
How Android Developers Handle Evolution-induced API
Compatibility Issues: A Large-scale Study

Hao Xia∗
Fudan University

haoxia17@fudan.edu.cn

Yuan Zhang∗
Fudan University

yuanxzhang@fudan.edu.cn

Yingtian Zhou
Fudan University

yingtianzhou17@fudan.edu.cn

Xiaoting Chen
Fudan University

xtchen16@fudan.edu.cn

Yang Wang
Fudan University

16307130325@fudan.edu.cn

Xiangyu Zhang
Purdue University

xyzhang@cs.purdue.edu

Shuaishuai Cui
Fudan University

sscui16@fudan.edu.cn

Geng Hong
Fudan University

ghong17@fudan.edu.cn

Xiaohan Zhang
Fudan University

xh_zhang@fudan.edu.cn

Min Yang
Fudan University

m_yang@fudan.edu.cn

Zhemin Yang
Fudan University

yangzhemin@fudan.edu.cn

ABSTRACT

As Android platform evolves in a fast pace, API-related compat-
ibility issues become a significant challenge for developers. To
handle an incompatible API invocation, developers mainly have
two choices: merely performing sufficient checks to avoid invoking
incompatible APIs on platforms that do not support them, or grace-
fully providing replacement implementations on those incompatible
platforms. As providing more consistent app behaviors, the latter
one is more recommended and more challenging to adopt. However,
it is still unknown how these issues are handled in the real world,
do developers meet difficulties and what can we do to help them.

In light of this, this paper performs the first large-scale study
on the current practice of handling evolution-induced API com-
patibility issues in about 300,000 Android market apps, and more
importantly, their solutions (if exist). Actually, it is in general
very challenging to determine if developers have put in counter-
measure for a compatibility issue, as different APIs have diverse
behaviors, rendering various repair. To facilitate a large-scale study,
this paper proposes RAPID, an automated tool to determine whether
a compatibility issue has been addressed or not, by incorporating
both static analysis and machine learning techniques. Results
show that our trained classifier is quite effective by achieving
a F1-score of 95.21% and 91.96% in the training stage and the
validation stage respectively. With the help of RAPID, our study
yields many interesting findings, e.g. developers are not willing to

∗co-first authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380357

provide alternative implementations when handling incompatible
API invocations (only 38.4%); for those incompatible APIs that
Google gives replacement recommendations, the ratio of providing
alternative implementations is significantly higher than those
without recommendations; developers find more ways to repair
compatibility issues than Google’s recommendations and the
knowledge acquired from these experienced developers would
be extremely useful to novice developers and may significantly
improve the current status of compatibility issue handling.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; • General and reference→ Empirical studies.
KEYWORDS

Compatibility Issues, API Evolution, Android App Analysis

ACM Reference Format:

Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, Yang Wang, Xiangyu
Zhang, Shuaishuai Cui, Geng Hong, Xiaohan Zhang, Min Yang, and Zhemin
Yang. 2020. How Android Developers Handle Evolution-induced API
Compatibility Issues: A Large-scale Study. In 42nd International Conference

on Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3377811.3380357

1 INTRODUCTION

Recent years have witnessed the rapid growth of Android-powered
devices. To keep up with the emerging needs for new function-
alities and improve user experience, Google frequently updates
its Android operating system. During the evolution of Android
platform, many new APIs are introduced, while some APIs are
removed. Google designates a dedicated API level for each major
OS release to label the APIs that can be used on this OS release [8].
To safely invoke an Android API, developers should check the
current API level of the running platform (which can be accessed
via android.os.Build.SDK_INT , SDK_INT for short), before the
invocation. Otherwise, invoking an unsupported API will lead to

886

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

https://doi.org/10.1145/3377811.3380357
https://doi.org/10.1145/3377811.3380357

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, Yang Wang, Xiangyu Zhang, et al.

a “NoSuchMethodError” and crash. This kind of issue is called an
evolution-induced API compatibility issue [16, 24].

With the recent release of Android P, there are 28 different
API levels [10] in total and each level defines tens of thousands
of Android APIs. Obviously, it is quite challenging and error-
prone for Android developers to manage app compatibility against
different API levels [18, 35]. Even worse, Android Lint (which is
the default app bug detector integrated by the official Android
App IDE, Android Studio) is ineffective in helping developers
perform API compatibility checks, because it performs context-
insensitive analysis and does not cover the integrated external
libraries. As a result, evolution-induced API compatibility issues
are prevalent. For example, by querying Google with “Android
NoSuchMethodError”, 193,000 entries return (till April 22, 2019). A
recent study shows that 91.84% of FDroid apps write specific code
to perform API level checks and 25.33% of them have evolution-
induced incompatible API usage [16]. To help developers to test
whether they perform sufficient compatibility checks, Li et al. [24]
and He et al. [16] systematically model the lifecycle of every
Android API and leverage heavyweight static analysis.

However, performing sufficient compatibility checks is not
enough to deal with evolution-induced API compatibility issues. In
fact, it just prevents the app from raising a “NoSuchMethodError”.
For example, when Google removes the API Resources.getColor(int),
it suggests developers invoke another API Resources.getColor(int,
Theme) instead [6]. If an app just performs a check with SDK_INT

before invoking Resources.getColor(int) without providing a re-
placement API on those incompatible API levels, the app would
incur an inconsistency bug. To better deal with the compatibility
issue in this example, developers should invoke another API (such
as the recommended Resources.getColor(int, Theme) method) on
those incompatible API levels. Based on the above observation, this
paper distinguishes two kinds of checks against evolution-induced
compatibility issues.

(1) The first kind of check just aims to prevent the app from
crash by simply avoiding the invocations of APIs that are not
supported by the underlying platform. This kind of check is
named as SigChk for short (explained later in §2.2).

(2) The second kind of check not only guarantees that APIs
with compatibility issues are invoked when supported, but
also provides similar functionalities to these APIs when not
supported. We call this kind of check as RplChk for short
(explained later in §2.2).

To provide better app compatibility against different API levels,
developers are expected to implement consistent app behavior
across all API levels they claim to keep compatible with.

Previous works [16, 24] only manually analyzed several cases of
how evolution-induced compatibility issues are checked. However,
their study only covers a small number of cases. There is no
large-scale study to measure the current practice of developers
in handling evolution-induced incompatible API invocations, e.g.
do developers tend to replace them or just simply check them,
how different compatibility-related APIs are replaced, what typical
difficulties do developers encounter in finding ways to replace them,
can novice developers be benefited from learning the practice of
experienced developers.

