
PDiff: Semantic-based Patch Presence Testing
for Downstream Kernels

Zheyue Jiang∗
Fudan University

zyjiang18@fudan.edu.cn

Yuan Zhang∗
Fudan University

yuanxzhang@fudan.edu.cn

Jun Xu
Stevens Institute of Technology

jxu69@stevens.edu

Qi Wen
Fudan University

16212010024@fudan.edu.cn

Zhenghe Wang
Fudan University

17212010075@fudan.edu.cn

Xiaohan Zhang
Fudan University

xh_zhang@fudan.edu.cn

Xinyu Xing
Pennsylvania State University

xxing@ist.psu.edu

Min Yang
Fudan University

m_yang@fudan.edu.cn

Zhemin Yang
Fudan University

yangzhemin@fudan.edu.cn

ABSTRACT

Open-source kernels have been adopted by massive downstream
vendors on billions of devices. However, these vendors often omit
or delay the adoption of patches released in the mainstream version.
Evenworse, many vendors are not publicizing the patching progress
or even disclosing misleading information. However, patching
status is critical for groups (e.g., governments and enterprise users)
that are keen to security threats. Such a practice motivates the
need for reliable patch presence testing for downstream kernels.
Currently, the best means of patch presence testing is to examine
the existence of a patch in the target kernel by using the code
signature match. However, such an approach cannot address the
key challenges in practice. Specifically, downstream vendors widely
customize the mainstream code and use non-standard building
configurations, which often change the code around the patching
sites such that the code signatures are ineffective.

In this work, we propose PDiff, a system to perform highly
reliable patch presence testing with downstream kernel images.
Technically speaking, PDiff generates summaries carrying the
semantics related to a target patch. Based on the semantic sum-
maries, PDiff compares the target kernel with its mainstream
version before and after the adoption of the patch, preferring the
closer reference version to determine the patching status. Unlike
previous research on patch presence testing, our approach examines
similarity based on the semantics of patches and therefore, provides
high tolerance to code-level variations. Our test with 398 kernel
images corresponding to 51 patches shows that PDiff can achieve
high accuracy with an extremely low rate of false negatives and

∗co-first authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417240

zero false positives. This significantly outperforms the state-of-the-
art tool. More importantly, PDiff demonstrates consistently high
effectiveness when code customization and non-standard building
configurations occur.

CCS CONCEPTS

• Security and privacy → Operating systems security; Vul-
nerability management.

KEYWORDS

Patch Presence Test, Patch Semantics, Linux Kernel Security
ACM Reference Format:

Zheyue Jiang, Yuan Zhang, Jun Xu, QiWen, ZhengheWang, Xiaohan Zhang,
Xinyu Xing, Min Yang, and Zhemin Yang. 2020. PDiff: Semantic-based Patch
Presence Testing for Downstream Kernels. In Proceedings of the 2020 ACM

SIGSAC Conference on Computer and Communications Security (CCS ’20),

November 9–13, 2020, Virtual Event, USA.ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3372297.3417240

1 INTRODUCTION

Sitting in the core of the Operating System (OS), the kernel is the
most important piece of software in various types of computing
devices. However, the development of kernels has been a major
challenge for tremendous device vendors, as these vendors either
cannot afford the cost of handling the extreme complexities or
lack the expertise in achieving the high requirement of efficiency,
reliability, and security. Open-source kernel projects significantly
alleviate this situation. In particular, the Linux kernel has been
adopted by hundreds of downstream vendors on millions of
devices [13, 44] since its first release in 1991. More remarkably,
variants of the (Linux-based) Android kernel are running on over
2.3 billion of smartphones and IoT devices [57].

Despite the large group of downstream kernels boost the
diversity of devices and extend all-sided functionalities, they do
not provide the same level of security as the mainstream version.
A major reason is that the downstream vendors often fail to
timely adopt the released patches [2, 20, 21, 29, 38, 49]. The
delay of patching can range from months to years, exposing a
significant attack surface [23, 45]. To mitigate this type of threat,
groups that have high demands of security, such as government

https://doi.org/10.1145/3372297.3417240
https://doi.org/10.1145/3372297.3417240

agents, enterprise users, and security service providers, often
take proactive actions. For instance, DARPA recently started the
AMP program [10] to identify and remediate un-adopted patches,
and various anti-virus vendors seek un-patched vulnerabilities
and develop corresponding exploit protections [8, 39]. In those
actions, the first and indispensable step is to understand the
presence/absence of patches in the target kernels.

By intuition, a straightforward idea of understanding patch
presence is to acquire related information from the vendors.
However, as unveiled by our study presented in § 2.1, this is
often infeasible or unreliable. On the one hand, many downstream
vendors are not publicizing their patching progress. On the other
hand, presumably due to high complexities in patch management,
downstream vendors (even large ones like Google and Huawei)
can unintentionally disclose misleading patch information. These
practices indicate an urgent need of alternative approaches for
patch presence testing with downstream kernels.

Technically speaking, there have been two approaches to per-
form patch presence testing with kernels – ❶ penetration testing by
developing a proof-of-concept (PoC) program from one particular
version of the kernel, running it against the target versions, and
examining whether it triggers the corresponding vulnerability;
❷ deriving a signature from the mainstream version (with patch
applied) and then searching that signature in the target kernels (e.g.,
FIBER [61]). In practice, both approaches, however, are insufficient
for our problem domain. As we will shortly explain in § 2.3,
downstream vendors prevalently customize the mainstream kernel
and use non-standard building configurations. These factors greatly
contribute to the variation in code layout, making the above two
approaches ineffective. For the first approach, the PoC programs
are developed to be working only for a specific kernel. When
applied to another version of the kernel with code changes, the
PoC programs often fail to create the contexts of triggering the
vulnerabilities. For the second approach, kernel customization and
non-standard building configurations can frequently change the
code around the patching site. Therefore, the signature derived
from the mainstream kernel cannot remain in the target kernels.
Take the state-of-the-art patch presence testing system FIBER [61]
for example. In cases where the target kernels are customized
or built with non-standard configurations, FIBER demonstrates
a significant decrease in accuracy (§ 5). In short, patch presence
testing with downstream kernels remains an open problem under
practical settings.

To address the problem above, we propose PDiff, a system to
facilitate patch presence testing with downstream kernels. At the
high level, PDiff generates summaries carrying the semantics of
a corresponding patch. Then, it utilizes the summaries to perform
patch presence testing. The intuition behind the design of PDiff is
that the target kernel and its reference version should have similar
semantics, regardless of the variations at the code level. Technique
wise, PDiff proceeds patch presence testing by following three
steps. Given the pre-patch code and post-patch code of the reference
versions, it first slices the paths that are affected by a patch. Second,
it generates semantic digests from those paths, using formulas
constructed with symbolized values as representation. Finally, patch
summaries are synthesized by combing the path digests from both
the pre-patch and post-patch reference versions. In the course of

patch presence testing, PDiff measures the distance between the
patch summaries in the target kernel and those in the pre-patch
and post-patch reference versions, preferring the closer reference
version to determine the patching status.

Admittedly, this is not the first work that performs patch
presence testing with kernels. To the best of our knowledge, PDiff
however is the first work that considers code similarities at the
semantic level for patch presence testing. As such, it has a high
tolerance to noises introduced by code variance, capable of handling
complex scenarios, in particular, the cases where non-standard
building or code customization occurs. Moreover, PDiff has a
minimal set of assumptions. PDiff only requires the pre-patch and
post-patch versions of the mainstream kernel, and it can seamlessly
work with arbitrary binary-only downstream versions. This makes
PDiff significantly more practical than the existing techniques.

We have implemented a prototype of PDiff for Linux kernels
on AArch64 and ARM32. To evaluate the utility of PDiff, we
gather a group of 398 real-world kernel images corresponding
to 51 released patches. In particular, these test-cases include
thousands of (image, patch) pairs that are affected by customized
code or non-standard building configurations. The results show
that PDiff achieves highly accurate and reliable patch presence
testing, with a false negative rate lower than 4.5% and no false
positives. In addition, PDiff has nearly perfect tolerance to building
configuration variation and code customization. These significantly
outperform the state-of-the-art techniques.

In summary, we make the following contributions.
• Deep Understandings of the Patch Presence Testing Prob-

lem. We perform a comprehensive study on the patch presence
testing problem by using a large-corpus of real-world kernel im-
ages. Throughout this study, we identify the essential challenges
tied to reliable patch presence testing and analyze how these
challenges affect the state-of-the-art techniques.
• New Semantic-based Patch Presence Testing Approach.

We design and implement PDiff, a system that utilizes semantic-
based similarity comparison to achieve highly accurate and
reliable patch presence testing. PDiff is tolerant to variance
at the code level, which overcomes the challenges that limit the
existing techniques.
• Comprehensive Evaluation. We prototype PDiff for Linux
AArch64 and ARM32 targets, and conduct an extensive evalua-
tion of PDiff with a large corpus of test cases.

2 PROBLEM UNDERSTANDING

This section first presents a study to motivate patch presence
testing for downstream kernels, then defines our problem scope
and elaborates on the major challenges of this research.

2.1 Motivating Study

This research is motivated by the fact that downstream vendors
prevalently delay the adoption of available patches and they are
not reliably reporting their patching progress. To better unveil
this less-understood fact, we perform an empirical study with
715 Linux-based kernel images from 9 popular vendors. Detailed
distribution of the images is presented in Table 1. In this study, we
examine the patching status pertaining to 152 vulnerabilities in the

Table 1: Patch delay and inaccurate patch reports by

downstream vendors.

Vendor

of

Images

of [Image,

Vul] Pairs
1

of Omitted

Patches

Max Patch

Age (day)

of Wrong

Patch Reports
2

Google 152 4,690 0/0% 0 2/0.04%
Samsung 120 3,414 133/3.89% 643 0/0%
Xiaomi 52 1,585 57/3.60% 1,018 0/0%
Vivo 22 652 94/14.42% 893 4/0.61%
Huawei 186 3,911 9/0.23% 373 3/0.08%
Meizu 102 2,563 349/13.62% 1,085 235/9.17%
Oppo 29 852 25/2.93% 935 15/1.76%
D-Link 25 422 97/22.99% 1,451 N/A
NETGEAR 27 496 48/9.68% 1,322 N/A

Total 715 18,585 812/4.37% - 259/1.39%
1 Each [Image,Vul] pair is a unique combination of an image and a vulnerability.
2 A wrong patch report means a patch is reported as adopted but actually not.

mainstream Linux kernel and we verify the public patch reports
from the vendors. Among the 152 vulnerabilities, 120 are reported
to the CVE database with a CVSS score higher than 5 across the
past 5 years and the remaining 32 are used by FIBER [61]. More
details on how we perform the examination are explained in § 5.5.

As noted in Table 1, the vendors widely miss available patches.
On average, 4.37% of the patches are not adopted when these
vendors release their images. In particular, over 13% of the patches
are omitted by Meizu, Vivo, and D-Link. Further, the missed
patches can be as old as years. These results, well matching the
previous observations [2, 20, 21, 29, 38, 49], strongly support that
downstream vendors commonly delay or even ignore the patches.

Looking into the patch reports released by the vendors, we
surprisingly observe tremendous missing or even misleading
information. Overall, these vendors have three styles of reporting
patching progress:
• Vendors such as D-Link and NETGEAR do not disclose their
patch information in any means.
• Unlike D-Link and NETGEAR, many vendors release partial
information that covers a specific group of patches. In particular,
Huawei reports certain patches on its non-Android devices
through an official website. Other than that, Samsung, Meizu,
Xiaomi, and Huawei attach a patch tag in the format of 20YY-MM-

01 while releasing most of their Android ROMs. A 20YY-MM-01

tag indicates all patches in the vendor’s security bulletin for
month “MM” have been applied. From such a tag, the status of
patches out of the 20YY-MM-01 bulletin remains known.
• Finally, Oppo, Google, and Vivo are reporting comprehensive
patching information for their Android devices1. Specifically,
they prefer to attach their device ROMs with a tag like 20YY-

MM-05, indicating they have adopted patches covered in all their
security bulletins until month “MM”.

