believe PatchScout can hardly benefit from them either, since
their accuracy is still not high.

Second, according to the observation of [42, 53], most bug fixes
are applied on a small fraction of components, which means the
files that have been fixed before may have a higher chance to be
fixed further. To verify whether such usual suspect can help filter
non-patch commits, we perform an experiment. First, we select 3
OSS projects (Linux Kernel,Wireshark, and tcpdump) that have more
than 100 CVEs in the OSS vulnerability dataset collected in §2 and
manually locate the patch files for these CVEs. Second, we collect
the top-10 most frequently fixed files for each project and use
these files as a supplement to the vulnerability location information
extracted from the NVD page. Then, we use PatchScout to locate
the security patches for the 112 CVEs of the 3 OSS projects in our
testing set. The results show that the top-1 recall of PatchScout
drops 10.71%. Again, we find the reason is that the usual suspect of
vulnerable components is not accurate enough to help locate the
patch for a specific vulnerability.

3The source code of BugLocator is available at https://github.com/exatoa/Bench4BL.
Besides, we enhance it to support C/C++ projects by introducing a new code parser.

Takeaway. Based on the above experiments, we find that an ideal
bug fix predictor greatly helps PatchScout and the accuracy of
bug fix prediction techniques significantly affect their effectiveness
in improving PatchScout. These findings motivate more accurate
bug fix prediction techniques.

7 PATCH DEPLOYMENT ACROSS BRANCHES

We now illustrate the security benefits of PatchScout via conduct-
ing a study on the patch deployment practice across branches.

7.1 Study Design

The development of OSS is usually managed within branches and
each branch corresponds to a specific version. When a vulnerability
is reported, a security patch is developed on its master branch. Since
some old versions may be also affected and still-in-use, developers
should deploy the security patch to these branches/versions too,
though introducing some maintenance overhead at the same time.
However, to the best of our knowledge, little is known about such
patch deployment practice across branches in the real world.

By ranking a set of code commits according to their relevance to
a vulnerability, PatchScout also helps to locate the security patch
of a given vulnerability under a specific branch. Therefore, we apply
PatchScout to perform the first study on patch deployment prac-
tice across different branches. Specifically, our study is organized
from three aspects: patch deployment status, patch backporting, and
patch deployment lag. As we will show later, this study is hard to
be conducted without the help of PatchScout.
CVEs andBranches.To study patch deployment practice onmulti-
branches, we mainly consider popular OSS projects. In particular,
we select four popular C/C++OSS (Linux Kernel [6],Wireshark [11],
QEMU [7], and FFmpeg [3]) and one Java OSS (Jenkins [5]) as our
study targets. To construct a set of CVE-branch pairs, for each
OSS, we randomly select 45 CVEs that were reported after 2016
and collect branches in their Git repositories that have new code
commits after 2016. In all, our study consists of 3,735 CVE-branch
pairs (225 CVEs and 83 branches). Note that we only consider
stable/release branches in the study. The detailed information about
these branches and CVEs is listed in Table 14 (in §A.3).
Patch Collection. For each CVE-branch pair, PatchScout is
applied to help locate the patch commit for the specific CVE
and branch. We also extend PatchScout to support Java OSS
vulnerabilities according to the instructions in §5. Based on the
ranked code commits by PatchScout, we manually check the top
30 candidates to locate the security patch. In all, we successfully
locate the security patches for 1,985 CVE-branch pairs with 33
man-hours. The results are shown in Table 7.

We further investigate each CVE-branch pair that has no security
patch located by PatchScout. There are mainly four situations: 1)
the branch is not affected by the vulnerability4 (184 not-affected
cases); 2) the branch has already been out-of-maintenance5 before
the vulnerability is disclosed (1,206 not-maintained cases); 3) the
branch is affected and maintained but has not applied the patch
(150 not-patched cases); 4) the branch is patched but PatchScout
fails to locate their patch commits (210 cases). For these 210 cases,

4We manually confirm the branch is not affected by the vulnerability.
5We find the branch has no code commits after the vulnerability disclosed date.

https://github.com/exatoa/Bench4BL


Table 7: Patch deployment status on different branches.

Software
# of

CVEs

# of

Branches

# of

CVE-Branches

# of patched

CVE-Branches

# (%) of patches identified

by PatchScout

# (%) of patches identified

with M1+M2+M3

Linux Kernel 45 30 1,350 709 671 (94.64%) 439 (61.92%)
Wireshark 45 8 360 232 214 (92.24%) 59 (25.43%)
QEMU 45 14 630 353 342 (96.88%) 264 (74.79%)
FFmpeg 45 12 540 388 362 (93.30%) 206 (53.09%)
Jenkins 45 19 855 513 396 (77.19%) 119 (23.20%)

Total 225 83 3,735 2,195 1,985 (90.43%) 1,087 (49.52%)

Table 8: Not-patched CVEs and branches for each OSS.