In light of this, this paper aims to perform a large-scale study on
real-world Android market apps (about 300,000 apps) to shed light
on the practice of developers in dealing with evolution-induced
API compatibility issues. To the best of our knowledge, this paper is
the first to perform such a study with a large volume of real-world
apps. The results reported by our study can facilitate an in-depth
understanding of the current status in handling app compatibility
issues, and enable the community to conduct more effective efforts
to help developers fix compatibility issues. Except for evolution-
induced API compatibility issues, Android apps are also vulnerable
to other kinds of compatibility issues [46], such as device-specific
issues [26]. In this paper, we mainly consider evolution-induced API
compatibility issues, because of their prevalence [16], severe effects,
and the feasibility of systematically modeling these issues [24]. In
the following, we shortly name evolution-induced API compatibility
issues as compatibility issues when not specifically mentioned.

To facilitate the large-scale study, we need an automated tool
which can classify compatibility checks into SigChk and RplChk.
However, building such a tool entails challenging program analysis.
Since there are a lot of compatibility-related APIs (more than 10,000
APIs as reported in §2.1) and different APIs may be replaced in
specific ways, we cannot directly search all possible alternative
implementations for every compatibility-related API to provide
appropriate classification. As demonstrated in the large-scale study
(see §4), developers have various ways to implement alternative
functionalities to the compatibility-related APIs.

To this end, we propose a tool, named RAPID (Replacement API
Detection) to automatically recognize RplChk. The intuition of
RAPID originates from the definition of RplChk, i.e. a compatibility
check which provides a replacement operation when the API is not
supported. Thus, if there is a similar operation to theAPI in the other
branch, it is RplChk. Otherwise, it is SigChk. However, it is quite
difficult to judgewhether there is a similar operation to anAPI in the
other branch, because each API provides different functionalities
and exhibit diverse behaviors. By manually analyzing about one
hundred real-world SigChk and RplChk cases, we have some
interesting findings:

• We find that the alternative operation in RplChk shares
similar semantics with the API, which is often reflected in the
semantic similarity of the corresponding natural language
artifacts (e.g. API names). For example, the recommended
alternative API Resources.getColor(int, Theme) by Google is
quite similar to the original API Resources.getColor(int) in
terms of the API names.

• We find that the arguments that an alternative operation
takes are similar to the arguments of the original API, and
the return value of an alternative operation may flow to
similar points as the return value of the original API.

Based on these observations, we propose a learning-based approach
to automatically determine if a compatibility check is RplChk or
not. Specifically, we extract 19 features from code blocks at each
compatibility check point and encode them into numeric vectors.
We manually label 293 compatibility checks and utilize machine
learning to train a classifier. The model reports a precision of
96.76% and a recall of 93.72% in the training stage. Besides, we
also randomly select 414 compatibility checks from the study to

887

How Android Developers Handle Evolution-induced API Compatibility Issues: A Large-scale Study ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

manually validate the effectiveness of our trained classifier. The
result shows that it achieves a precision of 93.41% and a recall of
90.58%, which we believe is good enough for a large-scale study.

We collect about 300k apps from 5 popular Android app markets
to study the practice of handling compatibility issues in the real
world. Our study yields many important and interesting findings
that have never been reported before, e.g.: 1) we find that only 38.4%
of compatibility checks actually provide replacement implementa-
tions on those incompatible API levels; 2) developers are likely to
handle incompatible API invocations with alternative operations
when Google provides recommendations, although Google only
gives recommendations for very few APIs; 3) developers do not
always follow the recommended way when providing replacement
implementations, especially when the recommended API needs
more arguments to invoke and hence is not the easiest way to handle
the issue; 4) developers can find their own way to provide replace-
ment implementations for those incompatible APIs when Google
does not give recommendations; 5) not all developers succeed in
providing replacement implementations and the current status of
handling compatibility issues can be significantly improved by
simply learning from experienced developers.

In all, this paper makes the following contributions:
• Large-scale study to understand the current practice

of compatibility issue handling. This paper is the first to
distinguish two kinds of compatibility issue checks: SigChk
and RplChk, and performs the first such large-scale study
to measure the real-world practice of handling compatibility
issues. Our study reveals many important findings that are
expected to stimulate more relevant works to improve the
compatibility issue fixing.

• The RAPID tool that can automatically classify two

kinds of compatibility checks. It is quite challenging
to automatically classify SigChk and RplChk. This paper
designs a learning-based approach to automatically deter-
mining if a compatibility issue check is a RplChk or not,
based on a comprehensive set of features from texts, data
dependencies, etc. Despite from facilitating a large-scale
study, our tool is also very useful to help developers to check
whether they have properly performed compatibility checks.

Note that our goal is to distinguish two kinds of compatibility issue
checks and study the current fix practice on a large scale, while not
aiming to automatically fix/repair incompatible APIs.

The rest of this paper is organized as follows. § 2 introduces
our definition of two kinds of compatibility checks and presents
the motivation of this paper as well as the challenges we met. § 3
presents the design of our RAPID tool which is built to automatically
classify SigChk and RplChk. § 4 evaluates the performance of
RAPID and reports the results drawn from our large-scale study. § 5
discusses the limitations of our work. § 6 summarizes the related
work and § 7 concludes the paper.

2 PROBLEM STATEMENT

2.1 Evolution-induced Compatibility Issues

Android platform is frequently updated to meet various emerging
requirements and to optimize the user experience. For example,
there have been two or more major platform updates almost every

-26 -5 -387
-1345 -1420

-271 -2 -217 -2 -947

28575 29427 29190 30699 29415 30920
34524 34419

37564 36726

857 150

2854
136 1776

3606 112

3147 109 1320

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

19 20 21 22 23 24 25 26 27 28

A
P

I
 C

o
u

n
t

API Level

API Lifecycle

Deprecated API Inherited API Added API

Figure 1: API Lifecycle ranging from API Level 19 (Android

4.4) to 28 (Android P). This figure shows the numbers of

APIs that are deprecated/added at this API level and those

inherited from the previous API level.

year in the past decade. The evolution of the Android operating
system brings significant burdens for developers to keep their
apps compatible with different system versions. To help developers
manage app compatibility, Google designates an API level for each
major system version, which defines all the APIs that can be
accessed on this version. If an app invokes an API that is not defined
by the API level, it will trigger a “NoSuchMethodError” and crash.