By checking the available patch reports for our 152 vulnerabilities,
we find that Vivo, Huawei, Meizu, and Oppo are reporting patches
that are actually not applied. In particular, nearly 10% of the patches
reported by Meizu are not adopted. While Google has no wrong
reports for our 152 vulnerabilities, it, however, attaches security
tag 2016-12-05 to an image built on 2016-11-02. The tag covers
two patches that are publicized after 2016-11-02. Through manual
analysis, we verify that the two patches are indeed not applied.

1These vendors also use 20YY-MM-01 tags for a small number of their Android devices.

Table 2: Impacts of third-party customization on patch-

related functions.

Vendor

of

Sources

of Patch

-related Func

of

Customized Func

Customize

Rate

Google 126 741 554 74.76%
Samsung 42 1,256 980 78.03%
Xiaomi 51 1,069 784 73.34%
Vivo 0 - - -
Huawei 151 1,092 822 75.27%
Meizu 7 341 231 67.74%
Oppo 8 673 457 67.90%
D-Link 12 313 220 70.29%
NETGEAR 9 542 335 61.81%

Total. 406 6,027 4,383 72.72%

Overall and in general, today’s downstream vendors are largely
disregarding patching reports or releasing unreliable information.

Summary:Our study empirically confirms ourmotivation
and strongly indicates the necessity of techniques for patch
presence testing with downstream kernels.

2.2 Problem Scope

This work focuses on patch presence testing for downstream
OS kernels that are derived from an open-source mainstream
version. Specifically, we assume a vulnerability in the mainstream
kernel is disclosed with a patch at the source level. Given a piece
of downstream kernel that inherits the vulnerability, we aim at
determining the kernel’s patching status.

In this research, we consider a general and common setting
where the downstream vendors are not intentionally malicious but
they act as follows. First, the vendors may disregard or delay the
release of their source code. This frequently happens in the reality,
despite the vendors face the risk of license violations [32, 35, 51, 53].
Second, the vendors may not publicize the patching progress or
may release misleading information. As we have illustrated above,
such cases are surprisingly prevalent.

On account of the conditions above, we have the following
assumptions in our research. First, we mainly consider testers
that are users of the downstream kernels or providers of security
service. Second, the testers can only access the binary code of
the downstream kernels. Third, the testers are unable to acquire
genuine patching information from the downstream vendors.
Finally, the target kernels are free of obfuscation. This complies
with our observations on 715 real-world downstream kernel images.

2.3 Challenges of Patch Presence Testing

As briefly introduced, the major challenge of patch presence testing
derives from the code-level variance between the mainstream ver-
sion and the downstream kernels. In practice, we observe two major
sources introducing such variance — third-party customization and
non-standard building configurations. To fully understand their
prevalence and their effects on patch presence testing, we perform
another study as follows.

2.3.1 Third-party Code Customization. Open source kernels are
widely customized by third-party vendors for extended function-
alities. For instance, a variety of smartphone vendors are porting

Table 3: Impacts of third-party customization on patches

(516 samples in total).

Vendor C1
1

C2
2

C3
3

C4
4 (C1+C2+C3) /

(C1+C2+C3+C4)

Google 11 5 28 22 66.67%
Samsung 21 9 44 42 63.79%
Xiaomi 18 4 34 31 64.37%
Vivo - - - - -
Huawei 24 8 45 34 69.37%
Meizu 6 2 13 11 65.63%
Oppo 10 3 12 18 58.14%
D-Link 3 1 10 9 60.87%
NETGEAR 6 3 13 12 66.67%

Total. 99 35 202 180 65.12%
1 Customization directly modifies the patch (e.g. Figure 6).
2 Customization modifies the patch context considered by Fiber [61] (e.g. Figure 1).
3 Customization changes patch-related control flow (e.g. Figure 7).
4 Patch irrelevant customization.

Android kernels to accommodate their own devices. To unveil the
effects of third-party customization on patches, we exhaustively
search source code2 for the 715 images used in § 2.1 and successfully
obtain 406 sources3. With these sources, we observe prevalent and
various types of changes to patches.

Specifically, official patches to the 152 vulnerabilities affect 285
functions in the mainstream Linux kernel. As shown in Table 2,
the 285 functions correspond to 6,027 unique counter-parts in our
406 sources. By examining the 6,027 functions, we find that 4,383
cases (over 72%) contain code different from their mainstream
versions. In particular, Samsung has over 78% of its patch-related
functions varying from the mainstream versions. From the 4,383
customized functions4, we randomly pick 516 cases (around 12%)
to understand how the code variations actually affect the patches.
Overall, we observe three types of impacts as summarized in Table 3.
Specifically, among the 516 cases, 19.19% contain direct changes to
the patching code, 6.78% have changes to code nearby the patching
sites (a.k.a. patching contexts considered by Fiber [61]), and 39.15%
modify patch-dependent control flows. Examples for the three types
are respectively demonstrated in Figure 6, Figure 1, and Figure 7.

The above results are clear evidence that third-party customiza-
tion commonly leads to code changes that indeed affect the patches.
More importantly, as we will detail in § 5.2, this type of code
variance remains an open challenge to the state-of-the-art patch
presence testing tools such as FIBER [61].

2.3.2 Diversities in Building Configurations. Modern OS kernels
carry all-sided building configurations to accommodate the needs
of functionalities. For instance, the aforementioned 406 Linux-based
sources provide three major categories of configurations, including
compilation options, self-designed macros, and optimization levels
(by GNU GCC). Among these 406 sources, the three categories

2We consider a source code matches an image if (1) the source and the image are
used for the same device model; (2) the source and the image share the same kernel
version; (3) the source and the image have exactly the same building configurations (if
available); and (4) the source and the image have consistent public information, such
as firmware version, PDA and CSC.
3This shows that downstream vendors only release source code for part of (around
55%) their images, indicating the necessity of binary-only patch presence testing.
4Beyond customization, code differences in those functions may also be because the
downstream images use mainstream versions that are different from the ones used in
our study. However, regarding impacts to patches, such code differences are similar to
third-party customization. Hence, we deem those functions also as being customized.

Table 4: Impacts of building configurations on patches.

Vendor

Varied-macro-impacted

(image, patch)

New-macro-impacted

(image, patch)
Os/O2

Google 98 15 126/0
Samsung 71 77 38/4
Xiaomi 144 26 40/11
Vivo - - -
Huawei 416 86 8/143
Meizu 41 17 0/7
Oppo1 - - -
D-Link 11 20 0/12
NETGEAR 4 13 0/9

Total. 785 254 212/186
1 Oppo provides no guidance of compiling its kernels and we cannot build those
kernels with default configurations. Therefore, we cannot get its configurations.

contain 170 specific configurations on average that may affect the
patches to 152 vulnerabilities. Our study below reveals that the
downstream vendors widely alter these building configurations,
which truly introduce code-level variances that affect the patches.

From the 406 source code, we extract the configurations for
398 of them (configurations from the 8 Oppo source code cannot
be obtained). As summarized in Table 4, the configurations can
affect the patches in three ways. First, the configurations often
enable/disable macros that are different from their mainstream
versions5. In our data-sets, this type of macro variations affect the
patches in 785 (image, patch) pairs. Second, these configurations
are adding new macros. Overall, among the 398 images, 254 (image,
patch) pairs are affected by new macros. Finally, downstream
configurations may use non-standard optimizations. In our 406
images, 212 of them use Os instead of O2. Difference at the
optimization level can in general incur code changes to patches.

To handle the possible variations in building configurations,
past research [61] proposes to build the mainstream kernel using
different configurations. The insight is to produce a group of
reference versions such that one of them matches the target
kernel. Not surprisingly, this approach is impractical because of
the tremendous number of configurations and their combinations.
Therefore, practical patch presence testing needs to tolerate code
changes incurred by building configurations. In § 5.2, we will detail
that existing techniques have limited utilities with doing so.

Summary: Our study demonstrates that third-party code
customization and non-standard building configurations
are prevalent. The two issues can largely affect the patches,
which remain significant challenges to patch presence
testing.

3 APPROACH OVERVIEW

In this work, we propose PDiff for patch presence testing on binary-
only downstream kernels. Going beyond achieving high accuracy,
this approach also aims to carry resilience to code changes due to
customization and building configurations. In the following, we
first explain our insights and then overview our approach with a
running example.

5We consider macros that (1) change code in/around the patch or (2) affect patch-
dependent control flow.

3.1 Insights

The insights behind the design of PDiff are three-fold. First of all,
PDiff bases patching status on similarity comparison. Specifically,
PDiff measures the distance from the target kernel to the pre-patch
and post-patch reference versions, respectively. It considers that the
target kernel shares the patching status with the closer reference
version. By intuition, this strategy has high resilience to patch-
irrelevant changes, since such code changes would equally affect
both of the pre-patch and post-patch reference versions. The noise
would be, therefore, balanced. Second, PDiff considers semantic-
level properties of patch-affected regions for similarity comparison.
Such properties can be largely preserved even when the code layout
around the patching site changes. To avoid missing information,
PDiff considers all-sided semantics and capture the semantics at a
fine granularity. Last but not least, PDiff elaborately determines
patch-affected regions. It maximizes the coverage of patch-related
code while minimizing the other code to reduce noise.

diff --git a/mm/oom_kill.c b/mm/oom_kill.c
@@ -565,11 +564,13 @@ static bool __oom_reap_task_mm(struct
task_struct *tsk, struct mm_struct *mm)
- tlb_gather_mmu(&tlb, mm, 0, -1);

for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 ...
 if (vma_is_anonymous(vma)||!(vma->vm_flags&VM_SHARED)){

+ tlb_gather_mmu(&tlb, mm, vma->vm_start, vma->vm_end);
unmap_page_range(&tlb,

 vma,vma->vm_start,vma->vm_end,NULL);
+ tlb_finish_mmu(&tlb, vma->vm_start, vma->vm_end);

}
 }
- tlb_finish_mmu(&tlb, 0, -1);

...
up_read(&mm->mmap_sem);

01
02

03
04
05
06
07
08

09
10
11
12
13
14

(a) Patch for CVE-2017-18202.
Source snippet of __oom_reap_task_mm in test case

 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 ...
 if(vma_is_anonymous(vma)||!(vma->vm_flags&VM_SHARED)){

 tlb_gather_mmu(&tlb, mm, vma->vm_start, vma->vm_end);
 mmu_notifier_invalidate_range_start(mm,

 vma->vm_start, vma->vm_end);
 unmap_page_range(&tlb,

vma,vma->vm_start,vma->vm_end,NULL);
 mmu_notifier_invalidate_range_end(mm,

 vma->vm_start, vma->vm_end);
 tlb_finish_mmu(&tlb, vma->vm_start, vma->vm_end);

 }
 }
 ...
 up_read(&mm->mmap_sem);

01
02
03
04
05
06

07

08

09
10
11
12
13

(b) Code snippet of patch-related function in the patched target kernel. The
code changes nearby the patching site are marked in orange color.
Figure 1: An running example of patch presence testing.

3.2 Running Example

Guided by the insights above, our approach proceeds with three
steps. We brief these steps with a running example presented in
Figure 1. In the example, the patch is shown in Figure 1(a), and the
target kernel, which has been patched and contains code changes
nearby the patching site, is presented in Figure 1(b).
Step 1: Identifying Patch-affectedRegions andCollect Patch-

affected Paths. The testing by PDiff starts with identifying
the code regions for similarity comparison. To avoid missing
information, PDiff is designed to include every piece of patch-
related code. Specifically, PDiff first collects all the functions
containing changes introduced by the patch and we call them patch-
related functions. Considering that many functions are large and

most of the code is patch irrelevant, PDiff further picks anchor
blocks from each patch-related function to help reduce unrelated
code by only keeping patch-affected paths. Simply speaking, an
anchor block ensures that first, no path after the anchor block can
reach patch-changed code, and second, any path visiting at least one
patch-changed code block will reach the anchor block. Details about
picking anchor blocks are covered in § 4.1. Upon the determination
of the anchor block, PDiff then collects all patch-affected paths —
paths that start at the function entry and end at the anchor block.
These paths sufficiently cover all the code regions that are affected
by the patch and will be later used for comparison.