Software
# of not-patched

CVE-branches

# (%) of CVEs with

not-patched branches

# (%) of branches with

not-patched CVEs

Linux Kernel 38 (2.81%) 20 (44.44%) 18 (60.00%)
Wireshark 16 (4.44%) 10 (22.22%) 8 (100%)
QEMU 33 (5.24%) 28 (62.22%) 7 (50.00%)
FFmpeg 50 (9.26%) 19 (42.22%) 7 (58.33%)
Jenkins 13 (1.52%) 13 (28.89%) 3 (15.79%)

Total 150 (4.02%) 90 (40.00%) 43 (51.81%)

we manually locate the patch commits from the Git repository with
21 man-hours. At last, we collect the security patches for 2,195 CVE-
branch pairs. Note PatchScout helps locate 90.43% patch commits,
and only 49.52% (1,087) patch commits can be located by combining
the three baseline methods introduced in §6. Also, 1,985 patches
are located with the help of PatchScout in 33 hours (1 minute per
patch), and the locating of the other 210 patches costs 21 hours (6
minutes per patch) when PatchScout cannot help. It demonstrates
the importance of PatchScout in facilitating such studies.

7.2 Patch Deployment Status

Not-patchedCVEs andBranches.Asmentioned above, there are
150 CVE-branch pairs that are maintained but not-patched. Such
situations are very dangerous because these branches are still under
maintenance (which means they may still have users in-use) but
forget to apply some security patches. We further breakdown these
not-patched pairs in Table 8. Surprisingly, we find such not-patched
situations are quite popular from the perspective of both CVE
entries and branches. For example, there are 90 (40.00%) CVE entries
having at least one not-patched branch and 43 (51.81%) branches
having at least one not-patched CVE. This finding shows that a
great many branches are ignored during the patch deployment
process, which brings great risks to the end-users.

It is well-believed that vulnerabilities with higher risks will
be more seriously treated by OSS developers/maintainers. To
verify this assumption, we explore the correlation between the
not-patched ratio of each CVE with its CVSS score (as presented
in Figure 4 in §A.3). We are surprised to find that 30 (33.33%) not-
patched CVEs belong to high-risk vulnerabilities (CVSS score >=
7.0), and the distribution of not-patched ratio is independent of
the CVSS score of each CVE. The not-patched ratio of the severest
CVE is not significantly lower than those of other vulnerabilities. It
implies that the maintainers may not take the vulnerability severity
into consideration when propagating patches across branches.
Affected Versions in CVE/NVD. Mu et al. [51] ,Dong et al. [30]
and Dai et al. [28] find that the information about the affected
versions in CVE/NVD may be incomplete. Since the patch presence
information of a branch (version) indicates if it is affected, we can

Table 9: Miss-reported affected versions in CVE/NVD.

Software

# of CVE-branches with

affected versions

# of CVEs with

affected versions

Linux Kernel 73/1,350 (5.41%) 15/45 (33.33%)
Wireshark 0/360 (0.00%) 0/45 (0.00%)
QEMU 3/630 (0.48%) 3/45 (6.67%)
FFmpeg 76/540 (14.07%) 20/45 (44.44%)
Jenkins 0/855 (0.00%) 0/45 (0.00%)

Total 152/3,735 (4.07%) 38/225 (16.89%)

use this information to check the correctness of the affected versions
of a vulnerability in CVE/NVD. To be more specific, if the security
patch is found at a branch (version) and the branch exists before the
vulnerability report date, this branch is thought to be affected. We
use the 2,195 CVE-branch pairs with identified patches to manually
check the affected versions in CVE/NVD.

In all, we find 152 affected versions for 38 CVEs are missed
(detailed in Table 9). We report all these missed affected versions
to the CVE community, which has confirmed all our findings and
has updated the descriptions about the affected versions for these
38 CVEs. Though PatchScout is not designed for such a task (i.e.,
finding miss-reported affected versions), this experiment renders
its benefits to the community from another angle.