While it is unnecessary for an app to be compatible with all
API levels, app developers usually declare the API levels that
their app should be compatible with in the app manifest file
(aka. AndroidManifest.xml [9]). There are three attributes in the
manifest file that can be used to declare the compatibility level:
1) minSDKVersion defines the minimum API level that the app
is compatible with, and Android ensures that the app cannot be
installed on devices below this API level; 2) targetSDKVersion defines
the most appropriate API level that the app is designed to run
on; 3) maxSDKVersion is previously used to define the maximum
level, but this attribute is deprecated since Android 2.1. Among
the three attributes, minSDKVersion is the most important because
it determines the range of API levels that an app should ensure
compatibility. For example, if an app sets minSDKVersion to 21, it
should ensure compatibility with the API levels from 21 to 28 (the
latest API level of Android).

API Lifecycle Database. During API evolution, some APIs
are deprecated and new APIs are introduced. Android main-
tains the available API level range for each occurred API in api-
versions.xml [11] of Android SDK. By analyzing this file, we can
build a database to figure out the APIs that can be invoked at
each API level. Figure 1 shows the number of APIs that each API
level defines. From this figure, we can find that a lot of APIs are
added/removed during each API level update.

2.2 Two Kinds of Compatibility Checks

To handle evolution-induced API compatibility issues, developers
need to perform API level checks of the running platform before
invoking a compatibility-related API. Specifically, for those newly-
introduced APIs, app developers should guarantee that these APIs

888

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, Yang Wang, Xiangyu Zhang, et al.

1 if (Build.VERSION.SDK_INT >= 22) {

2 ((AccountManager)v0).removeAccountExplicitly(v1);

3 }

1 if (Build.VERSION.SDK_INT >= 22) {

2 ((AccountManager)v0).removeAccountExplicitly(v1);

3 } else {

4 ((AccountManager)v0).removeAccount(v1, null, null);

5 }

1 if (Build.VERSION.SDK_INT >= 22) {

2 ((AccountManager)v0).removeAccountExplicitly(v1);

3 } else {

4 logger.warn("Just a log");

5 }

(a) Compatibility Issue Check with if-then CFG Structure

(b) Compatibility Issue Check with if-then-else CFG Structure

(c) Compatibility Issue Check with if-then-else CFG Structure

Figure 2: Different cases of checking

compatibility issues. In this figure,

AcccountManager.removeAccountExplicitly(X1) is added

since API level 22 and AcccountManager.removeAccount(X1,

X2, X3) is deprecated since API level 22 [5].

are not invoked on the previous API levels; for those deprecated
APIs, app developers should ensure that these APIs are not invoked
on the subsequent API levels. In practice, different checks can
be performed for a compatibility-related API invocation. Figure 2
shows an example of several cases of checking compatibility issues.
Based on the aims of different compatibility issue checks, we
differentiate two kinds of compatibility issue checks:

(1) SigChk: Single Compatibility Issue Check. A simple
way to handle compatibility issues is to perform a check against
SDK_INT (which returns the API level of the running platform)
before invoking any compatibility-related API. Figure 2(a) gives an
example, where AcccountManager.removeAccountExplicitly(X1) is
added since API level 22, and hence the code snippet tests whether
SDK_INT is larger than or equal to 22. By placing such API level
checks before invoking compatibility-related APIs, developers can
effectively prevent “NoSuchMethodError”. From Figure 2(a), we
observe that this kind of check does nothing but just checking
the API level of the underlying platform. We call such practice to
handle compatibility issues as SigChk for short.

(2)RplChk: ReplacedCompatibility IssueCheck.Although
SigChk can prevent apps from crashes, it is not the best effort
to handle compatibility issues. A better way to handle evolution-
induced compatibility issues is to provide an alternative implemen-
tation/function that has similar functionalities when an API is not
compatible. Take Figure 2(a) as an example, the remove account
operation is only performed when the API level is larger than
22. It would lead to inconsistent behaviors on devices whose API
level is below 22. In contrast, Figure 2(b) gives a better way to
handle the compatibility issue by invoking another API with similar
functionalities on API levels lower than 22. We call such a way to
handle compatibility issues as RplChk for short.

2.3 Motivation

Obviously, RplChk is more desirable than SigChk. When some
APIs are deprecated, Google may recommend developers to use
other APIs to replace the incompatible ones. For example, when
Google removes the API Resources.getColor(int), it suggests devel-
opers to invoke another API Resources.getColor(int, Theme) as an

alternative [6]. However, not all deprecated APIs have suggested
replacement APIs. Meanwhile, for APIs that are newly introduced,
there are no recommendations on earlier API levels. When there
are no official recommendations to handle a compatibility issue,
developers often resort to their own efforts to implement similar
functionalities. Sometimes it is almost impossible to fix a com-
patibility issue in this way, because the feature provided by the
compatibility-related API may only be implemented by the platform.
For example, WifiManager.startScan() is deprecated since API level
28, which requests a scan for Wifi access points [7]. Except for
this API, an app cannot implement similar functionality because a
normal app does not have the privileges to control Wifi devices for
access point scanning.

Based on the above observations, we can find that it is quite
challenging for developers to fix compatibility issues with replace-
ment implementations. Previous work leverages manual analysis
of open source apps to gain insights into how compatibility issues
are fixed [46]. However, their study only covers a small number
of apps, and thus cannot give a representative and quantitative
measurement about the status of compatibility issue handling.
In light of this, our paper aims to perform a large-scale study
to measure the current practice of developers in dealing with
compatibility issues, such as: how many compatibility issues are
addressed by providing alternative functionalities, do Google’s
recommendations help developers in handling these issues. Besides
facilitating an in-depth understanding of compatibility issues and
their fixes, the insights acquired through our study may have
substantial ramifications on future research about automatically
addressing such issues.

2.4 Challenges

To facilitate such a large-scale study, we first need a tool which can
automatically and reliably classify SigChk and RplChk. However,
it is challenging to achieve this goal, because there are a large
number of compatibility-related APIs (more than 10,000 APIs as
reported in §2.1), and different APIs have different functionalities
such that their invocations can only be replaced in specific
ways. Thus, we cannot simply crawl all possible alternative
implementations for every compatibility-related API to conduct
classification. Specifically, there are two challenges to differentiate
RplChk from SigChk:

Challenge-I: Recognizing the control structure of compat-

ibility checks does not reliably distinguish RplChk from

SigChk. One may observe that a SigChk usually has only a single
true branch after the check of SDK_INT , while a RplChk always
has both true branch and false branches. However, as depicted in
Figure 2(c), not all compatibility checks with both branches are
RplChk. The case in Figure 2(c) is actually a SigChk.