Figure 2 illustrates the anchor block and patch-affected paths
from our running example as presented in Figure 1. Specifically,
__oom_reap_task_mm is a patch-related function and 𝑎, 𝑓 , ℎ, 𝑖 are
patch-changed nodes. As 𝑔 post-dominates all the patch-changed
nodes in both the pre-patch and post-patch reference version, PDiff
picks it as an anchor block. Using this anchor block, PDiff collects
4 patch-affected paths from the pre-patch version and other 4 patch-
affected paths from the post-patch version, respectively shown in
Figure 2(a) and Figure 2(b). As noted in this example, the patch-
affected paths cover all the patch-changed nodes but include only
a few unrelated nodes.
Step 2: Generating Semantic-based Patch Summary. Given
the group of patch-affected paths, PDiff then extracts the properties
that can capture the semantics behind a patch. Inspired by previous
research [16, 17, 19, 43, 59], we focus on properties including
function calls, memory status, and path constraints. More details
about our selection of semantics are presented in § 4.2. For the
simplicity of presentation, we call the group of properties on a
patch-affected path a path digest. The path digests of all patch-
affected paths construct the patch summary.

In Figure 3, we present two path digests in our running example,
corresponding to the path [a,b,c,e,f,g] in Figure 2(a) and the path
[b,c,e,g] in Figure 2(b). The two path digests have different function
calls, which well represent the patch semantics behind the removal
of tlb_gather_mmu and tlb_finish_mmu.
Step 3: Patch Presence Testing Based on Patch Summary.

Following a similar idea as Step 1, PDiff is able to locate the anchor
block in the target kernel and then construct the path digests. With
path digests for the reference version with/without patch and the
target kernel, the idea of testing is then to measure the distance
between those path digests. The distance algorithms is detailed in
§ 4.3. In this step, PDiff assigns the target kernel with the patching
status of whichever reference version that has a smaller distance.

Referring back to the running example, the testing target shares
three common paths with the post-patch version and the digests on
the remaining path is quite similar. By contrast, the path digests of
the pre-patch version and those of the testing target are significantly
different. This enables PDiff to determine that the target kernel
has been patched.

4 APPROACH DESIGN

Following the steps in the running example, PDiff has a workflow
as presented in Figure 4. In this section, we elaborate on the key
steps, including anchor block selection (§ 4.1), patch summary
generation (§ 4.2), and patch presence testing (§ 4.3).

Patch-affected Paths {

<a,b,f,g>,

<a,b,e,f,g>,

<a,b,c,e,f,g>,

<a,b,c,d,e,f,g>}

g

b

c

e

d

...

...

a

f

(a) Pre-patch

Patch-affected Paths {

<b,g>,

<b,e,g>,

<b,c,e,g>,

<b,c,h,d,i,e,g>}

g

b

c

e

d

...

...

h

i

(b) Post-patch

g

b

c

e

d

...

...

j

h

i

k

Patch-affected Paths {

<b,g>,

<b,e,g>,

<b,c,e,g>,

<b,c,h,j,d,k,i,e,g>}

(c) Target

Figure 2: Anchor block and patch-affected paths for the

example in Figure 1. Nodes in red, green, and orange are

code deleted by the patch, code added by the patch, and code

changes nearby the patching site, respectively.

Path Constraints:

 ... &&

 can_madv_dontneed_vma(vma) &&

 !vma_is_anonymous(vma) &&

 (vma->vm_flags & VM_SHARED)

Function Call List:

 [...,

 tlb_gather_mmu(),

 tlb_finish_mmu()

]

Memory Status:

 [...]

Path Constraints:

 ... &&

 can_madv_dontneed_vma(vma) &&

 !vma_is_anonymous(vma) &&

 (vma->vm_flags & VM_SHARED)

Function Call List:

 [

 ...

 ...

]

Memory Status:

 [...]

Path Digest of Pre-patch Path Path Digest of Post-patch Path

Figure 3: Path digests for pre-patch path <a,b,c,e,f,g> and

post-patch path <b,c,e,g>, using node g in Figure 2 as the

anchor block.

Anchor Block
Selection

Patch Summary
Generation

Summary-based
Patch Presence

Testing

Target Binary

(without src)

Post-patch

Reference

(bin/src)

Pre-patch

Reference

(bin/src)

Source-level

Patch

Figure 4: Overall workflow of PDiff.

4.1 Anchor Block Selection

As illustrated in our running example, PDiff summarizes patch
semantics from patch-affected paths. For better accuracy, it is crucial
to ensure that the patch-affected paths, on the one hand, entirely
cover patch semantics, while on the other hand, include as little
irrelevant code as possible. To achieve this goal, we first locate patch-
related functions from the reference versions and then introduce
the concept of anchor block to refine the patch-affected paths. We
present the details in the following.
Preparing Reference Versions. In the first step, PDiff builds the
reference versions by compiling the source code of the mainstream
kernel with and without the patch. Correspondingly, it generates
the pre-patch and post-patch reference images. In the compilation
process, PDiff uses the default configurations (e.g., -O2) unless
changes are required to include patch-related modules. For the ease
of further analysis, PDiff enables debugging information.
Identifying Patch-related Functions andDetermining Patch-

affected Blocks. Given the reference versions, we then determine
the patch-related functions and patch-affected code blocks. Tech-
nically, we parse the patch file to extract the source locations of
code changes and determine the functions that contain these code
changes. Considering that the function names in the patch file
might be masked by tags or macros (e.g., SYSCALL_DEFINE(func)),
we choose to parse the source code while determining the functions.
Finally, using the debugging information, we map the code changes
to basic blocks in the image. To be specific, we consider the deleted
code in the pre-patch image and the added code in the post-patch
image. To avoid missing any code, we include all basic blocks that
have at least one instruction pertaining to any changed source code.
In this process, the functions and basic blocks that we identify are
deemed as patch-related functions and patch-affected blocks.
Selecting Anchor Blocks for Reference Versions. Following
the above step, we then identify patch-affected paths. An intuitive
idea is to enumerate paths from patch-related functions that
visit patch-affected blocks. These paths, however, often have long
ending parts that are patch irrelevant. To mitigate this issue, we
introduce anchor blocks to truncate patch-affected paths such that
irrelevant postfixes are excluded. Specifically, an anchor block has
the following properties:

• P-1: Any path going through a patch-affected block will reach
at least one anchor block. In this way, we guarantee all patch-
affected blocks are covered.
• P-2:No path after an anchor block can reach patch-affected blocks.
This ensures that no patch-affected blocks will be pruned.
• P-3: An anchor block in the pre-patch version should have a
counter-part in the post-patch version and vice versa. Our patch
presence testing requires this to align paths for comparison.

To satisfy the above properties, we devise Algorithm 1 to pick
anchor blocks from each patch-related function. The algorithm
takes the CFG of a patch-related function and the corresponding
patch-affected blocks (from both reference versions) as inputs. It
outputs an anchor block for each of the patch-affected blocks.
Specifically, given a patch-affected block, Algorithm 1 first extracts
its post-dominators (at basic block level) from the current function
(line 10). It then iterates the topologically sorted post-dominators
(line 11) and picks the first one that also appears in the other version

Algorithm 1 Algorithm for selection of anchor blocks for one
patch-related function
Input: 𝑐 𝑓 𝑔𝑝𝑟𝑒 : CFG of a pre-patch function; 𝑐 𝑓 𝑔𝑝𝑜𝑠𝑡 : CFG of a post-patch

function; 𝐶𝑝𝑟𝑒 : patch-affected blocks in pre-patch function; 𝐶𝑝𝑜𝑠𝑡 :
patch-affected blocks in post-patch function.

Output: Anchor blocks
1: function Main(𝐶𝑝𝑟𝑒 , 𝑐 𝑓 𝑔𝑝𝑟𝑒 ,𝐶𝑝𝑜𝑠𝑡 , 𝑐 𝑓 𝑔𝑝𝑜𝑠𝑡)
2: 𝑎𝑛𝑐ℎ𝑜𝑟𝑠 ←List()
3: Select_anchor_blocks(𝐶𝑝𝑟𝑒 , 𝑐 𝑓 𝑔𝑝𝑟𝑒 , 𝑐 𝑓 𝑔𝑝𝑜𝑠𝑡)
4: Select_anchor_blocks(𝐶𝑝𝑜𝑠𝑡 , 𝑐 𝑓 𝑔𝑝𝑜𝑠𝑡 , 𝑐 𝑓 𝑔𝑝𝑟𝑒)
5: return 𝑎𝑛𝑐ℎ𝑜𝑟𝑠

6: end function

7:
8: function Select_anchor_blocks(𝐶𝑏𝑖𝑛, 𝑐 𝑓 𝑔𝑟𝑒𝑓 , 𝑐 𝑓 𝑔𝑎𝑠𝑠𝑖𝑠𝑡)
9: for 𝑐 ∈ 𝐶𝑏𝑖𝑛 do

10: 𝑑𝑜𝑚𝑠 = post_dominators(𝑐)
11: for 𝑏𝑙𝑜𝑐𝑘 in top_sort(𝑑𝑜𝑚𝑠) do
12: if 𝑏𝑙𝑜𝑐𝑘 == 𝑐 then

13: Continue

14: end if

15: if ¬ check_existence(𝑏𝑙𝑜𝑐𝑘, 𝑐 𝑓 𝑔𝑎𝑠𝑠𝑖𝑠𝑡) then
16: Continue

17: end if

18: 𝑎𝑛𝑐ℎ𝑜𝑟𝑠 add 𝑏𝑙𝑜𝑐𝑘
19: Break

20: end for

21: end for

22: end function

(line 12-17). In this process, the requirement of post domination
ensures property P-1. With the topological sorting, we can pick the
nearest post-dominator for maximal trimming of irrelevant code.
Finally, we need an anchor block to also exist in the other reference
version such that we can satisfy P-3. Note that to match an anchor
block to a basic block in the other version, we require the two basic
blocks to have identical assembly code and identical source code.

As noted in Algorithm 1, different patch-affected blocks may
share the same anchor block and we do no de-duplication. This is
intended as our summary-based comparison equally considers each
patch-affected block. Anchor block de-duplication would eliminate
the weights of certain patch-affected blocks. In addition, a path may
go through two anchor blocks and there may exist patch-affected
blocks in-between. This seemly breaks P-2. However, that path
will eventually be captured as it ends at the second anchor block.
Therefore, essentially, P-2 is guaranteed.
Selecting Anchor Blocks in the Target Kernel. Our selection
of anchor blocks starts with locating patch-related functions in
the target kernel. Technically, we leverage symbols carried by the
KALLSYMS section [55] to find a patch-related function. Once we
determine a patch-related function in the target kernel, we search
the counter-parts of reference anchor blocks (i.e., anchor blocks
that we have identified from the pre-patch/post-patch reference
image) from its basic blocks. Our search follows two rules:

• Termination type. We require the reference anchor block and the
counter-part have identical termination type (signed/unsigned
conditional jump, unconditional jumps, function calls, and re-
turn). The rationale is that termination type is usually determined

by semantics in the original code, which will not be changed by
compilation or building.
• Number of global memory access.We also require the reference
anchor block and the counter-part have the same number of
global memory accesses. Similar to termination type, global
memory access represents semantics of the original code, which
should preserve across different binary versions.
Using the above approach, we may find multiple candidates

for a single anchor block. In such cases, only one of them would
be picked in the phase of patch summary comparison with the
strategies discussed in § 4.3. We also want to note that if we find no
appropriate anchor blocks (which is rare), we alternatively consider
the function exit node as an anchor block. This strategy also applies
to anchor block selection from the reference versions.

4.2 Patch Summary Generation

Given anchor blocks in a patch-related function, PDiff enumerates
the paths that start from the function entry and end at anchor
blocks. To avoid path explosion in the enumerating, we unroll each
loop only once. As aforementioned, PDiff deems the extracted
paths as patch-affected paths.