7.3 Patch Backporting

Security patches are usually developed on a certain branch and
then deployed to other affected branches. During the cross-branch
patch deployment, developers may need to adjust the original
patch according to the code of the target branch. We investigate
all the patches that are located in §7.1 to measure the efforts
in cross-branch patch deployment. Specifically, from the 2,195
CVE-branches with identified patches, we find 734 unique patch
commit IDs. On average, 3.26 unique patches are developed to fix a
vulnerability on different branches.
Efforts in Patch Backporting. For each CVE, we recognize its
first-developed patch as the original patch and treat others as
backported ones. Based on the difference between the original patch
and a backported patch, we classify three types of efforts that are
required in backporting patches. The first type is to directly apply
the original patch without any change. The second type needs to
adjust the line number of the original patch according to the target
branch, but the code diff is not changed. The third type needs code
adaption and customization, since the code diff of the backported
patch is different from the original one.



Table 10: Percentage of different backported patches.

Software Type-1
1

Type-2
2

Type-3
3

Linux Kernel 61 (27.85%) 144 (65.75%) 14 (6.39%)
Wireshark 26 (28.89%) 53 (58.89%) 11 (12.22%)
QEMU 12 (41.38%) 16 (55.17%) 1 (3.45%)
FFmpeg 63 (36.84%) 101 (59.06%) 7 (4.09%)
Jenkins4 N/A N/A N/A

Total 162 (31.83%) 314 (61.69%) 33 (6.48%)

1. Direct deployment. 2. Line NO. adjustment. 3. Code adaption.
4. Jenkins has no backported patches among different branches.

As shown in Table 10, developers can directly apply the patch
for 31.83% branches and need to adjust the code line number for
61.69% cases. For the remaining 6.48% cases, developers have to
customize the patch code to fit the target branch.
Difficulties in Code Adaption. To understand the difficulties in
adapting the patch code, we analyze all the 33 patches that need
code adaption in Table 10.
• Updating code irrelevant elements (11 cases). The code difference
between an original patch and the backported one is caused by
code irrelevant elements, such as comments and indentation.

• Merging multiple commits (3 cases). When developers merge the
original security patch and other code updates into a single
commit and deploy it on a branch, the resulting backported
commit is different from the original security patch in code
behaviors. Though the merged commit has different code from
the original patch commit, the major technical difficulties of this
type of code adaption lie in merging several code commits.

• Fitting different code context (19 cases). We also find that the
context of the pre-patched code may differ on different branches.
As a result, developers have to understand the vulnerability logic
and put more efforts into adapting the original patch to a new
code context on the target branch.
In conclusion, our study makes the first attempt to shed some

light on the efforts and difficulties in patch backporting with real-
world OSS projects and CVEs. Our study classifies different types
of patch backporting situations and recognizes different levels of
code adaption, which could facilitate some follow-up research, such
as assisting patch backporting and identifying backported patches.

7.4 Patch Deployment Lag

In addition to the difference among patch commits on different
branches, their patch deployment time also varies significantly.
Vulnerability Disclosure Time vs. First Patch Time. First, we
collect the time when the first patch was applied and compare it
with the vulnerability disclosure time (as presented in Figure 2)
. Specifically, the average time lag is -24.21 days, which means
developers usually respond to the reported vulnerabilities in time.
Furthermore, there are 65 CVEs whose first patch is deployed after
the vulnerability disclosure and 24 CVEs are fixed even after one
month. These delays in vulnerability fixing lengthen the attack
window of those vulnerabilities.
First Patch Time vs. Last Patch Time. We also collect the
propagation time of a patch from the earliest branch to the last
branch and present the results in Table 11 (in §A.3). On average,
it takes 71.76 days to propagate the first patch to other branches.
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Figure 2: Lag between the time when the CVE is disclosed

and the time of the first patch.

Besides, the median of the propagation time is 26 days and the
longest propagation time is 702 days. The patch delay across
branches prolongs the risks of these vulnerabilities over end-users.

7.5 Takeaway

Our study demonstrates that a large fraction of affected branches
are still unpatched and other branches, while patched, suffer from
a quite long patch lag. We propose some suggestions to improve
the patch deployment process across branches.

Verifying affected versions of a vulnerability. Our study finds
that CVE/NVD misses many affected versions, which may ulti-
mately mislead the developers to forget deploying patches on
those branches. Correct information about the affected versions
would help developers to locate the candidate branches for patch
deployment. Therefore, how to verify the affected versions for a
vulnerability becomes an important problem. To this end, code
clone detection [38, 43, 47] and directed fuzzing [16, 23] may be
used here to locate the potential affected branches.

Managing patch deployment progress. We suppose that software
developers/maintainers might intentionally prioritize the patch
deployment process due to constrained resources. However, we
find no obvious clue for such assumption in our study. This means
the current patch deployment practice among multiple branches is
lack of management. Therefore, it calls for automatic tools to check
the patch deployment status across branches, so the developers pay
more attention to deploy patches to all affected branches in time.