Challenge-II: Measuring the similarity between the true

and false branches of compatibility check does not accu-

rately differ RplChk and SigChk. To differ Figure 2(b) from
Figure 2(c), one may propose to use code block similarity, since the
two branches of the SDK_INT check in Figure 2(b) are quite similar
while the two branches in Figure 2(c) are dissimilar. However, this
rule is not reliable. Figure 3 gives an example in which the two
branches are quite similar. However, by examining this case, we can

889

How Android Developers Handle Evolution-induced API Compatibility Issues: A Large-scale Study ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

1 if (Build.VERSION.SDK_INT >= 16) {

2 Intent i = new Intent(this, CameraGallery.class);

3 i.putExtra("from", "hoarding");

4 ActivityOptions op = ActivityOptions.makeCustomAnimation

(this, R.anim.anim1, R.anim.anim2);

5 this.startActivity(i, op.toBundle());

6 } else{

7 Intent i = new Intent(this, CameraGallery.class);

8 i.putExtra("from", "hoarding");

9 this.startActivity(i);

10 }

Figure 3: A SigChk case where there is no

alternative operation in the else branch for

ActivityOptions.makeCustomAnimation(). This case

demonstrates that the identification of RplChk requires

fine-grained analysis.

find that the functionality provided by the compatibility-related
API ActivityOptions.makeCustomAnimation() is not provided in the
other branch. To reliably differ RplChk from SigChk, we need to
analyze the fine-grained code semantics.

To address these challenges, this paper proposes a learning-
based approach, RAPID (Replacement API Detection), which can
automatically classify RplChk and SigChk by leveraging static
analysis and machine learning. In the following, we will elaborate
on the technique.

3 RAPID APPROACH

3.1 Overview

By manually analyzing about one hundred real-world SigChk and
RplChk cases, we gain some insights about determining whether a
compatibility check is SigChk or RplChk. Basically, we follow two
steps.

Firstly, we examine the control structure of the check on
SDK_INT . If the check is a “if-then” check, it is directly flagged
as SigChk, since there is no way for the app to provide similar
functionalities to the compatibility-related API in this scenario
(see Figure 2(a) for an example). Note that we focus on checks on
SDK_INT because according to recent works [16, 24] that detect
missing checks of incompatible API invocations, developers mostly
use the attribute SDK_INT to check API compatibility.

Secondly, if the check is a “if-then-else” check, we cannot simply
flag it as RplChk. Our core idea to classify this kind of check is
inspired by the definition of RplChk, i.e., whether the app provides
similar functionalities to the problematic API on unsupported API
levels.

Since there is a large search space for the possible replacements of
an incompatible API invocation, we usually cannot give a definitive
answer. Instead, we disclose the characteristics thatRplChk exhibits
from the experience in manual inspection of a number of real-world
SigChk and RplChk cases, and design a learning-based approach
to facilitate such classification. Specifically, we find RplChk cases
share many common features from two perspectives that SigChk
cases do not have: behavior semantics and input/output dependencies.

Behavior Semantics. The names of Android API classes, meth-
ods and fields contain rich semantic. In RplChk cases, we ob-
serve that the alternative operations to an incompatible API
often share very similar semantics in their natural language

$r4 = android.os.Environment.

getExternalStorageState($r3)

goto label08

label07:

$r4 = android.os.Environment.

getStorageState($r3)

label08:

$z1 = $r4.equals("mounted")

if $z1 != 0 goto label09

$i0 = 1;

$r2 = $r1.getExternalFilesDirs(null);

$r3 = $r2[$i0];

$i1 = android.os.Build$VERSION.SDK_INT

if $i1 < 21 goto label07

Figure 4: Example to demonstrate the features that can be

used to locate replacement API.

artifacts (e.g. names). Figure 4 gives an example, where En-

vironment.getExternalStorageState() is used to replace Environ-

ment.getStorageState() on those incompatible API levels. We can
observe that the two APIs are from the same class. Besides,
from their names, it is not hard to infer that they provide very
similar functionalities. In contrast, in the SigChk case shown in
Figure 2(c), it is easy to recognize that Logger.warn() and Account-

Manager.removeAccountExplicitly() are likely to be semantically
different. Note that only names of API classes, methods and fields
are considered here, because they belong to the public interface
of Android system that should not be obfuscated [12, 14, 45]. In
contrast, app-specific artifacts (e.g., functions defined locally by an
application) are precluded in our analysis.

Input/Output Dependencies. Besides behavior semantics, we
also observe that if an API can be used to replace another one.
They are expected to accept very similar inputs and the outputs
generatedmay be used in a similar way. The RplChk case in Figure 4
can be used as an example to illustrate such a similarity. We can
find that the arguments of Environment.getExternalStorageState()

and Environment.getStorageState() are the same (i.e. $r3), and the
return value of them are also the same (i.e. $r4). Note that not all
the APIs that can replace each other have the same inputs and
outputs. Meanwhile, for the SigChk cases in Figure 2(c), there is
no operation in the false branch which shares similar inputs and
outputs with AccountManager.removeAccountExplicitly().

RAPIDWorkflow. We present RAPID which leverages the afore-
mentioned insights to automatically classify RplChk and SigChk.
Figure 5 depicts the overall workflow of RAPID. First, RAPID
identifies all compatibility checks using static analysis, and also
extracts the branches of each check. To identify compatibility
checks, RAPID leverages the API Lifecycle Database constructed in
§2.1. Second, RAPID extracts features from the branches and encodes
them into vectors. At last, we choose Support VectorMachine (SVM)
(for its over-fitting resistant feature) to train a classifier for RplChk
identification. In the following, we will detail the design of the two
modules in RAPID.

3.2 Static Analysis

3.2.1 Compatibility Check Identification. In order to recognize
RplChk, RAPID needs to first identify compatibility checks. Actually,

890

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, Yang Wang, Xiangyu Zhang, et al.

API Lifecycle
Database

APK

Static Analysis

Compatibility Check
Identification

Check-related Control
Flow Branches Extraction

Feature Extraction

Behavior Semantics

Input/Output
Dependencies

SVM
Classifier

Feature
Vector

Ground
Truth

1 0 .. 1

Figure 5: Workflow of RAPID. It first identifies all compatibility checks and check-related control flow branches with static

analysis, and then extracts features from the branches to encode them into vectors. Finally, SVM is trained to give a

classification result.

previous works [16, 24, 46] on detecting missing compatibility
checks have explored many ways for compatibility check iden-
tification. This part of RAPID is inspired by these works, and we do
not claim contributions. The key contributions of RAPID lie in the
classification of SigChk and RplChk which will be elaborated.