To support our semantic-based testing, we choose to preserve
patch related semantics with the path digests. However, accurately
extracting patch semantics would require human intelligence. To
overcome this challenge, our idea is to over-approximate the
semantics. We argue that patch semantics are generally represented
by the control flow and data flow on patch-affected paths. As such,
inspired by previous works [16, 17, 19, 43, 59], we consider fine-
grained properties of control flow and data flow for path digests.
The properties we consider include path constraints, memory status,
and function calls. In the following, we explain the extraction and
representation of our path digests.
Extracting Path Digests. To extract the path digests, we run sym-
bolic execution along the patch-affected paths to collect memory
accesses, function calls, and path constraints. Different from normal
symbolic execution, we start from the entry of a patch-related
function and skip function calls. As such, we often need to handle
uninitialized contexts, including initial arguments to the patch-
related functions, undetermined memory regions, and return values
of function calls. We handle them as follows:
• Function arguments. Arguments to the patch-related functions
are identified based on the calling convention and initialized as
uniquely identified symbol values (e.g., arg0 is assigned to the
first argument).
• Undetermined memory regions. Undetermined memory regions
include uninitialized memory regions and memory regions with
symbolic addresses. For uninitialized global memory regions
(which access the .data and .bss segments), we give them
unique symbolic values. Other than that, we assign 0 to local
uninitialized memory regions. For a memory with symbolized
address, we also create a new symbolic value and intercept the
interpreter to simply read/write that symbolic value. Meanwhile,
we maintain an address-value mapping between the symbolized
address and the corresponding symbolic value. In this way, we
can correctly reuse the symbolic value when the same symbolized
address is de-referenced.

• Return value from function calls. Return value from a function
call is assigned with a symbolic value in the format of {func-
name}_ret_{idx}, where funcname is the name of the callee and
idx indicates how many times this function has been called on
the current path. If the name of the callee cannot be determined,
we assign it a symbolic name.

During our symbolic execution, we exclude paths that carry
unsolvable constraints. This helps remove infeasible paths that are
previously collected.
Representation of Path Digest. In the course of symbolic execu-
tion, we record the aforementioned path digest elements. The key
challenge is to use a representation that is semantic-catching but
less code-dependent. In other words, the path digests extracted from
two semantically-similar paths should be close to each other. In our
design, we re-use the representation used by the symbolic executor.
This representation converts binary-specific operations and data
objects to uniform symbol-based formats. Further, it simplifies
the operations into the most concise level, ensuring that identical
semantics are similarly represented.

• Path constraints are formatted as Abstract Syntax Trees (ASTs).
Each AST uses the comparison operator as the root and the
expressions as the left/right sub-trees. Tomake the representation
insensitive to the binary code, as aforementioned, we re-use the
format from the symbolic engine (e.g., [arg1 + 0x10] ule
[kmemdup_ret_0 + 0x29]).
• Memory status is a set of memory accesses along a patch-affected
path. In our design, we only consider global memory regions
because they are usually decided by the semantics while the use of
local variables are binary specific. Note that for conservativeness,
we consider all memory regions with symbolized addresses as
global memory regions. In our representation, we use a key-
value pair for each global memory access. Considering that
different binariesmay have different addresses for the same global
access, we use symbolized address in the format of g_idx, where
idx represents the number of global access or memory with
symbolized addresses we have been encountered. Regarding the
value of a memory access, we simply use the concrete values or
the IDs of the symbolized values.
• Function call list is an ordered list that records all invoked
functions along the path. For each function call, we simply record
its name and ignore its arguments. For functions without names,
we assign a special name func_unknow.

All path digests are represented following the above rules and
organized into the Backus-Naur Form (BNF) [58] (see Figure 9).

4.3 Summary-based Patch Presence Testing

After obtaining the patch summaries from the two reference
versions and the target kernel, we measure their similarities to
determine the patch status. Briefly speaking, PDiff determines
the similarity of two patch summaries based on their path digests.
Therefore, we first introduce the comparison of path digests and
then explain how we use that to compare patch summaries.
Path Digest Similarity. Recall that a path digest is composed
of three elements, including path constraint, memory status and
calling list. In our design, we consider the average similarity of

these elements as the similarity metric for path digests. We explain
the details as follows.
• Similarity of path constraints. Constraints on a path are rep-
resented as a set of AST expressions. As such, we measure
the closeness between two groups of constraints based on set

similarity. Specifically, given two sets 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑛} and
𝑆 ′ = {𝑠 ′1, 𝑠

′
2, ..., 𝑠

′
𝑚}, we formally define their similarity as:

𝑠𝑖𝑚(𝑆, 𝑆 ′) =
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑚𝑖 𝑗 × 𝑠𝑖𝑚(𝑠𝑖 , 𝑠 ′𝑗) (1)

where𝑚𝑖 𝑗 defines the mapping relations between 𝑠𝑖 and 𝑠 ′𝑗 while
𝑠𝑖𝑚(𝑠𝑖 , 𝑠 ′𝑗) indicates their similarities. Following the literature [42,
46], we require {𝑚11,𝑚12, ...,𝑚𝑛𝑚} to enforce a one-to-one
mapping. That is, assuming 𝑛 < 𝑚, 𝑛 elements from 𝑆 ′ map
to unique elements in 𝑆 and all other pairs are considered un-
mapped (vice versa if 𝑛 > 𝑚). Accordingly,𝑚𝑖 𝑗 = 1 if 𝑠𝑖 maps
to 𝑠 ′

𝑗
and 0 otherwise. To determine {𝑚11,𝑚12, ...,𝑚𝑛𝑚}, PDiff

re-uses the Kuhn-Munkres algorithm [34] to find the one that
maximizes Equation 1.
As noted, we need the similarity between individual elements
(i.e., AST expressions) for set similarity. To measure the similarity
between two AST expressions, we re-use the tree edit distance [3].
More specifically, we leverage the bipartite graph matching
algorithm [46] which is used by [16] to calculate tree edit distance.
We notice certain AST expressions are inter-changeable but have
different formats (e.g., 𝑎 ≤ 𝑏 and 𝑏 ≥ 𝑎). To avoid wrongly
considering such pairs to be different, we gather the group of
AST expressions where the operators are inter-changeable and
force them to follow consistent formats.
• Similarity of memory status. Memory status of a path digest is
also represented as a set and we calculate its similarity based
on the aforementioned set similarity. For individual elements
(key-value pairs), their similarity is measured by the product of
the key similarity and the value similarity.
• Similarity of function call list. We leverage the List Edit Distance
(LED) [47] to calculate the similarity between two function call
lists. Given two function call lists 𝐿1 and 𝐿2, we calculate their
similarity using the following equation:

𝑠𝑖𝑚(𝐿1, 𝐿2) = 1 − 𝐿𝐸𝐷 (𝐿1, 𝐿2)
max(𝑙𝑒𝑛(𝐿1), 𝑙𝑒𝑛(𝐿2))

(2)

where the similarity of two elements is 1 if they correspond to
the same function and 0 otherwise.

Patch Summary Comparison.Using the similarity measurement
of path digests, we perform patch-summary comparison following
Equation 3. Specifically, given an anchor block 𝑎𝑛 , we extract the
group of paths ending at that anchor block respectively from the pre-
patch and the post-patch reference versions, and correspondingly
build their path digests. Similarly, we obtain a set of path digests
from the target kernel. Based on set-similarity between the path
digests from the pre-/post-patch reference version and the target
kernel, we are able to calculate 𝑠𝑖𝑚(𝑎𝑛, 𝑝𝑟𝑒) and 𝑠𝑖𝑚(𝑎𝑛, 𝑝𝑜𝑠𝑡),
representing the similarity between the target kernel and the pre-
/post-patch reference version on anchor block 𝑎𝑛 . If 𝑎𝑛 has multiple
candidates in the target kernel (recall § 4.1), wewill pick the one that

maximizes the sum of 𝑠𝑖𝑚(𝑎𝑛, 𝑝𝑟𝑒) and 𝑠𝑖𝑚(𝑎𝑛, 𝑝𝑜𝑠𝑡). We define
𝑎𝑛 is closer to the pre-patch reference version if 𝑠𝑖𝑚(𝑎𝑛, 𝑝𝑜𝑠𝑡) <
𝑠𝑖𝑚(𝑎𝑛, 𝑝𝑟𝑒) and vice versa. Finally, we consider the target kernel
shares the patching status as the reference version that is closer to
more anchor blocks.

𝑓 𝑖𝑛𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡 =

{
𝑝𝑎𝑡𝑐ℎ𝑒𝑑, 𝑆 > 0
𝑢𝑛𝑝𝑎𝑡𝑐ℎ𝑒𝑑, 𝑆 ≤ 0

, (3)

where 𝑆 =

∑
𝑎𝑛 ∈𝑎𝑛𝑐ℎ𝑜𝑟 𝑟 (𝑎𝑛)
|𝑎𝑛𝑐ℎ𝑜𝑟 | ,

𝑟 (𝑎𝑛) =


1, 𝑠𝑖𝑚(𝑎𝑛, 𝑝𝑜𝑠𝑡) > 𝑠𝑖𝑚(𝑎𝑛, 𝑝𝑟𝑒)
0, 𝑠𝑖𝑚(𝑎𝑛, 𝑝𝑜𝑠𝑡) == 𝑠𝑖𝑚(𝑎𝑛, 𝑝𝑟𝑒)
−1, 𝑠𝑖𝑚(𝑎𝑛, 𝑝𝑜𝑠𝑡) < 𝑠𝑖𝑚(𝑎𝑛, 𝑝𝑟𝑒)

5 EVALUATION

We have proto-typed PDiff on the top of Angr [52] and Clang
Python [15]. Our prototype consists of about 5.5K lines of Python
code. Currently, PDiff supports AArch64 and ARM32 targets and
its source code will be made available at [41]. To better understand
the utility of PDiff, we perform a group of evaluation centering
around three questions:

• Q1: Can PDiff do reliable patch presence testing in practice use?

• Q2: Can PDiff tolerate code customization?

• Q3: Can PDiff tolerate diversities in building configurations?

5.1 Experiment Setup

To support the evaluation, we collect two image-sets as follows.
Testing Image Set. We re-use the wild images corresponding
to the 406 source code as described in § 2.3 for testing. These
images carry a high level of diversities: (1) they are distributed by
8 vendors (D-Link, Huawei, Meizu, NETGEAR, Samsung, Google,
Oppo and Xiaomi); (2) they run on various types of devices (routers,
mobile phones and tablets); and (3) they are migrated from different
versions of Linux kernel (ranging from v3.4 to v4.9). Among these
images, 345 are AArch64 targets and the remaining 61 are ARM32
targets. Further, we consider the 152 vulnerabilities used in § 2.1
as patching targets. To determine the ground truth of patches in a
wild image, we take a two-step approach. First, we determine the
patch status in the corresponding source code via a semi-automatic
manner. Specifically, if the code added by a patch is present in the
source code, we consider the patch is adopted. For other cases, we
manually check the source code to determine the patching status.
Second, considering that the patching status in the source code
and the corresponding wild image may differ, we perform a further
verification. Technically, we compile the source code to generate
an image that preserves the patching status. Given a patch, if the
patch-related functions in the wild image have identical op-code
sequences as the self-compiled image, we consider the wild image
has the same patching status as the source code. Otherwise, we
exclude the wild image for that patch. Finally, we collected 16,836
(image, patch) pairs where we can identify patch-related functions.
For 5,325 of them, we cannot confirm the ground truth with the

above approach. As such, we ran our evaluation on the remaining
11,511 (image, patch) pairs which correspond to 51 vulnerabilities.

We also investigated the other pairs that we cannot locate patch-
related functions. Specifically, we randomly checked 544 pairs
of such pairs with manual analysis. We found that 86% of the
cases (468) are missed because the corresponding modules are not
included, and the remaining cases are because the patch-related
functions are in-lined.
Reference Image Set. For each of the 51 patches as mentioned
above, we build AArch64 and ARM32 reference versions by
compiling the mainstream Linux kernel [56] with and without
the patch. For generality, we use default building configurations.

Across the evaluation, all our experiments are conducted on a
machine with Intel Xeon CPU E7-4820 2.00GHz and 378GB RAM,
running Ubuntu 18.04.2 LTS.

5.2 Evaluation of Effectiveness

In this evaluation, we run PDiff on the 11,511 (image, patch) pairs
and seek answers to Q1, Q2 and Q3. To better illustrate the results,
we include FIBER for comparison.