Easing patch backporting. As discussed in §7.3, the original
patch sometimes requires some extra efforts (either line number
adjustment or code adaption) to deploy on other branches, which
increases the cost of patch propagating. It indicates that some
automatic techniques are needed to ease the process of patch
backporting, e.g., adjusting the line number when deploying
patches, testing the applicability of a security patch to a branch.

8 DISCUSSION

Identifying generic patches and then linking back to specific

vulnerabilities. SPIDER [50] and [69] aim to identify generic
patches. However, we may face coverage issues when directly
adopting them, since the recall of [69] is 79.6% and SPIDER only
identifies 55.37% CVE patches as safe-patches. Instead, PatchScout



enhances [69] to measure the patch likelihood of each commit and
uses it as a feature to improve patch locating and ranking.
Collecting vulnerability information frommore sources. As
shown in our evaluation, sometimes the quality of the vulnerability
information in NVD is low, which limits the effectiveness of
PatchScout in locating security patches. We report our initial
results in extracting more information from bug reports in §A.2. In
the future, we plan to collect information from more vulnerability
databases, such as SecurityTracker [9], SecurityFocus [8].
Deeply analyzing the commit code. The code in a patch commit
contains much useful information to understand the vulnerability.
However, we only use the AST of the code diff to predict its
patch likelihood. In fact, more vulnerability-related information
can be extracted from the code commit by deeply analyzing its
code. For example, we can leverage static analysis [65] or symbolic
execution [21, 59] techniques to analyze whether the commit
introduces a boundary check on an array, which is highly relevant
to fixing a buffer overflow vulnerability.
Locating patch commits for other kinds of bugs. In addition to
locating security patches, our general idea of ranking code commits
can be also applied to locating the patch commits for other bug
types (e.g., performance bugs, functional bugs). For example, by
analyzing some performance bugs reported by Jin et al. [40], we also
find broad correlations (e.g., bug identifier, bug location, descriptive
texts) between the performance bugs and their patches. In the
future, we will explore the possibility of bug-commit correlation
ranking to locate patch commits for other kinds of bugs.
Locating vulnerability-introducing commits. There may be
two kinds of commits related to a vulnerability in the code
repository: a vulnerability-introducing commit which introduces
a vulnerability and a patch commit which fixes a vulnerability.
Intuitively, both kinds of commits may be located by PatchScout.
In fact, we do not find a vulnerability-introducing commit during
our evaluation and study. This is because different from the patch
commits, the correlations between the vulnerability-introducing
commits and the vulnerabilities are indirect and implicit.

9 RELATEDWORK

Bug Fix Prediction. Predicating the fix of a bug is a popular
research topic in the field of mining software repositories (MSR).
Anvik et al. [14] propose a learning-based approach to predict the
developers that should fix a bug. Information-retrieval-based bug
localization techniques [12, 37, 42, 44, 46, 61, 68, 71, 76, 78, 81]
suggest the code components (e.g., files, functions) that are likely
to be fixed for a bug by mining bug reports and source code. While
these works intend to ease the patch development by predicting
some properties of a patch, PatchScout focuses on easing the
locating of patch commits in the code repository. Furthermore, as
demonstrated in our evaluation, locating security patches requires
more accurate correlating than predicting bug fix. To provide
effective patch locating, PatchScout considers broad correlation
features and incorporates a learning-based rank system.
Security Patch Identification. Existing works also make some
attempts to collect security patches. Xu et al. [75] propose a pattern
matching-based approach to identify security patches in binaries.
Tian et al. [66] and Wang et al. [69] leverage machine learning to

identify security patches at the source code level. Specifically, Tian
et al. [66] extract features from both commitmessages and code diffs,
while Wang et al. [69] focus on mining more code diff features for
patch identification. Further, SPIDER [50] introduces the concept
of safe patch for security patch identification. All these works
identify the security patches but cannot associate them with the
vulnerabilities they fix. Different from these works, PatchScout
supports locating the security patches of a specified vulnerability.
Security Patch Study. Since security patches are widely used,
they have become an important target to study. Rescorla et al. [60]
analyze OpenSSL security patches to understand users’ responses
to vulnerabilities. Yin et al. [77] perform a study on incorrect
patches to categorize incorrect patch patterns and understand the
causes behind them. Zhong et al. [80] and Soto et al. [64] study a
large-scale of patches to guide automatic bug repair. Further, Li et
al. [45] conduct a comprehensive study on the development life
cycle of security patches. Dai et al. [27] perform a study on patch
deployment practice on downstream binaries with the support of a
patch presence testing tool. However, as far as we know, there is
no study about the practice of patch deployment across different
branches. With the help of PatchScout, this paper could perform
the first study on patch deployment practice across branches.