Nevertheless, we give an overview of this part for the sake of
completeness. Specifically, RAPID follows three steps to identify
compatibility checks. First, we leverage FlowDroid [1] to build a
precise inter-procedural control flow graph (ICFG) for each app.
During ICFG construction, FlowDroid generates a dummy main
method to connect all app components and callback functions.
Second, by traversing the ICFG, RAPID locates all compatibility-
related API invocations in the app. In order to find all compatibility-
related APIs for an app, RAPID looks up the API Lifecycle Database
which is constructed in §2.1 with theminSdkVersion attribute in the
AndroidManifest.xml [9] of the app. At last, we traverse backward
to find the API level check against SDK_INT for each located API.

3.2.2 Check-related Control Flow Branches Extraction. After iden-
tifying compatibility checks, we further extract the control flow
graphs of these checks for the following RplChk classification. If a
check has a “if-then” control structure, we can quickly recognize it
as a SigChk. Thus, only the compatibility checks with two branches
(i.e. “if-then-else” control structure’) proceed to this step. To differ
the two branches, we call the branch that invokes the API the api-
branch, and call the other branch candidate-branch. The goal of
RAPID is to find an alternative operation in the candidate-branch
which provides similar functionalities to the incompatible API, if
it exists. As indicated in [16], the most common fix practice is
to invoke an alternative API (from a different API level). Besides,
combined with our experience in manual inspection, we focus on
two kinds of operations in the candidate-branch to reduce the search
space: 1)method-invocation operationwhich invokes an API; 2) field-
access operationwhich gets/sets a field of a system class. Specifically,
we name each operation as UnitOp, including the compatibility-
related API invocation in the api-branch.

Our compatibility check branch extraction works by transform-
ing the statements in the candidate-block into a list of UnitOps.
During the transformation, we also inline the app methods that
are invoked by the candidate-branch since an alternative operation
may be inside an app method. Besides, we recognize Java Reflection
API calls in the candidate-branch and transform them into normal
Java statements with the help of constant propagation. Note that
we do not employ a dedicated tool (such as DroidRA [23]) to tame

the reflection calls here because our scenario is not an adversarial
setting and the cases we meet are quite standard to handle. For each
UnitOp, we also perform intra-block data flow analysis to track the
flows to the arguments of an UnitOp and the propagation of its
return value.

3.3 Feature Extraction

We further extract features for each identified UnitOp to train a
classifier to identify RplChk. If a UnitOp in the candidate-branch
provides similar functionalities to the incompatible API invocation
UnitOp, the check is recognized as RplChk. Specifically, the feature
extraction module extracts features from two perspectives as men-
tioned before: behavior semantics and input/output dependencies.

Overall, we extract 19 features for every UnitOp pair (i.e., one
is the alternative of the other) and each feature is represented as
a floating point value. Before we detail the extraction for these 19
features, we introduce 3 similarity functions as follows:

• Jaccard [48] similarity models the similarity between two
sets based on how many common items they share.

• Word similarity utilizes the word2vec [49] model to calculate
the semantic similarity between two words.

• Word set similarity leverages the word2vecmodel to calculate
the similarity between two word sets. Specifically, we adopt
an algorithm of calculating sentence similarity [38] which
works by calculating the average word similarity between
all words in the two sets.

3.3.1 Feature Extraction for Behavior Semantics. We notice that
names and comments of code elements in Java code usually covey
a lot of semantic information. Therefore, we leverage the text
similarity between two UnitOps to represent their closeness in
behavior semantics. Specifically, for every UnitOp pair, we extract
8 features from their package names, class names, method/field
names and comments, as described below.

Common Package Prefix Length: For example, the common
package prefix length of “android.app” and “android.support.v4.app”
is 1.

Package Hierarchy Distance: For example, it takes 4 steps to
reach "android.support.v4.app" from "android.app" in the package
hierarchy, so the package hierarchy distance is 4.

Package Name Similarity: We split package names into sep-
arated words by the dot symbol, and use the Jaccard similarity
to calculate the package name similarity. For example, we can
split “android.app” and “android.support.v4.app” into two word

891

How Android Developers Handle Evolution-induced API Compatibility Issues: A Large-scale Study ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

sets “android, app” and “android, support, v4, app”. With Jaccard
similarity, we can calclate the package name similairty is 0.5.

ClassName Similarity: Because Java uses camel nomenclature,
we also split class names into word sets, and use the word set
similarity to calculate their similarity.

Is Both Static: We test whether the method invoked or the field
accessed in the two UnitOps is both static or non-static.

Operation Action Similarity: The operation action is the
action (a verb) performed by a UnitOp. For method-invocation
operations, we can extract the verbs from their method name. To
tag Part-Of-Speech for different words, we use Stanford Log-linear
Part-Of-Speech Tagger [40]. For example, “get” is the operation
type for “getStorageState()”. For field-access operations, we use
“get” or “set” to represent their actions.

Operation Target Similarity: The target of an operation can
be represented by the nouns in the method name for a method-
invocation operation and the nouns in the field name for a field-
access operation. We also use [40] to tag the Part-Of-Speech
for different words. We use word set similarity to calculate the
similarity between the two noun sets.

Comment Similarity: Android provides sufficient comments
to describe each method and field. Note that we do not require
source code of apps. For each UnitOp pair, the methods invoked
or the fields accessed all belong to Android system classes, which
have comments. These comments also help to gauge the distance of
two methods or fields. By parsing the comments and extracting the
nouns, we also use word set similarity of two noun sets to calculate
comment similarity.

3.3.2 Features Extraction for Input/Output Dependencies. The be-
havior semantic features mainly consider the characteristics of Uni-
tOp pairs, without taking their dependencies with other statements
into account. Therefore, we also extract input/output dependency
features for each UnitOp as a complement.

Specifically, during the static analysis phase, we perform intra-
branch data flow analysis to track data flow to the arguments
of an UnitOp and the propagation of its return value. Figure 6
gives an example to demonstrate this kind of data flow. In this
example, $i0 = Settings.System.getInt($r7, $r3) is the target UnitOp.
By tracking the data flow to its arguments, we find that $r3 and
$r0 are two input-related variables ($7 is transitively dependent on
$r0), and the getContentResolver() API is an input-related operation
(because $r7 is acquired by this API). Besides, we track the usage
of return value $i0, and find that $r5 is an output-related variable
(because it depends on $i0) and the append()API is an output-related
operation (because it takes $i0 as argument). Based on input/output
dependencies, we extract the following 11 features.

Argument Number:We extract the number of arguments that
the subject API takes.