5.2.1 Answer to Q1. In Table 5, we summarize the performance
of PDiff with both AAarch64 targets and ARM32 targets. Overall,
PDiff presents superior effectiveness. The low false negative rate
(less than 4.5%) demonstrates that FIBER can highly accurately
identify true patches while no false positive proves that PDiff
provides high conservativeness. Further, the average similarity
score 𝑆 (recall Equation 3) reported by PDiff is 0.95 for true
positives and -0.81 for true negatives. This large gap demonstrates
that our approach can provide highly confident testing.
Comparison with FIBER. Table 5 also summarizes the compari-
son between PDiff and FIBER. In this comparison, we only consider
45 patches and AArch64 images because FIBER can only generate
signatures for those patches and only support AArch64. Similar
to the overall results, PDiff produces a low rate of false negative
(less than 4.5%) and incurs no false positive. To the contrary, FIBER
misses 26% of the adopted patches (false negatives) and triggers a
group of false positives. Such results demonstrate that PDiff have
significant better utilities than the state-of-the-art tool for patch
presence testing.

Moreover, a practical solution should produce consistent effec-
tiveness with handling a variety of patches. To compare PDiff
and FIBER from this perspective, we also measure the variation of
recalls pertaining to different patches. In result, PDiff produces a
very low variance (0.55%) across all the patches, indicating a highly
consistent utility. In contrast, FIBER has a high recall variance
(12.94%) and for certain patches, FIBER can even produce a recall
of 0%. As such, we believe PDiff also outperforms FIBER in the
dimension of stability.
Analysis of Errors. The majority of PDiff’s false negatives (174,
67.70%) are due to inaccuracy in the CFGs produced by Angr
(more details are discussed in § 6). The CFG inaccuracy leads
PDiff to missing critical patch-affected paths and hence, running
into errors. Among the remaining false negatives, most of them
are incurred by in-lining behaviors. In those cases, the patched
images inline function calls that are inserted by the patches. As
a result, PDiff fails to capture those calls using symbols and

Table 5: Effectiveness evaluation of PDiff.

Tool Patches TN
1

TP
2

FN(FNR) FP(FPR) RECALL

PDiff-AArch64 51 4,432 5,906 234(3.96%) 0(0%) 96.04%
PDiff-ARM32 343 643 530 23(4.34%) 0(0%) 95.66%

FIBER 45 4,015 5,662 1,492(26.35%) 15(0.37%) 73.65%
PDiff 45 4,015 5,662 234(4.13%) 0(0%) 95.87%

1 True Negatives — (image, patch) pairs where the patches are not adopted.
2 True Positives — (image, patch) pairs where the patches are adopted.
3 The ARM32 images are only affected by 34 vulnerabilities.

diff --git a/security/keys/gc.c b/security/keys/gc.c

@@ -148,12 +148,12 @@ static noinline void

key_gc_unused_keys(struct list_head *keys)

...

- key_user_put(key->user);

if (key->type->destroy)

key->type->destroy(key);

+ key_user_put(key->user);

kfree(key->description);

01

02

03

04

05

06

07

08

Figure 5: The patch to CVE-2014-9529.

wrongly determines that patches are missing. The problem of in-
lining is largely because we only consider symbols of calls without
considering the inter-procedure semantics. As a solution, we can
expand the callees and include their semantics in patch presence
testing. More details are also discussed in § 6. Only in a few cases,
code changes tangle with the patches such that they mask the patch
semantics, making patch presence testing ineffective. We present
such a case in Figure 5. The patch relocates a function call from
line 4 to line 7. PDiff abstracts the patch-related semantics as a
function list [A,B,C] in the pre-patch version and [A,C,B] in the
post-patch version, where B indicates key_user_put(), C refers
to key->type->destory(), and A means an arbitrary function.
However, the commit in the patched version moves line 5, 6 to
the beginning of key_gc_unused_keys, resulting in a function list
[C,A,B]. Since [C,A,B] has similar editing distance to [A,B,C] and
[A,C,B], PDiff conservatively considers this an un-patched case.

Answer to Q1: PDiff can provide accurate and reliable
patch presence testing in practice use. It demonstrates
higher utilities and stability than the state-of-the-art patch
presence testing.

5.2.2 Answer to Q2. To understand the impacts of code customiza-
tion on patch presence testing, we perform another evaluation
with a sub-set of our test-cases. Specifically, from the 11,511
(image,patch) pairs, we pick the ones containing patch-related
functions that overlap with the 516 customized functions as
described in § 2.3. In total, we gather 173 pairs and 105 of them
have patches that are affected by the customization. Running the
173 pairs with both PDiff and FIBER, we have the results as
shown in Table 6. As noted in the table, FIBER has a significant
increase of false negative rate (22.73% vs. 36.67%) when dealing with
customization-affected patches. By contrast, PDiff demonstrates
consistent performance despite the impacts of customization. This
indicates third-party customization remains a challenge to the
existing approaches while PDiff can nicely address this challenge.
To better understand how PDiff’s design gains this type of

Table 6: Evaluation on impacts of code customization.

Tool Patch-affected
1

TN TP FN(FNR) FP(FPR) RECALL

FIBER Y 45 60 22(36.67%) 0(0%) 63.33%
FIBER N 46 22 5(22.73%) 1(2.17%) 77.27%
PDiff Y 45 60 4(6.67%) 0(0%) 93.33%
PDiff N 46 22 1(4.55%) 0(0%) 95.45%
1 Whether the customization affects the patch (“Y” means yes and “N” means not).

diff --git a/sound/usb/quirks.c b/sound/usb/quirks.c

@@ -180,6 +180,12 @@ static int

create_fixed_stream_quirk(struct snd_usb_audio *chip,

 ...

+ if (altsd->bNumEndpoints < 1) {

+ kfree(fp);

+ kfree(rate_table);

+ return -EINVAL;

+ }

01

02

03

04

05

06

07

08

(a) Patch snippet to CVE-2016-2184.

Source snippet of create_fixed_stream_quirk in test case

 if (altsd->bNumEndpoints < 1) {

 list_del(&fp->list);

 kfree(fp);

 kfree(rate_table);

 return -EINVAL;

 }

01

02

03

04

05

06

07

(b) Code snippet of patch-related function in the target test kernel. The target has been
patched and it also includes code that changes the patch (marked in orange color).

Figure 6: Example of patch presence testing on category-1:

when patch is changed during code customization.

robustness against third-party customization, we categorize the
cases that mislead FIBER but not PDiff:
Category-1: When Code Customization Changes the Patch.

In many cases, the developers change the patches without breaking
their semantics. Not surprisingly, this type of change can easily
break code-based signatures. Consider Figure 6 as an example. The
patch adds a check on altsd->bNumEndpoints followed by two
calls to kfree and a return error code -EINVAL. In this case, FIBER
creates a signature representing that there are two kfree called
after the check on altsd->bNumEndpoints. However, as shown
in Figure 6(b), the target kernel adds list_del before two call
on kfree, which interrupts FIBER’s signature. In result, FIBER
misses to detect the patch. While the new code also affects the
patch semantics, the effects are minor and the target image is still
closer to the post-patch version. Therefore, PDiff still successfully
captures the patch.
Category-2:WhenCodeCustomizationChangesCodeNearby

the Patching Site. In this category, the downstream vendors
introduce changes around the patching site but not to the patch
itself. These changes interrupt the contexts that FIBER considers for
the signature and hence, mislead FIBER to making errors. Figure 1
presents such an example. As shown in Figure 1(a), the patch inserts
two calls to tlb_gather_mmu() at line 7 and line 9. FIBER picks the
call at line 7 and the adjacent statement at line 8 to synthesize the
signature. In the test case shown as Figure 1(b), a call to function
mmu_notifier_invalidate_range_end() is inserted between the
two statements in the patch signature. In this case, FIBER considers
line 5 and line 6 for testing, which apparently mismatches the

diff --git a/security/keys/key.c b/security/keys/key.c

@@ -597,7 +597,7 @@ int key_reject_and_link(struct key *key,

 if (keyring) {

 if (keyring->restrict_link)

 return -EPERM;

 link_ret = __key_link_begin(keyring, &key->index_key,

 &edit);

 }

 ...

- if (keyring)

+ if (keyring && link_ret == 0)

__key_link_end(keyring, &key->index_key, edit);

01

02

03

04

05

06

07

08

09

10

11

(a) Patch snippet to CVE-2016-4470.

Source snippet of key_reject_and_link in test case

 if (keyring)

 link_ret = __key_link_begin(keyring, &key->index_key,

&edit);

 ...

 if (keyring && link_ret == 0)

 __key_link_end(keyring, &key->index_key, edit);

01

02

03

04

05

06

(b) Code snippet of patch-related function in the target test kernel. The target has been
patched and it also includes code changes that change the patch dependent control flow
(marked in orange color).

Figure 7: Example of patch presence testing on category-3:

when the patch dependent control flow is changed during

code customization.

signature. Differing from FIBER, PDiff captures the semantics of
the patch as explained in § 3.2 and hence, detects the patch.
Category-3: When Code Customization Changes Patch De-

pendent Control Flow. In cases from this category, the vendors
introduce changes that bring impacts to patch-dependent control
flows. Consider Figure 7 as an example. The patch adds a check
on local variable link_ret. FIBER generates a signature with
code containing the new check (line 10 in Figure 7(a)). For higher
robustness, it also considers the preceding checks on link_ret
at line 3-4 as contexts and includes the two statements into the
signature. However, in the target kernel, the vendor removes line
4-5. In result, FIBER’s signature is interrupted and FIBER cannot
detect this patch. Alternatively, PDiff looks at the semantics of
constraints on link_ret, which are largely preserved (line 2 and 5
in Figure 7(b)). Therefore, PDiff considers the target is closer to
the post-patch reference version and deems this as a patched case.

Answer to Q2: PDiff can well tolerate third-party code
customization, demonstrating a higher level of practicality
than the state-of-the-art.

5.2.3 Answer to Q3. To evaluate the tolerance of PDiff to diversi-
ties in building configurations, we pick the (image, patches) pairs
where the patches can be affected by macros. In total, we gather
1,080 pairs and 308 of them define macros differently from the
mainstream versions (and therefore, their patches are affected). In
Table 7, we show the performance of PDiff and FIBER with the
1,080 pairs. When the patches are affected by the macros, FIBER’s
false negative rate intensively increases from 28.27% to 40.85%. To
the contrary, PDiff has a consistent low rate of false negative (6.33%
and 1.41%). This verifies that our semantic-based design has high
resilience to diversities in building configurations. In the following,

Table 7: Evaluation on tolerance of diverse building config-

uration.

Tool Patch-affected
1

TN TP FN(FNR) FP(FPR) RECALL

FIBER Y 298 474 134(28.27%) 0(0%) 71.73%
FIBER N 237 71 29(40.85%) 0(0%) 59.15%
PDiff Y 298 474 30(6.33%) 0(0%) 93.67%
PDiff N 237 71 1(1.41%) 0(0%) 98.59%
1 Whether the target image and the reference version have identical configurations
that affect patches. “Y” means Yes and “N” means No.

diff --git a/include/linux/mm.h b/include/linux/mm.h

@@ -95,7 +105,7 @@ retry:
 if ((flags & FOLL_NUMA) && pte_protnone(pte))

 goto no_page;
- if ((flags & FOLL_WRITE) && !pte_write(pte)) {
+ if ((flags & FOLL_WRITE) &&
+ !can_follow_write_pte(pte, flags)) {

 pte_unmap_unlock(ptep, ptl);
 return NULL;

 }

01
02
03
04
05
06
07
08
09
10

(a) Patch Snippet to CVE-2016-5195.

#ifndef CONFIG_NUMA_BALANCING
static inline int pte_protnone(pte_t pte)
{ return 0; }
#endif

#ifdef CONFIG_NUMA_BALANCING
static inline int pte_protnone(pte_t pte) {

return (pte_val(pte) & (PTE_VALID |
 PTE_PROT_NONE)) == PTE_PROT_NONE;

}
#endif

01
02
03
04
05
06
07
08
09
10
11

(b) Definition of pte_protnone() belongs to one source code corresponding to one
image in test cases, guarded by CONFIG_NUMA_BALANCING.