10 CONCLUSION

This paper presents PatchScout, a software tool to help locate
the security patches for disclosed OSS vulnerabilities in their
code repositories. The key idea of PatchScout is to transform
the search problem of locating security patches into a ranking
problem on code commits. To rank patch commits in front of other
commits, PatchScout proposes a vulnerability-commit correlation
ranking mechanism, which exploits the broad correlations between
a vulnerability and a code commit. The ranking-based design
enables PatchScout to locate more security patches and meet a
balance between the patch coverage and themanual efforts involved.
Our evaluation on 685 OSS vulnerabilities shows that PatchScout
significantly outperforms all existing methods in both patch
coverage and manual workload. With the help of PatchScout,
this paper performs the first study on patch deployment practice
across branches with 5 popular OSS projects and 225 CVEs, drawing
many interesting findings and new research directions.
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A APPENDIX

A.1 Features in Predicting Patch Likelihood

To predict the patch likelihood of a code commit, PatchScout
leverages a learning-based approach. It collects a set of 62 features
(see Table 12) from a code commit. Compared to [69], we introduce
the following two new features.
• Update and movement of program elements.Wang et al. recognize
the code diff as a sequence of additions and deletions of program
elements. However, we observe that some additions and deletions
should be recognized as updates and movements to illustrate
the real purposes of these code changes. Figure 3 gives two
examples: Figure 3 (a) fixes an infinite recursion vulnerability by
updating the branch condition (line 16 to line 18); while Figure 3
(b) fixes a heap buffer overflow by moving the condition check
(line 9, 10) to the inside of the loop (line 16, 17). In these
two cases, simply recognizing the code changes as addition
and deletion would overlook the real semantic (update and
movement) behind it. Therefore, we introduce the features
of updates and movements on program elements (No.45-58
in Table 12) into the classification model. These features are
collected by matching the patterns of additions and deletions.

• Syntactic hunks. The discreteness of the code diff may help
to differ patch commits from other commits. To represent the
discreteness of the code diff, Wang et al. use textual-level hunks
(i.e., a chunk of code consisting of continuous modified code
lines and several unmodified code lines around them). However,
textual-level changes in code lines do not directly reflect the
syntactic-level changes in program elements, so we also consider
how discrete the code diff is at the syntactic level. In particular,
we introduce 4 syntactic hunk features (No.59-62 in Table 12)
which use continuous added/removed/updated/moved program
elements to represent the discreteness at the syntactic level. We
extract these features by simply counting the syntactic hunks.

A.2 Enhance PatchScout with Bug Reports

We conduct an experiment to measure the possibility of using the
vulnerability information in bug reports to enhance PatchScout.
Specifically, from the 1,628 (=943+685) CVEs in our training set and
testing set, we find 1,391 bug reports in their NVD pages. From
these reports, we successfully extract more vulnerability identifier,
vulnerability location, vulnerability type information for 641 CVEs,
using the same method in §4.1. We then enhance PatchScout to
use these new features during training and testing. However, we
find that the effectiveness of PatchScout decreases a little after
adopting the features extracted from bug reports. To be specific,
the top-1 recall of PatchScout drops 0.88% and its top-10 recall
drops 1.02%. We further investigate these new features and find that
though more information is extracted from the bug reports, much
of it is incorrect, e.g., bug reports usually contain stack traces which
have many patch-irrelevant functions and files. In particular, we
find that for 400 CVEs, the relevance between the true patch commit
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https://gitlab.com/wireshark/wireshark/-/commit/c31425f9ae15067e26ccc6183c206c34713cb256
https://gitlab.com/wireshark/wireshark/-/commit/c31425f9ae15067e26ccc6183c206c34713cb256


and the vulnerability information degrades in the corresponding
feature dimensions. It turns out that the form of information in
the bug reports is more complex, and a more accurate information
extractor is required to enhance PatchScout.

A.3 Supplementary Tables and Figures

 1  diff --git a/src/frompnm.c b/src/frompnm.c

 2  index 86d0c03..de73766 100644

 3  --- a/src/frompnm.c

 4  +++ b/src/frompnm.c

 5  @@ -36,13 +36,15 @@ pnm_get_line(unsigned char *p, unsigned char *end, ...