Arguments Type Similarity: We extract all argument types
for a method-invocation operation, and the declared type of a field
for a field-set operation. Based on the texts of these types, we split
them into words and calculate word set similarity between them.
For field-get operations, they have no argument, so the word set
for them is empty.

Constant Similarity: Sometimes constants are used as ar-
guments for method-invocation operations or assigned to fields

$i0 = Settings.System.getInt($r7, $r3);

$r7 = $r2.getContentResolver();

$r3 = “vibrate_when_ringing”

$r5 = $r1.append($i0);

return $r5;

$r2 = $r0.context;

Figure 6: Example to demonstrate feature extraction for

input/output dependencies for Settings.System.getInt().

for field-set operations. Typically, these constants are static final
variables which are declared in Android system classes. The names
of the constant variables contain a lot of semantic information
useful for similarity testing. For example, for a method-invocation
operation AlarmManager.set(0, ..., ...), if we search the constant 0
in the AlarmManager class we can find its name is RTC_WAKEUP.
By recovering the constant names, we can get more semantic in-
formation about the operation. To recover the names for constants,
we build a name database from Android API documents which
records all possible names for a given constant value. By querying
the database we may get several names for a constant value, and we
will use the one declared in the same class with the method/field of
the UnitOp. After splitting the constant names into words, we use
word set similarity between two word sets to represent constant
similarity.

Has Return Value:We test whether the compatibility-related
API has return value.

Return Type Similarity: We extract the return type for a
method-invocation operation, the declared type of the field for a
field-get operation. Based on the texts of these types, we split them
into words and calculate word set similarity. A field-set operation
does not have return value. Hence its word set is empty.

Input-/Output-related Variable Set Size: We extract the
number of input-/output-related variables that depend on the
arguments/return value of the subject API.

Input-/Output-related Variable Set Similarity: We use Jac-
card similarity to calculate the similarity between two input-
/output-related variable sets. For example, the similarity for “($r0,
$r3)” and “($r3)” is 0.5.

Input-/Output-related Operation Set Similarity:We collect
two input-/output-related operation sets for each UnitOp pair, and
split the method names into words. We use the word set similarity
to calculate the similarity between the two word sets.

4 RESULTS

The static analysis module of RAPID is implemented on Flow-
Droid [1]. It leverages the ICFG (Inter-procedure Control Flow
Graph) of FlowDroid to identify compatibility checks. To support
feature extraction for input/output dependencies, it implements
an intra-branch data flow analysis for the compatibility check
related branches. Overall, the static analysis module contains
3,817 LOC Java code, and the feature extraction module has 2,649

892

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, Yang Wang, Xiangyu Zhang, et al.

Table 1: The App Dataset for the Large-scale Study.

Market Date Count

Google Play 2018.03-2018.10 93,681
Huawei 2019.02 25,638
Qihoo 2019.02 22,537
Tencent 2019.02 58,504
Baidu 2019.02 123,388

All (unique) — 309,967

LOC Java code. The feature extraction module utilizes the pre-
trained GoogleNews word2vec model [33] and Deeplearning4j
framework [3] to calculate word similarity. Our classifier is built
with the SMO classifier [36] in Weka [50], a kind of support vector
machine (SVM), with a poly kernel (exponent as 2).

Dataset. To perform a large-scale study, we crawled apps from
Google Play and third-party app markets, including their top-
ranked apps. As shown in Table 1, we collect 309,967 unique apps.
We run RAPID in parallel to analyze these apps and set the timeout
for each app to 5minutes. In all, RAPID successfully analyzed 296,133
apps with 12,470 apps timeout. Besides, there are 1,364 apps which
failed to parse by FlowDroid. Based on the results of 296,133 apps,
our study is conducted from the following perspectives:

• Effectiveness & Efficiency of RAPID (see §4.1);
• Landscape of Compatibility Issue Handling (see §4.2);
• The Help of Google’s Recommendations (see §4.3);
• SigChk Cases that Can Be Improved (see §4.4).

4.1 Effectiveness & Efficiency of RAPID
To construct ground truth for the classifier, we manually analyze
293 compatibility checks, covering 123 distinct APIs. For each
compatibility check, we first reverse the bytecode and label whether
it is SigChk or RplChk following the definition in §2.2. For RplChk,
we further locate the alternative UnitOp to the incompatible API
and label it as a positive case in our ground truth. For other UnitOps
in the candidate-branch, we label them as negative cases. Here
each case consists of two UnitOps: one being the incompatible
API invocation from the api-branch and the other a UnitOp from
the candidate-branch. In all, our ground truth consists of 1,053
UnitOp pairs (including 191 positives and 862 negatives). As we
will show later, such a ground truth set is sufficient for achieving
high classification accuracy. In all, 4 student authors participate the
ground truth labeling and every participant has at least 2 years of
Android app reverse engineering experience. Besides, at least two
participants are involved in every UnitOp pair.

Q1: How effective is RAPID in differentiating SigChk and

RplChk? First, we use ten-fold cross validation to evaluate the
performance of the trained SVM classifier. As Table 2 shows, our
model achieves high accuracy during the training phase (F1-score:
95.21%). Second, we randomly select 414 compatibility checks from
the whole dataset as the validation set to further validate the
performance of the classifier for the large-scale study. Note that
there is no overlap between the training set (293 checks) and the
validation set (414 checks), and the validation set is constructed
randomly before the classifier is trained. For the selected 414
checks, RAPID reports 210 RplChk cases and 204 SigChk cases.

We manually label these checks and every check is verified by at
least two student authors. The results show that, our trained model
still achieves quite good performance (F1-score: 91.96%) in this set.

Table 2: The Effectiveness of RAPID.

Dataset Precision Recall Accuracy F1-score

Training Set 96.76% 93.72% 98.29% 95.21%
Validation Set 93.41% 90.58% 97.43% 91.96%

Q2: How do the selected features help RAPID?We also split the
whole feature set into two parts: feature set from behavior semantics
and from input/output dependencies, and train two respective
models. Table 3 shows the performance of the two models. Observe
that the trained model with the feature set from either behavior
semantics or input/output dependencies alone exhibits inferior
performance. It shows the necessity for RAPID to consider the two
feature sets together.

Table 3: The Effectiveness of RAPID with Different Feature

Sets (in training set).

RAPID Behavior Semantic Input/Output Dependency

F1-score 95.21% 86.81% 76.54%

Q3: How efficient is RAPID? We collect the time cost of RAPID
in performing the analysis and classification on the whole dataset.
Specifically, in the static analysis phase, the average time for RAPID
to analyze an app is 56.23 seconds. In the feature extraction and
RplChk predication phase, the average time for processing an app
is 3.74 seconds, depending on how many compatibility checks are
detected in the app.