Figure 8: Example of patch presence testing on category-4:

when patch is affected by building configuration.

we demonstrate how variation in building configurations makes
FIBER ineffective and why PDiff is robust against that.
Category-4: When Building Configurations Affect Patches.

Oftentimes, downstream vendors use non-standard building con-
figurations that result in different code layout from the mainstream
version. The code-signatures used by FIBER are sensitive to such
changes. Figure 8 shows an example in this category. Given the
patch shown in Figure 8(a), FIBER considers line 6, 7 as the signa-
ture and includes code in-lined from pte_protnone as contexts. As
CONFIG_NUMA_BALANCING is enabled in the reference version, line
8 and line 9 in Figure 8(b) are included as part of pte_protnone
in the signature. In the target image, CONFIG_NUMA_BALANCING is
undefined and hence, pte_protnone only contains line 3. This
leads to a mismatch between the target image and the reference
version. Alternatively, PDiff extracts the semantic that the check
on pte_write was changed to can_follow_write_pte on the
paths calling pte_unmap_unlock(). Such semantics are present
regardless of CONFIG_NUMA_BALANCING and hence, PDiff can
capture the patch with both configurations.

Answer to Q3: PDiff can greatly tolerate diversities
in building configurations, addressing the limitations of
FIBER.

5.3 Evaluation of Efficiency

We also evaluate the efficiency of PDiff by measuring the time
cost incurred by the analysis. Table 8 presents the results. Overall,
PDiff spends an average time of 303.79 seconds on one round of
testing, demonstrating a high efficiency. In many cases such as the
testing on CVE-2016-7911, PDiff has a time cost as small as seconds.
We also note that in a few cases (e.g., CVE-2016-2053), PDiff can
take over 40 minutes. In those cases, the patch-related functions
contain a large group of basic blocks and have complicated CFGs,
significantly increasing the complexity of anchor block selection,
path digest generation, and patch similarity comparison. Despite
PDiff is relatively slow in the complicated cases, it still significantly
outperforms manual analysis [20].

We note that PDiff runs slower than FIBER for testing. On
average, FIBER needs around 10.47 seconds to complete a test. This,
however, does not mean that PDiff has a lower efficiency. Prior to
a test, FIBER needs to measure the similarity between the target
kernel with a group of references. Our empirical evaluation, using
BinDiff [63] suggested by FIBER, demonstrates that on average one
round of measurement takes over 3 minutes (without considering
the pre-processing by the disassembler). By default, FIBER requires
similarity measurement with 2 reference versions (built with O2
and Os), incurring 6 more minutes in an end-to-end test.

Table 8: Time cost of FIBER and PDiff (seconds).

Tool Min. Max. Ave.

FIBER 1.23 63.87 10.47
PDiff 8.08 2,453.02 303.79

5.4 Effectiveness of Anchor Blocks

The design of PDiff leverages anchor blocks for better efficiency
and accuracy. As such, we also perform an evaluation of anchor
blocks from three aspects.

First, we measure the performance of our approach of selecting
anchor blocks from the reference versions. The data-set used for
our evaluation carries 70 unique patch-related functions and we
successfully found anchor blocks in 56 of them (on average 1.46
anchor blocks per function). For the other 14 cases, we used the
exit node as an anchor block.

Second, we evaluate our approach of finding anchor blocks in
the target kernel. Using the pattern-based approach that relies on
global-memory accesses and mnemonics of termination-instruction
(recall § 4.1), we averagely find 8 candidates for each anchor block.
By further leveraging path digests similarity (§ 4.3), we refine
our candidates to only one anchor block. Our analysis of the
testing results shows that the refined anchor block never causes
incorrectness in patch presence testing, demonstrating a high
fidelity of our approach.

Third, we investigate the effectiveness of anchor blocks with
reducing patch irrelevant paths and code. Leveraging anchor blocks,
on average we found 16 patch-affected paths with an average length
of 10 basic blocks from each patch-related function. By alternatively
considering the exit node as the anchor block, the average number
of patch-related paths increases to 204 and the average length
increases to 15 basic blocks. These results demonstrate that anchor
blocks are indeed helpful to improve the accuracy and efficiency.

5.5 Findings in Evaluation

Beyond the 398 images used in our evaluation, we also apply PDiff
with the remaining cases from the image-set as described in § 2.1. As
we have no ground truth of patches for those images, we manually
examine the interesting cases (where patches are released before
the image but identified as non-adopted by PDiff). Our analysis
results show that PDiff makes no errors, further demonstrating
the conservativeness of our design.

Throughout the testing on the total 715 images, we have several
findings. Most interestingly, downstream vendors are largely
delaying the available patches and they are not disclosing reliable
patching progress. The details have been presented in § 2.1 and we
omit them in this section.

6 DISCUSSION

In this section, we discuss the limitations of our work and the
potential future directions.
CFG Construction. PDiff requires intra-procedure CFGs to aid
the slicing of patch-related paths. In our current design, we rely on
the CFGEmulated method in Angr for CFG reconstruction, which
leverages symbolic execution to resolve control flow transitions.
Theoretically, this method can provide complete and accurate
results. However, the current implementation in Angr has less
comprehensive supports for resolving jump tables with AArch64
targets. As a consequence, PDiff may generate incomplete patch
summaries, leading to less accurate testing results. Addressing
this problem requires to examine the issues in Angr and develop
corresponding fixes, which we leave as a future work.
Function Inlining. Function inlining can affect the effectiveness
of PDiff in two ways. First, once a patch-related function is always
inlined, PDiff would fail to locate this function for patch presence
testing. To handle such cases, we can opt to expand the patch-
affected region to include parent functions of the patch-related
functions, albeit with higher time cost. Second, a patch-related
function may inline child functions that are, however, not inlined in
the reference versions. This unintentionally introduces variances at
the code level. PDiff is more tolerable to such cases than the state-
of-art approaches, since the comparison to the pre-patch version
and post-patch version will be equally affected. To fundamentally
solve this problem, a promising idea is to expand our testing to be
inter-procedural and therefore, PDiff will similarly cover the child
functions in both the target kernel and the reference versions.
Computation Complexity. In our design, PDiff leverages the
Kuhn-Munkres algorithm [34] to find the optimal matching be-
tween two summaries, which has a computation complexity of
𝑂 (𝑛3). Despite this algorithm may result in high time cost in
extreme cases, our evaluation shows that it consumes acceptable
time inmost of the cases under practical settings. Further, we believe
new techniques such as deep learning [59] would help reduce the
computation complexity, which we will explore in the future.
Availability of Symbols. PDiff relies on symbols in the KALLSYMS
section to locate patch related functions. The availability of such
symbols can greatly affects our approach. To better understand this
issue, we analyze the KALLSYMS section in the set of 398 images
with source code that we collected from the wild. It shows the
KALLSYMS section is usually preserved in the stripping process and

prevalently exists in all the wild-images. It also unveils that the
KALLSYMS section carries symbols for all the non-inlined functions.
Generalizability of PDiff. The design of PDiff is architecture
independent. However, our implementation has to address many
architecture-related challenges. In particular, the symbolic execu-
tion for path digests extraction needs many architecture-specific
customization, including identification of function arguments,
symbolization of uninitialized variables, and modeling of external
functions. The current version of PDiff supports both AArch64 and
ARM32. We will extend it to cover more architectures in the future.
Besides, our approach is not limited to kernels. Actually, PDiff can
be extended to check patch presence on all kinds of downstream
binaries, such as OpenSSL libraries, Python interpreters. In this
paper, we mainly focus on Linux kernels because they are the most
common targets with many vendors and well-sized data-sets.

7 RELATEDWORK

This section presents the most related work in the following.
Vulnerability Patching. Un-patched vulnerabilities have long
been believed as major threats to computer security [60]. To miti-
gate this type of threat, past research has made many endeavours
from various perspectives. Li et al. measure the effectiveness of
vulnerability notification and they surprisingly find that there
lacks reliable means for developers. Further, Stock et al. [54]
outline major factors that affect the effectiveness of vulnerability
notification. Beyond the understanding of vulnerability notification,
recent works also unveil the development process and complexities
of security patches [30], the effects that code clones bring to
security patch deployment [37], and how end-users behave to
security patches [50]. To facilitate timely development and adoption
of vulnerability patches, other researchers explore many new
techniques for automated patch generation and adoption [5, 11, 25–
27, 31, 36, 62], and hot-patch schemes for various types of software
(e.g., Android apps [6], Android kernels [7] and Web servers [40]).
Patch Presence Testing. Detecting un-adopted security patches
in a timely manner is essential for vulnerability mitigation. Along
this line, Duan et al. propose OSSPolice [12] to identify un-patched
libraries at scale, Jang et al. develop ReDeBug [28] that discovers
un-patched code in language-independent clones, and Feng et

al. [18] explore neural networks for automatic patch detection.
BScout [9] is a patch presence testing tool for Java executables
which performs cross-language-layer code similarity analysis.
Different from these works that focus on patch presence testing
with user-space code, FIBER [61] aims at patch presence testing
with binary-only kernels. As demonstrated by our evaluation,
the design of FIBER insufficiently considers the code variance
incurred by third-party customization and non-standard building
configurations, which consequently limits the effectiveness of
FIBER in practice.
Similar Code Search. In our research, we determine the patch
presence status based on the similarity of semantics in code.
In the literature, there exist many other techniques that search
similarity with binary code. BinDiff [63] and BinSlayer [4] compute
the similarity between two functions based on the isomorphism
of two CFGs. Alternatively, BinHunt [19] and iBinHunt [33]
find semantic differences corresponding to functionality changes.

Further, discovRE [14] and multi-M [42] extract features from
basic blocks for similarity comparison. Specifically, discovRE uses
numeric features from basic blocks and multi-M [42] leverages the
I/O behavior in basic blocks. For higher efficiency of similarity
comparison, Genius [17], Gemini [59], and BinSequence [24]
propose new schemes to reduce the search space. Technically,
Genius [17] converts the CFG into high-level numeric feature
vectors, Gemini [59] combines graph embedding with neural
network to speed up the searching process, and BinSequence [24]
uses Min-hashing to effectively filter the search space. Similar
to PDiff, some of these works endeavors to increase robustness
against code variations. For instance, TEDEM [43] leverages tree
edit distance and symbolic simplification against syntactic changes.
Kernel Fingerprinting. Kernel fingerprinting is widely used for
the identification of key information, which plays a critical role
in many security applications. Gu et al. [22] differentiate the main
kernel code from other parts in the physical memory and generate
a unique hash signature for the OS. Roussev et al. [48], based on
the on-disk representation of the kernel, create the page-sized
sdhash similarity digests to identify kernel versions. Beyond just
kernels, Ahmed et al. [1] develop a new technique to pinpoint
relocatable code in a memory snapshot, covering both kernel and
remnants of prior executions. Conceptually, kernel fingerprinting
can also be applied for patch code testing. It, however, will face two
challenges. First, fingerprinting mostly considers similarity among
large code pieces (e.g., kernel images). It may not well handle patch-
related code regions that are usually small. Second, most of the
fingerprinting techniques are based on code signatures, which likely
will be less effective when the patches carry code-level variations.

8 CONCLUSION

This work presents a deep understanding of patch presence
testing with downstream kernels. It identifies two key challenges
with patch presence testing: third-party code customization and
diversities in building configuration. To overcome the challenges,
we propose PDiff, a semantic-based approach of patch presence
testing. PDiff captures the semantic behind a patch, offering
high tolerance to code variance incurred by third-party code
customization and diversities in building configuration. PDiff
significantly outperforms the state-of-the-art patch presence testing.
On average, it achieves a false negative rate lower than 4.5% and
zero false positive, even when the above challenges arise.We release
PDiff and our data-sets at https://github.com/seclab-fudan/PDiff .