 6       int n;

 7   

 8       do {

 9  +        /* read the line */

10          for (n = 0 ; p < end && *p >= ' '; p++) {

11              if (n < 255) {

12                  line[n++] = *p;

13              }

14          }

15   

16 -        if (p < end && *p == '\n') {

17 +        /* skip invald characters */

18 +        if (p < end && *p < ' ') {

19              p++;

20          }

21

(a) Patch Commit of CVE-2019-11024

 1  diff --git a/coders/sgi.c b/coders/sgi.c

 2  index 236bf4cb9..415598122 100644

 3  --- a/coders/sgi.c

 4  +++ b/coders/sgi.c

 5  @@ -953,8 +953,6 @@ static MagickBooleanType WriteSGIImage(const ImageInfo ...

 6     assert(image->signature == MagickCoreSignature);

 7     if (image->debug != MagickFalse)

 8         (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);

 9  -  if ((image->columns > 65535UL) || (image->rows > 65535UL))

10 -      ThrowWriterException(ImageError,"WidthOrHeightExceedsLimit");

11     assert(exception != (ExceptionInfo *) NULL);

12     ...

13     do

14     {

15         ...

16 +       if ((image->columns > 65535UL) || (image->rows > 65535UL))

17 +           ThrowWriterException(ImageError,"WidthOrHeightExceedsLimit");

18         ...

(b) Patch Commit of CVE-2019-19948

Figure 3: Examples of security patch fixing vulnerability by

update or movement.

Table 11: Propagation time (day) between the first patch and

the last patch on all affected branches.

Software Minimum Median Average Maximum

Linux Kernel 1 57.5 79.98 517
Wireshark 0 0 23.70 702
QEMU 0 106.5 116.38 228
FFmpeg 0 38 84.44 420
Jenkins1 N/A N/A N/A N/A

Total 0 26 71.76 702
1 In Jenkins, there’s only one unique patch on all patched branches
for each vulnerability, which means there’s no patch propagation.

Table 12: Features to predict the patch likelihood of a

commit.

No. Feature

1 # of changed files
2 # of changed functions
3 # of hunks
4 # of same hunk
5 - 8 # of added/removed/total/net lines
9 - 12 # of added/removed/total/net conditional statements
13 - 16 # of added/removed/total/net loops
17 - 20 # of added/removed/total/net logical expressions
21 - 24 # of added/removed/total/net functions
25 - 28 # of added/removed/total/net function calls
29 - 32 # of added/removed/total/net assignments
33 - 36 # of added/removed/total/net memory related operations
37 - 40 # of added/removed/total/net exits
41 - 44 # of added/removed/total/net returns
45 # of updated conditional statements
46 # of updated loops
47 # of updated logical expressions
48 # of updated function calls
49 # of updated memory related operations
50 # of updated returns
51 # of updated operands in conditional statement
52 # of updated operands in loop
53 # of updated operands in logical expression
54 # of updated operands in function call
55 # of updated operands in memory related operation
56 # of updated operands in return
57 # of moved conditional statements
58 # of moved loops
59 - 62 # of added/removed/updated/moved syntactic hunks
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Figure 4: The not-patched ratios among different CVEs.



Table 13: Vulnerability type groups, vulnerability impact groups and the causality relations between them.

Vulnerability Type Groups (16) Vulnerability Impact Groups (15)

overflow denial of service, crash, segmentation fault, segmentation violation, memory issues, memory
corruption, invalid memory access, code execution, unspecified impact, assertion failure

buffer overflow denial of service, crash, segmentation fault, segmentation violation, memory issues, memory
corruption, invalid memory access, code execution, unspecified impact, assertion failure

integer overflow denial of service, crash, unspecified impact, assertion failure

heap overflow denial of service, crash, segmentation fault, segmentation violation, memory issues, memory
corruption, invalid memory access, code execution, unspecified impact, assertion failure

stack overflow denial of service, crash, segmentation fault, segmentation violation, memory issues, memory
corruption, invalid memory access, code execution, unspecified impact, assertion failure

off by one denial of service, crash, segmentation fault, segmentation violation, memory issues, memory
corruption, invalid memory access, code execution, unspecified impact, assertion failure

use after free
denial of service, crash, segmentation fault, segmentation violation, memory issues, memory
corruption, invalid memory access, code execution, obtain sensitive information, unspecified
impact, assertion failure

double free
denial of service, crash, segmentation fault, segmentation violation, memory issues, memory
corruption, invalid memory access, code execution, obtain sensitive information, unspecified
impact, assertion failure

infinite loop denial of service, memory issues, memory leak, memory corruption, memory consumption,
unspecified impact, stack consumption

out of bound access
denial of service, crash, segmentation fault, segmentation violation, memory issues, memory
corruption, invalid memory access, code execution, obtain sensitive information, unspecified
impact, assertion failure, bus error