Summary: RAPID is both effective and efficient in
classifying SigChk and RplChk, by achieving a F1-score
of 95.21% and 91.96% in the training set and randomly-
selected validation set respectively. Besides, the two
feature sets both contribute significantly to its overall
performance.

4.2 Landscape of Compatibility Issue Handling

Q4: How prevalent is evolution-induced API compatibility is-

sues in real world? By checking the analysis results of the 296,133
apps that have been successfully analyzed (as presented in Table 4),
we find 49,137 apps do not invoke any API that is incompatible
on the API levels they declared to have compatibility with, thus
they are unaffected by evolution-induced API compatibility issues.
For the remaining 246,996 apps (i.e. 83.41% of the apps), at least
one incompatible API is used by each app. This result shows that
compatibility issues are indeed prevalent in Android apps.

Q5: How many checks belong to SigChk and RplChk re-

spectively? As Table 5 shows, among the affected 246,996 apps,
developers perform 1,540,480 checks against compatibility-related
APIs. For these checks, RAPID reports that 592,089 checks provide

893

How Android Developers Handle Evolution-induced API Compatibility Issues: A Large-scale Study ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 4: Apps with Compatibility Issues in the Dataset.

All Apps Unaffected Apps Affected Apps

296,133 49,137 246,996

replacement implementations for the compatibility-related APIs
on incompatible API levels, while the remaining compatibility
checks just prevent the app from crashing. We can find that the
ratio of RplChk (38.4%) is quite low in the real-world, which calls
for improvement. Besides, by examining the control structure of
these checks, 1,008,445 checks are found to have both true and
false branches. This result clearly shows that simply utilizing the
control flow structure to differ RplChk from SigChk is not reliable,
rendering the necessity to design a tool (such as RAPID) for RplChk
classification.

Table 5: SigChk and RplChk Distribution in the Dataset.

All Checks SigChk / RplChk Cases If-then / If-then-else Checks

1,540,480 948,391 / 592,089 532,035 / 1,008,445

Summary: Evolution-induced API compatibility is a
prominent challenge, while developers do not tend to
deal with incompatible API invocations by providing
replacement functionalities. Besides, SigChk and RplChk
can not be classified by simply considering the control
structure of the compatibility check.

4.3 The Help of Google’s Recommendations

In our study, there are 2,850 compatibility-related APIs that have
been checked by developers, constituting 1,540,480 compatibility
checks. Since the overall ratio of RplChk (38.4%) is quite low, we
want to dive further into the results to find the factors that affect
developers’ choice on handling compatibility issues. Specifically,
we focus on the following research questions.

Q6: How many recommendations does Google give to devel-

opers to deal with API-related compatibility issues? Consider-
ing Google sometimes provides recommendations for compatibility-
related APIs in the API document [4], we first collect all the recom-
mendations that Google provides to developers. Since Google’s rec-
ommendations are given as comments of the compatibility-related
APIs without a specialized format, we choose to manually compile
such recommendations. By carefully reading the documents for
these 2,850 APIs, we label the recommendations that are given by
Google as follows. Each API is labeled by at least two analysts, and
if they have different opinions, another analyst will participate. In
all, 5 analysts took part in labeling, and it costs about 25 people
hours. Based on our investigation, Google only gives replacement
recommendations for 130 APIs among the total 2,850 APIs and all
the 130 APIs belong to deprecated APIs. For the remaining 2,720
APIs, 259 APIs are newly-introduced APIs, and 2,461 APIs belong
to deprecated APIs.

Q7: Do Google’s recommendations affect developers’ deci-

sion on SigChk and RplChk? For APIs that have recommen-
dations and those that do not have recommendations, we calculate
the ratio of RplChk for them separately. Table 6 presents the results.
From this table, we find that 80.40% of the compatibility checks
for APIs with Google’s recommendations are RplChk, while the
RplChk ratio for APIs without Google’s recommendations is only
31.02%. The significant gap in the RplChk ratio between the two
API sets (p-value = 4.313 × 10−9) indicates that whether Google
giving replacement API recommendations significantly impacts
developers’ decision on dealing with the compatibility issue using
SigChk or RplChk. We can also infer that providing developers
with replacement recommendations is an effective way to help
them handle compatibility issues.

Table 6: The ratio of RplChk for compatibility checks of the

APIs that (do not) have recommendations.

RplChk Cases SigChk Cases RplChk Ratio

With Recommendations 186,005 45,332 80.40%
No Recommendations 406,084 903,059 31.02%

Q8: Do developers follow Google’s recommendations when

they replace incompatible API invocations? Since we have
manually extracted Google’s recommendations for 130 APIs, we
want to further check whether developers follow Google’s recom-
mendations to provide replacement functionalities for these APIs.
First, we collect all the RplChk cases for the 130 APIs (i.e. 186,005
RplChk cases). Second, we search the compatibility check branches
for these cases. If a recommended API appears in a candidate-
branch, we considered this case is handled by following Google’s
recommendation. Table 7 presents the ratio of the RplChk cases
that do not follow Google’s recommendations. The results show
that although Google gives recommendations, developers handle a
large part (i.e. 19.31%) of compatibility issues in their own way.

Table 7: The ratio of RplChk cases that do not follow

Google’s recommendations.

RplChk Cases that have

Google’s Recommendations

RplChk Cases that do not

follow Recommendations

Not Followed

Ratio

186,005 35,909 19.31%

Q9: Why do developers not follow Google’s recommenda-

tions? For those incompatible API invocations that are not replaced
in the recommended way by Google, we further investigate the
underlying causes. First, we count the RplChk cases that do not
adopt Google’s recommended API. Second, we select the top 5 APIs
and manually analyze the RplChk cases for these APIs to infer
why developers do not want to follow recommendations. Overall,
we observe two main reasons that cause developers to handle
compatibility issues in a different way (from the recommended
way). The analysis result is presented in Table 8.

• Reason-A: The recommended API needs extra param-

eters. The replacement APIs that are recommended by
Google sometimes need more arguments than the original

894

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, Yang Wang, Xiangyu Zhang, et al.

Table 8: Top 5 APIs that are not replaced in the recommended way.