ACKNOWLEDGEMENT

We would like to thank our shepherd Andrea Continella and
anonymous reviewers for their helpful comments. This work was
supported in part by the National Natural Science Foundation of
China (U1636204, U1836210, U1836213, U1736208, 61972099), Natu-
ral Science Foundation of Shanghai (19ZR1404800), and National
Program on Key Basic Research (NO. 2015CB358800). Min Yang is
the corresponding author, and a faculty of Shanghai Institute of
Intelligent Electronics & Systems, Shanghai Institute for Advanced
Communication and Data Science, and Engineering Research
Center of CyberSecurity Auditing and Monitoring, Ministry of
Education, China.

https://github.com/seclab-fudan/PDiff

REFERENCES

[1] Irfan Ahmed, Vassil Roussev, and Aisha Ali Gombe. 2015. Robust Fingerprinting
for Relocatable Code. In Proceedings of the 5th ACM Conference on Data and

Application Security and Privacy (CODASPY ’15) (San Antonio, Texas, USA).
Association for Computing Machinery, New York, NY, USA, 219–229.

[2] Ionut Arghire. 2018. Android Vendors Regularly Omit Patches in Security
Updates. https://www.securityweek.com/android-vendors-regularly-omit-patc
hes-security-updates.

[3] Philip Bille. 2005. A Survey on Tree Edit Distance and Related Problems.
Theoretical Computer Science 337, 1-3 (June 2005), 217–239.

[4] Martial Bourquin, Andy King, and Edward Robbins. 2013. BinSlayer: Accurate
Comparison of Binary Executables. In Proceedings of the 2nd ACM SIGPLAN

Program Protection and Reverse Engineering Workshop (PPREW’13) (Rome, Italy).
ACM, New York, NY, USA, Article 4, 10 pages.

[5] G. Chen, H. Jin, D. Zou, B. B. Zhou, Z. Liang, W. Zheng, and X. Shi. 2013.
SafeStack: Automatically Patching Stack-Based Buffer Overflow Vulnerabilities.
IEEE Transactions on Dependable and Secure Computing 10, 6 (Nov 2013), 368–379.

[6] Yaohui Chen, Yuping Li, Long Lu, Yueh-Hsun Lin, Hayawardh Vijayakumar, Zhi
Wang, and Xinming Ou. 2018. InstaGuard: Instantly Deployable Hot-patches
for Vulnerable System Programs on Android. In Proceedings of the 25th Annual

Network and Distributed System Security Symposium (NDSS’18).
[7] Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia, Chenfu Bao, and Tao Wei.

2017. Adaptive Android Kernel Live Patching. In Proceedings of the 26th USENIX

Security Symposium (USENIX Security’17). USENIX Association, Vancouver, BC.
[8] Symantec Corporation. 2020. Attack Signatures - Symantec Corp. https://www.

symantec.com/security_response/attacksignatures/.
[9] Jiarun Dai, Yuan Zhang, Zheyue Jiang, Yingtian Zhou, Junyan Chen, Xinyu Xing,

Xiaohan Zhang, Xin Tan, Min Yang, and Zhemin Yang. 2020. BScout: Direct
Whole Patch Presence Test for Java Executables. In Proceedings of 29th USENIX

Security Symposium (USENIX Security’20). USENIX Association, 1147–1164.
[10] Darpa. 2019. Rapidly Patching Legacy Software Vulnerabilities inMission-Critical

Systems. https://www.darpa.mil/news-events/2019-10-14.
[11] Ruian Duan, Ashish Bijlani, Yang Ji, Omar Alrawi, Yiyuan Xiong, Moses Ike,

Brendan Saltaformaggio, and Wenke Lee. 2019. Automating Patching of
Vulnerable Open-Source Software Versions in Application Binaries. In Proceedings
of the 26th Annual Network and Distributed System Security Symposium (NDSS’19).

[12] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. 2017.
Identifying Open-Source License Violation and 1-day Security Risk at Large
Scale. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security (CCS’17) (Dallas, Texas, USA). ACM, New York, NY,
USA, 2169–2185.

[13] Eklektix. 2020. The LWN.net Linux Distribution List. https://lwn.net/Distributi
ons/.

[14] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE:
Efficient Cross-Architecture Identification of Bugs in Binary Code. In Proceedings

of the 23th Annual Network and Distributed System Security Symposium (NDSS’16).
[15] Ethanhs. 2018. Clang Python. https://github.com/ethanhs/clang.
[16] Qian Feng, Minghua Wang, Mu Zhang, Rundong Zhou, Andrew Henderson, and

Heng Yin. 2017. Extracting Conditional Formulas for Cross-Platform Bug Search.
In Proceedings of the 2017 ACM Asia Conference on Computer and Communications

Security (AsiaCCS’17) (Abu Dhabi, United Arab Emirates). ACM, New York, NY,
USA, 346–359.

[17] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable Graph-based Bug Search for Firmware Images. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security

(CCS’16) (Vienna, Austria). ACM, New York, NY, USA, 480–491.
[18] Qian Feng, Rundong Zhou, Yanhui Zhao, Jia Ma, Yifei Wang, Na Yu, Xudong Jin,

JianWang, Ahmed Azab, and Peng Ning. 2019. Learning binary representation for
automatic patch detection. In 2019 16th IEEE Annual Consumer Communications

& Networking Conference (CCNC). IEEE, 1–6.
[19] Debin Gao, Michael K. Reiter, and Dawn Song. 2008. BinHunt: Automatically

Finding Semantic Differences in Binary Programs. In Proceedings of the 10th

International Conference on Information and Communications Security (ICICS’08)

(Birmingham, UK). Springer-Verlag, Berlin, Heidelberg, 238–255.
[20] Andy Greenberg. 2018. How Android Phones Hide Missed Security Updates

From You | WIRED. https://www.wired.com/story/android-phones-hide-missed-
security-updates-from-you/.

[21] Roger A. Grimes. 2019. Why patching is still a problem – and how to fix
it. https://www.csoonline.com/article/3025807/why-patching-is-still-a-problem-
and-how-to-fix-it.html.

[22] Yufei Gu, Yangchun Fu, Aravind Prakash, Zhiqiang Lin, and Heng Yin. 2012.
OS-Sommelier: Memory-Only Operating System Fingerprinting in the Cloud. In
Proceedings of the Third ACM Symposium on Cloud Computing (SoCC’12) (San
Jose, California). Association for Computing Machinery, New York, NY, USA,
Article 5, 13 pages.

[23] Kelly Jackson Higgins. 2018. Unpatched Vulnerabilities the Source of Most Data
Breaches. https://www.darkreading.com/vulnerabilities---threats/unpatched-

vulnerabilities-the-source-of-most-data-breaches/d/d-id/1331465.
[24] He Huang, Amr M. Youssef, and Mourad Debbabi. 2017. BinSequence: Fast,

Accurate and Scalable Binary Code Reuse Detection. In Proceedings of the 2017

ACM Asia Conference on Computer and Communications Security (AsiaCCS’17)

(Abu Dhabi, United Arab Emirates). ACM, New York, NY, USA, 155–166.
[25] Z. Huang, M. DAngelo, D. Miyani, and D. Lie. 2016. Talos: Neutralizing

Vulnerabilities with Security Workarounds for Rapid Response. In Proceedings of

the 37th IEEE Symposium on Security and Privacy (S&P’16). 618–635.
[26] Zhen Huang and Gang Tan. 2019. Rapid Vulnerability Mitigation with Security

Workarounds. In Proceedings of the Workshop on Binary Analysis Research

(BAR’19).
[27] Zhen Huang, Gang Tan, and Trent Jaeger. 2019. Using Safety Properties to

Generate Vulnerability Patches. In Proceedings of the 40th IEEE Symposium on

Security and Privacy (S&P’19).
[28] Jiyong Jang, D. Brumley, and A. Agrawal. 2012. ReDeBug: Finding Unpatched

Code Clones in Entire OS Distributions. In Proceedings of the 33th IEEE Symposium

on Security and Privacy (S&P’12). IEEE Computer Society, Los Alamitos, CA, USA,
48–62.

[29] Duo Lab. 2016. THIRTY PERCENT OF ANDROID DEVICES SUSCEPTIBLE TO
24 CRITICAL VULNERABILITIES. https://duo.com/decipher/thirty-percent-of-
android-devices-susceptible-to-24-critical-vulnerabilities.

[30] Frank Li and Vern Paxson. 2017. A Large-Scale Empirical Study of Security
Patches. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security (CCS’17) (Dallas, Texas, USA). ACM, New York, NY,
USA, 2201–2215.

[31] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, Bing Mao, and Li Xie. 2007. AutoPaG:
Towards Automated Software Patch Generation with Source Code Root Cause
Identification and Repair. In Proceedings of the 2nd ACM Symposium on

Information, Computer and Communications Security (ASIACCS’07) (Singapore).
ACM, New York, NY, USA, 329–340.

[32] Mike Malloy. 2013. HTC: HTC needs timely kernel source releases! https:
//www.change.org/p/htc-htc-needs-timely-kernel-source-releases.

[33] Jiang Ming, Meng Pan, and Debin Gao. 2013. iBinHunt: Binary Hunting with
Inter-procedural Control Flow. In Proceedings of the 15th International Conference

on Information Security and Cryptology (ICISC’12) (Seoul, Korea). Springer-Verlag,
Berlin, Heidelberg, 92–109.

[34] Karleigh Moore, Nathan Landman, and Jimin Khim. 2020. Hungarian Maximum
Matching Algorithn, Brilliant Math & Science Wiki. https://brilliant.org/wiki/h
ungarian-matching.

[35] Kendra Morton. 2018. GPL Violations: Learning the Hard Way | Software
Composition Analysis. https://blog.flexerasoftware.com/software-composition-
analysis/2018/04/gpl-violations-learning-the-hard-way/.

[36] Collin Mulliner, Jon Oberheide, William Robertson, and Engin Kirda. 2013.
PatchDroid: Scalable Third-party Security Patches for Android Devices. In
Proceedings of the 29th Annual Computer Security Applications Conference

(ACSAC’13) (New Orleans, Louisiana, USA). ACM, New York, NY, USA, 259–
268.

[37] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras. 2015. The Attack
of the Clones: A Study of the Impact of Shared Code on Vulnerability Patching.
In Proceedings of the 36th IEEE Symposium on Security and Privacy (S&P’15).
692–708.

[38] Karsten Nohl and Jakob Lell. 2018. Mind the Gap: Uncovering the
Android Patch Gap Through Binary-Only Patch Level Analysis. https:
//conference.hitb.org/hitbsecconf2018ams/sessions/mind-the-gap-uncovering-
the-android-patch-gap-through-binary-only-patch-level-analysis/.

[39] Paloalto. 2020. Exploit Protection - Palo Alto Networks. https://www.paloaltone
tworks.com/features/exploit-protection.

[40] M. Payer and T. R. Gross. 2013. Hot-patching a web server: A case study of ASAP
code repair. In Proceedings of the 11th Annual Conference on Privacy, Security and

Trust (PST’13). 143–150.
[41] PDIFF. 2020. PDIFF source code and labelled data. https://github.com/seclab-

fudan/PDiff .
[42] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. 2015. Cross-Architecture

Bug Search in Binary Executables. In Proceedings of the 36th IEEE Symposium on

Security and Privacy (S&P’15). 709–724.
[43] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and Christian

Rossow. 2014. Leveraging Semantic Signatures for Bug Search in Binary Programs.
In Proceedings of the 30th Annual Computer Security Applications Conference

(ACSAC’14) (New Orleans, Louisiana, USA). ACM, New York, NY, USA, 406–415.
[44] Dan Price. 2018. The True Market Shares of Windows vs. Linux Compared.

https://www.makeuseof.com/tag/linux-market-share/.
[45] Steve Ranger. 2019. Cybersecurity: One in three breaches are caused by unpatched

vulnerabilities | ZDNet. https://www.zdnet.com/article/cybersecurity-one-in-
three-breaches-are-caused-by-unpatched-vulnerabilities/.