out of bound write
denial of service, crash, segmentation fault, segmentation violation, memory issues, memory
corruption, invalid memory access, code execution, unspecified impact, assertion failure, bus
error

null pointer dereference denial of service, crash, segmentation fault, segmentation violation, memory issues, memory
corruption, invalid memory access, unspecified impact, assertion failure

out of bound read memory issues, memory corruption, invalid memory access, obtain sensitive information,
unspecified impact, assertion failure, bus error

miss bound check
denial of service, crash, segmentation fault, segmentation violation, memory issues, memory
corruption, invalid memory access, code execution, obtain sensitive information, unspecified
impact, assertion failure

divide by zero denial of service, crash, segmentation fault, segmentation violation, unspecified impact,
assertion failure

race condition
denial of service, crash, segmentation fault, segmentation violation, memory issues, memory
corruption, invalid memory access, code execution, obtain sensitive information, unspecified
impact, assertion failure



Table 14: Detailed Dataset Information of CVEs and Branches for Patch Deployment Study across Branches (see §7).

Software CVEs Branches

Linux Kernel

CVE-2017-5577 CVE-2017-6214 CVE-2017-7273 CVE-2017-7889 CVE-2017-8063
CVE-2017-10911 CVE-2017-11473 CVE-2017-12193 CVE-2017-16530 CVE-2017-16995
CVE-2018-5332 CVE-2018-5803 CVE-2018-7492 CVE-2017-18204 CVE-2017-18216
CVE-2018-10940 CVE-2018-13099 CVE-2018-13096 CVE-2018-13405 CVE-2018-16276
CVE-2018-19854 CVE-2019-11833 CVE-2019-12817 CVE-2018-20961 CVE-2019-15222
CVE-2019-15919 CVE-2019-15923 CVE-2019-15927 CVE-2019-17052 CVE-2019-19079
CVE-2019-19078 CVE-2019-19065 CVE-2019-19061 CVE-2019-19052 CVE-2019-19534
CVE-2019-19535 CVE-2019-19807 CVE-2020-9383 CVE-2020-11494 CVE-2020-11884
CVE-2020-12768 CVE-2020-13143 CVE-2020-13974 CVE-2020-14416 CVE-2020-15393

linux-3.2.y linux-3.10.y
linux-3.12.y linux-3.16.y
linux-3.18.y linux-4.1.y
linux-4.4.y linux-4.8.y
linux-4.9.y linux-4.10.y
linux-4.11.y linux-4.12.y
linux-4.13.y linux-4.14.y
linux-4.15.y linux-4.16.y
linux-4.17.y linux-4.18.y
linux-4.19.y linux-4.20.y
linux-5.0.y linux-5.1.y
linux-5.2.y linux-5.3.y
linux-5.4.y linux-5.5.y
linux-5.6.y linux-5.7.y
linux-5.8.y master

Wireshark

CVE-2016-5359 CVE-2016-6507 CVE-2016-6509 CVE-2016-6512 CVE-2017-5597
CVE-2017-6474 CVE-2017-7701 CVE-2017-7703 CVE-2017-7748 CVE-2017-7747
CVE-2018-7420 CVE-2018-7336 CVE-2018-7321 CVE-2018-9268 CVE-2018-9265
CVE-2018-9273 CVE-2018-9257 CVE-2018-9258 CVE-2018-9271 CVE-2018-11356
CVE-2018-11354 CVE-2018-14370 CVE-2018-14341 CVE-2018-14343 CVE-2018-16058
CVE-2018-18225 CVE-2018-19626 CVE-2019-5721 CVE-2019-5717 CVE-2019-5716
CVE-2019-9209 CVE-2019-9214 CVE-2019-10902 CVE-2019-10894 CVE-2019-10896
CVE-2019-10900 CVE-2019-10903 CVE-2019-12295 CVE-2019-13619 CVE-2019-19553
CVE-2020-7044 CVE-2020-7045 CVE-2020-9428 CVE-2020-9431 CVE-2020-13164

master-1.12 master-2.0
master-2.2 master-2.4
master-2.6 master-3.0
master-3.2 master