[46] Kaspar Riesen,Michel Neuhaus, andHorst Bunke. 2007. Bipartite GraphMatching
for Computing the Edit Distance of Graphs. In Proceedings of the 6th IAPR-TC-15

International Conference on Graph-based Representations in Pattern Recognition

(GbRPR’07) (Alicante, Spain). Springer-Verlag, Berlin, Heidelberg, 1–12.

https://www.securityweek.com/android-vendors-regularly-omit-patches-security-updates
https://www.securityweek.com/android-vendors-regularly-omit-patches-security-updates
https://www.symantec.com/security_response/attacksignatures/
https://www.symantec.com/security_response/attacksignatures/
https://www.darpa.mil/news-events/2019-10-14
https://lwn.net/Distributions/
https://lwn.net/Distributions/
https://github.com/ethanhs/clang
https://www.wired.com/story/android-phones-hide-missed-security-updates-from-you/
https://www.wired.com/story/android-phones-hide-missed-security-updates-from-you/
https://www.csoonline.com/article/3025807/why-patching-is-still-a-problem-and-how-to-fix-it.html
https://www.csoonline.com/article/3025807/why-patching-is-still-a-problem-and-how-to-fix-it.html
https://www.darkreading.com/vulnerabilities---threats/unpatched-vulnerabilities-the-source-of-most-data-breaches/d/d-id/1331465
https://www.darkreading.com/vulnerabilities---threats/unpatched-vulnerabilities-the-source-of-most-data-breaches/d/d-id/1331465
https://duo.com/decipher/thirty-percent-of-android-devices-susceptible-to-24-critical-vulnerabilities
https://duo.com/decipher/thirty-percent-of-android-devices-susceptible-to-24-critical-vulnerabilities
https://www.change.org/p/htc-htc-needs-timely-kernel-source-releases
https://www.change.org/p/htc-htc-needs-timely-kernel-source-releases
https://brilliant.org/wiki/hungarian-matching
https://brilliant.org/wiki/hungarian-matching
https://blog.flexerasoftware.com/software-composition-analysis/2018/04/gpl-violations-learning-the-hard-way/
https://blog.flexerasoftware.com/software-composition-analysis/2018/04/gpl-violations-learning-the-hard-way/
https://conference.hitb.org/hitbsecconf2018ams/sessions/mind-the-gap-uncovering-the-android-patch-gap-through-binary-only-patch-level-analysis/
https://conference.hitb.org/hitbsecconf2018ams/sessions/mind-the-gap-uncovering-the-android-patch-gap-through-binary-only-patch-level-analysis/
https://conference.hitb.org/hitbsecconf2018ams/sessions/mind-the-gap-uncovering-the-android-patch-gap-through-binary-only-patch-level-analysis/
https://www.paloaltonetworks.com/features/exploit-protection
https://www.paloaltonetworks.com/features/exploit-protection
https://github.com/seclab-fudan/PDiff
https://github.com/seclab-fudan/PDiff
https://www.makeuseof.com/tag/linux-market-share/
https://www.zdnet.com/article/cybersecurity-one-in-three-breaches-are-caused-by-unpatched-vulnerabilities/
https://www.zdnet.com/article/cybersecurity-one-in-three-breaches-are-caused-by-unpatched-vulnerabilities/

[47] Eric Sven Ristad and Peter N. Yianilos. 1998. Learning String-Edit Distance.
IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 5 (May 1998),
522–532.

[48] Vassil Roussev, Irfan Ahmed, and Thomas Sires. 2014. Image-based kernel
fingerprinting. Digital Investigation 11 (2014), S13–S21.

[49] James Sanders. 2019. 25% of software vulnerabilities remain unpatched for more
than a year. https://www.techrepublic.com/article/25-of-software-vulnerabilitie
s-remain-unpatched-for-more-than-a-year/.

[50] Armin Sarabi, Ziyun Zhu, Chaowei Xiao, Mingyan Liu, and Tudor Dumitraş.
2017. Patch Me If You Can: A Study on the Effects of Individual User Behavior
on the End-Host Vulnerability State. In Proceedings of 18th Passive and Active

Measurement (PAM’17). Springer International Publishing, 113–125.
[51] Roy Schestowitz. 2013. Success: Samsung’s GPL Violation and Subsequent Leak

Officially Mean exFAT Driver is Being Made Free Software | Techrights. http:
//techrights.org/2013/08/17/exfat-and-gpl/.

[52] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna. 2016. SOK: (State of) The Art of
War: Offensive Techniques in Binary Analysis. In Proceedings of the 37th IEEE

Symposium on Security and Privacy (S&P’16). 138–157.
[53] Gary Sims. 2018. Why GPL violations are bad - Gary explains - Android Authority.

https://www.androidauthority.com/gpl-violations-bad-834569/.
[54] Ben Stock, Giancarlo Pellegrino, Frank Li, Michael Backes, and Christian Rossow.

2018. Didn’t You Hear Me? - Towards More Successful Web Vulnerability
Notifications. In Proceedings of the 25th Annual Network and Distributed System

Security Symposium (NDSS’18).
[55] Linus Torvalds. 2020. Script that generates the KALLSYMS Section. https:

//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/link-
vmlinux.sh.

[56] Linus Torvalds. 2020. Torvalds Linux kernel git repositories. https://git.kernel.o
rg/pub/scm/linux/kernel/git/torvalds/linux.git/.

[57] Bernd van der Wielen. 2018. Insights into the 2.3 Billion Android Smartphones
in Use Around the World. https://newzoo.com/insights/articles/insights-into-
the-2-3-billion-android-smartphones-in-use-around-the-world/.

[58] Wikiversity. 2020. Backus-Naur form. https://en.wikipedia.org/wiki/Backus-
Naur_form.

[59] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-based Graph Embedding for Cross-Platform Binary Code
Similarity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security (CCS’17) (Dallas, Texas, USA). ACM,
New York, NY, USA, 363–376.

[60] Byoungyoung Lee Yeongjin Jang, Tielei Wang and Billy Lau. 2014. Exploiting
Unpatched iOS Vulnerabilities for Fun and Profit. https://www.blackhat.com/us-
14/archives.html#exploiting-unpatched-ios-vulnerabilities-for-fun-and-profit.

[61] Hang Zhang and Zhiyun Qian. 2018. Precise and Accurate Patch Presence Test
for Binaries. In Proceedings of the 27th USENIX Security Symposium (USENIX

Security’18). USENIX Association, Baltimore, MD.
[62] Mu Zhang andHeng Yin. 2014. AppSealer: Automatic Generation of Vulnerability-

Specific Patches for Preventing Component Hijacking Attacks in Android
Applications. In Proceedings of the 21th Annual Network and Distributed System

Security Symposium (NDSS’14).
[63] Zynamics. 2019. BinDiff Homepage. https://www.zynamics.com/.

A FORMALISM OF PATH DIGEST

We formalize the path digest with the Backus-Naur Form (BNF).
Details of our formalism are presented in Figure 9.

<PathDigest>

<PathConstraints>
<MemoryStatus>
<FunctionCallList>
<Constraints>

<MemoryUnit>
<Expr>

::=

::=
::=
::=
::=

|
::=
::=

|
|
|
|
|
|

[PathConstraints]','[MemoryStatus]','
[FunctionCallList]
'Set('{<Constraints>','}<Constraints>')'
'Set('{<MemoryUnit>','}<MemoryUnit>')'
'List('{<Func>','}<Func>')'
<Expr>
<Expr><cop><expr>
'(addr='<Expr>',value='<Expr>')'
<FunctionArgument>
<GlobalVariable>
<ExternalCallReturnValue>
<ImmediateValue>
'['<Expr>']'
<Expr><op><Expr>
'not'<Expr>

Figure 9: Abbreviated BNF for path digest.

B CVE DATASET

Table 9 shows the details of 51 CVEs that we used to evaluate PDiff.
The 51 CVEs cover different types of vulnerabilities such as race
condition, NULL pointer dereference, out-of-bounds read/write.
These CVEs also affect different versions of Linux kernels across
the past 5 years.

Table 9: Overview of CVE Dataset.

CVE Affected Versions Vulnerability Type

CVE-2014-1739 <3.14.6 Uninitialized data
CVE-2014-2523 <3.13.6 Logic bug
CVE-2014-4014 <3.14.8 Logic bug
CVE-2014-9529 <3.18.2 Race condition
CVE-2014-9914 <3.15.2 Race condition
CVE-2015-1421 <3.18.8 Use-after-free
CVE-2015-1465 <3.18.8 Logic bug
CVE-2015-5364 <4.0.6 Logic bug
CVE-2015-8787 <4.4 NULL pointer dereference
CVE-2015-8839 <4.5 Race condition
CVE-2015-8955 <4.1 NULL pointer dereference
CVE-2015-8963 <4.4 Race condition
CVE-2015-9004 <3.19 Logic bug
CVE-2016-0723 <4.4.1 Race condition
CVE-2016-2053 <4.3 Logic bug
CVE-2016-2184 <4.5.1 NULL pointer dereference
CVE-2016-2546 <4.4.1 Race condition
CVE-2016-3955 <4.5.3 Out-of-bounds write
CVE-2016-4470 <4.6.3 Uninitialized variable
CVE-2016-5696 <4.7 Logic bug
CVE-2016-6786 <4.0 Race condition
CVE-2016-7910 <4.7.1 Use-after-free
CVE-2016-7911 <4.6.6 Race condition
CVE-2016-7912 <4.5.3 Use-after-free
CVE-2016-7916 <4.5.4 Race condition
CVE-2016-9120 <4.6 Use-after-free
CVE-2016-10200 <4.8.14 Use-after-free
CVE-2017-7374 <4.10.7 Use-after-free
CVE-2017-8070 <4.9.11 Logic bug
CVE-2017-9074 <4.11.1 Out-of-bounds read
CVE-2017-15868 <3.19 Logic bug
CVE-2017-15951 <4.13.10 Race condition
CVE-2017-16527 <4.13.8 Use-after-free
CVE-2017-16533 <4.13.8 Out-of-bounds read
CVE-2017-16534 <4.13.6 Out-of-bounds read
CVE-2017-16535 <4.13.10 Out-of-bounds read
CVE-2017-16939 <4.13.11 Use-after-free
CVE-2017-17806 <4.14.8 Buffer Overflow
CVE-2017-17857 <4.14.8 Logic bug
CVE-2017-18202 <4.14.4 Use-after-free
CVE-2017-18255 <4.11 Integer overflow
CVE-2018-7480 <4.11 Double free
CVE-2018-10938 4.0-rc1∼v4.13-rc4 Logic bug
CVE-2018-11508 <4.16.9 Logic bug
CVE-2018-12232 <4.17.1 Race condition
CVE-2018-13405 <4.17.4 Logic bug
CVE-2018-1000200 4.14.x, 4.15.x, 4.16.x NULL pointer dereference
CVE-2019-9213 <4.20.14 NULL pointer dereference
CVE-2019-10638 <5.1.7 Logic bug
CVE-2019-10639 4.x∼5.0.8 Logic bug
CVE-2019-16994 <5.0 Logic bug

https://www.techrepublic.com/article/25-of-software-vulnerabilities-remain-unpatched-for-more-than-a-year/
https://www.techrepublic.com/article/25-of-software-vulnerabilities-remain-unpatched-for-more-than-a-year/
http://techrights.org/2013/08/17/exfat-and-gpl/
http://techrights.org/2013/08/17/exfat-and-gpl/
https://www.androidauthority.com/gpl-violations-bad-834569/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/link-vmlinux.sh
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/link-vmlinux.sh
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/link-vmlinux.sh
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://en.wikipedia.org/wiki/Backus-Naur_form
https://en.wikipedia.org/wiki/Backus-Naur_form
https://www.blackhat.com/us-14/archives.html#exploiting-unpatched-ios-vulnerabilities-for-fun-and-profit
https://www.blackhat.com/us-14/archives.html#exploiting-unpatched-ios-vulnerabilities-for-fun-and-profit
https://www.zynamics.com/

	Abstract
	1 Introduction
	2 Problem Understanding
	2.1 Motivating Study
	2.2 Problem Scope
	2.3 Challenges of Patch Presence Testing

	3 Approach Overview
	3.1 Insights
	3.2 Running Example

	4 Approach Design
	4.1 Anchor Block Selection
	4.2 Patch Summary Generation
	4.3 Summary-based Patch Presence Testing

	5 Evaluation
	5.1 Experiment Setup
	5.2 Evaluation of Effectiveness
	5.3 Evaluation of Efficiency
	5.4 Effectiveness of Anchor Blocks
	5.5 Findings in Evaluation

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Formalism of Path Digest
	B CVE Dataset