QEMU

CVE-2016-4037 CVE-2016-6490 CVE-2016-6835 CVE-2016-6836 CVE-2016-7116
CVE-2016-7466 CVE-2016-7421 CVE-2016-9102 CVE-2016-9105 CVE-2016-9106
CVE-2017-5525 CVE-2017-5552 CVE-2017-5578 CVE-2017-5579 CVE-2017-5667
CVE-2017-5857 CVE-2017-5898 CVE-2017-5931 CVE-2017-5973 CVE-2017-5987
CVE-2017-6058 CVE-2017-7377 CVE-2017-8086 CVE-2017-8284 CVE-2017-18030
CVE-2018-15746 CVE-2018-17958 CVE-2018-18849 CVE-2018-19489 CVE-2018-20126
CVE-2018-20125 CVE-2018-20123 CVE-2018-20216 CVE-2019-5008 CVE-2019-3812
CVE-2019-6501 CVE-2019-6778 CVE-2018-20815 CVE-2019-12155 CVE-2019-13164
CVE-2019-15034 CVE-2019-20382 CVE-2020-11102 CVE-2020-11869 CVE-2020-13765

stable-2.5 stable-2.6
stable-2.7 stable-2.8
stable-2.9 stable-2.10
stable-2.11 stable-2.12
stable-3.0 stable-3.1
stable-4.0 stable-4.1
stable-4.2 master

FFmpeg

CVE-2016-6164 CVE-2016-6920 CVE-2016-10190 CVE-2016-10192 CVE-2017-7865
CVE-2017-7862 CVE-2017-9990 CVE-2017-9992 CVE-2017-9994 CVE-2017-9991
CVE-2017-11399 CVE-2017-11719 CVE-2017-14058 CVE-2017-14170 CVE-2017-14169
CVE-2017-14171 CVE-2017-14767 CVE-2017-15672 CVE-2017-16840 CVE-2017-17081
CVE-2018-6621 CVE-2018-6912 CVE-2018-7557 CVE-2018-7751 CVE-2018-12459
CVE-2018-12458 CVE-2018-12460 CVE-2018-13301 CVE-2018-13300 CVE-2018-13303
CVE-2018-13302 CVE-2018-13305 CVE-2018-13304 CVE-2018-14394 CVE-2018-14395
CVE-2018-15822 CVE-2019-1000016 CVE-2019-9721 CVE-2019-9718 CVE-2019-11338
CVE-2019-12730 CVE-2019-17539 CVE-2019-17542 CVE-2020-12284 CVE-2020-13904

release/2.4 release/2.8
release/3.0 release/3.1
release/3.2 release/3.3
release/3.4 release/4.0
release/4.1 release/4.2
release/4.3 master

Jenkins

CVE-2016-0788 CVE-2016-0789 CVE-2016-3725 CVE-2016-9299 CVE-2017-2600
CVE-2017-2606 CVE-2017-2608 CVE-2017-2610 CVE-2017-2601 CVE-2017-2611
CVE-2017-2602 CVE-2017-1000362 CVE-2017-1000399 CVE-2017-1000393 CVE-2017-1000391
CVE-2017-1000355 CVE-2018-1000169 CVE-2018-1000193 CVE-2018-1000194 CVE-2018-1999003
CVE-2018-1999001 CVE-2018-1999044 CVE-2018-1000861 CVE-2018-1000862 CVE-2018-1000864
CVE-2018-1000408 CVE-2018-1000406 CVE-2018-1000409 CVE-2018-1000410 CVE-2018-1000407
CVE-2019-10406 CVE-2019-10405 CVE-2019-10404 CVE-2019-10401 CVE-2019-10384
CVE-2019-10383 CVE-2019-10353 CVE-2019-1003050 CVE-2019-1003049 CVE-2020-2161
CVE-2020-2105 CVE-2020-2104 CVE-2020-2103 CVE-2020-2102 CVE-2020-2162

stable-2.107 stable-2.121
stable-2.138 stable-2.150
stable-2.164 stable-2.176
stable-2.190 stable-2.19
stable-2.204 stable-2.222
stable-2.235 stable-2.249
stable-2.32 stable-2.46
stable-2.60 stable-2.7
stable-2.73 stable-2.89
master


	Abstract
	1 Introduction
	2 Preliminary Study
	3 Approach Overview
	3.1 Key Idea
	3.2 Correlation Features

	4 PatchScout Design
	4.1 Information Extraction
	4.2 Feature Generation
	4.3 Commits Ranking

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Effectiveness
	6.3 Feature Group Contributions
	6.4 Possibility of Leveraging Bug Fix Prediction

	7 Patch Deployment across Branches
	7.1 Study Design
	7.2 Patch Deployment Status
	7.3 Patch Backporting
	7.4 Patch Deployment Lag
	7.5 Takeaway

	8 Discussion
	9 Related Work
	10 Conclusion
	References
	A Appendix
	A.1 Features in Predicting Patch Likelihood
	A.2 Enhance PatchScout with Bug Reports
	A.3 Supplementary Tables and Figures