API Google Recommended API Reason Actual Replacement

Resources.getColor(I)I Resources.getColor(I,Theme)I A Context.getColor(I)I
Resources.getDrawable(I)Drawable Resources.getDrawable(I,Theme)Drawable A Context.getDrawable(I)Drawable
Resources.getColorStateList(I)ColorStateList Resources.getColorStateList(I,Theme)ColorStateList A Context.getColorStateList(I)ColorStateList
Display.getWidth()I Display.getSize(Point)V B DisplayMetrics.widthPixels
Display.getHeight()I Display.getSize(Point)V B DisplayMetrics.heightPixels

compatibility-related API. For example, as depicted in Table 8,
Google recommends using Resources.getDrawable(I,Theme)

when Resources.getDrawable(I) is not available. However,
to invoke Resources.getDrawable(I,Theme), developers need
to prepare a Theme instance as the second argument
which is not so easy. As a result, we observe that in
real-world apps developers tend to use another API Con-
text.getDrawable(I) to fix the compatibility issue, because it
can be invoked with the same argument as the incompatible
API Resources.getDrawable(I).

• Reason-B: A quick replacement exists. Some of the
compatibility-related APIs are getter functions of some
fields. For example, Display.getWidth() returns the current
width of display. Although Google recommends using Dis-
play.getSize(Point) instead when this API is deprecated (since
API level 15), developers are more willing to deal with this is-
sue by directly accessing the field DisplayMetrics.widthPixels

to get the current width of display. It shows that a quick and
easy replacement is more preferable.

Summary: On one hand, the RplChk ratio
for compatibility-related APIs that Google give
recommendations is significantly higher than those
without recommendations, but Google only gives
recommendations for 130 APIs out of 2,850 compatibility-
related APIs seen in our study. On the other hand, though
Google gives recommendations, developers do not always
follow, because an easier way to fix the compatibility issue
than the recommended one exists. Therefore, providing
easily-adoptable recommendations seems a promising
way to help developers fix compatibility issues.

4.4 SigChk Cases that Can Be Improved

For those SigChk cases, we want to measure how many of them
actually have replacement implementations while developers do not
actively explore. First of all, we need to know which compatibility-
related APIs can be replaced, since we observe that some APIs can
not be alternated if the platform does not support the functionalities.
For example,WifiManager.startScan() [7] is deprecated since API
level 28 and the platform does not provide similar interfaces for
apps to use. Thus, no app in our dataset is found to provide a
replacement implementation for this API.

Q10: How many compatibility-related APIs have replaced

implementation? By checking all the RplChk cases, we can find
out all the compatibility-related APIs that have alternative imple-
mentations. Since some apps replace these APIs, it is appropriate

to expect that other apps are able to replace these APIs too. In our
dataset, we find that developers successfully provide alternative
implementations for 1,086 compatibility-related APIs. Among the
1,086 APIs, 201 APIs belong to deprecated APIs and 885 APIs belong
to newly-introduced APIs. Considering that Google only gives
recommendations for 130 deprecated APIs, we find that developers
can also work out their own solutions to provide replacement
functionalities for newly-introduced APIs. It is worth noting that
this knowledge acquired from experienced developers is quite
valuable to facilitate compatibility issue handling.

Q11: How many SigChk cases can actually be handled by

RplChk? Based on the compatibility-related APIs that can be
replaced, we count all the SigChk cases on these APIs. As Table 9
shows, in our study, 690,736 checks can be handled with RplChk
while developers do not do. If all these issued are checked with
replacements, the ratio of RplChk in our dataset can significantly
increase from 38.4% to 83.3%. This gap shows that there is a great
room to improve the current practice of handling compatibility
issues. However, generating a legitimate alternative implementation
automatically entails addressing new challenges (e.g., parameter
preparation), which are beyond the scope of the paper.

Table 9: SigChk Cases that Can be Handled by RplChk.

All Checks RplChk Cases SigChk Cases

SigChk Cases that Can

be Handled by RplChk

1,540,480 592,089 948,391 690,736

Summary: Developers find more ways to replace
incompatible APIs than Google’s recommended ones,
while not all developers know these ways. It is quite
meaningful to mine such knowledge and share it with
the whole community, especially with novice developers.

5 LIMITATIONS

Limitations of RAPID. This paper aims to conduct a large-scale
study on real-world Android apps to shed light on the current
practice of handling compatibility issues, without trying to extract
common fix patterns from them. With the aim to facilitate a
measurement study, RAPID is not designed to be a repair tool.
It is quite different from the heavy-weight static/dynamic anal-
ysis techniques used in program repair [13, 41, 43] and patch
generation [29, 31, 32, 47], which need to reason about repair
correctness. The main contribution of RAPID is that it features
a deeper analysis than existing works by classifying RplChk and

895

How Android Developers Handle Evolution-induced API Compatibility Issues: A Large-scale Study ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

SigChk. RAPID extracts 19 features for classifier training. Actually,
more features can be considered, such as features extracted from
API implementations. Nevertheless, our trained model achieves
good accuracy on both training and random-selected data sets.
Our static analyzer is built upon existing tools [1, 22, 44], thus it
inherits limitations of these tools. Besides, developers may handle
API compatibility issues by checking other conditions instead of
SDK_INT . For example, Java reflection may be used to find out
if an API is supported by the underlying platform. Currently,
RAPID cannot handle this kind of cases. However, SDK_INT is the
most convenient way for developers to check compatibility issue
and the most prevalent way as reported in [16]. To handle the
compatibility checks against Java reflection calls, RAPID can adopt
existing techniques [20, 25, 39].

Limitations of Study. The inherent limitations of the underly-
ing analysis infrastructures may post external threats to the validity
of the reported results. Several experiments in our study depend on
Google’s fix recommendations. Since Google only provides the fix
recommendations in API documents, we have to manually collect
these recommendations. To reduce the threat of manual mistakes
or biases, we follow the widely-adopted cross-validation method
to ensure the correctness of our results. Besides, to guarantee the
representativeness of our study, we have collected about 300k apps
to conduct the study. To the best of our knowledge, this is the
largest study in the scope of Android app compatibility issues.
The ground truth data set for training the classifier contains 293
compatibility checks with 123 distinct APIs. Note that substantial
manual efforts are involved for each check as we have to label each
pair-wise combination of the incompatible API and each statement
in the other branch. Although our results show that the trained
classifier achieves good accuracy, it is possible that the samples in
our ground truth data set do not provide comprehensive coverage
of the features for classification. To mitigate the threat, we further
validate the results on a set of randomly-selected samples.

6 RELATEDWORK

Compatibility Issues in Android Apps. Wei et al. [46] perform
the first systematical study on the compatibility issues of Android
apps by manually analyzing 191 real-world issues in open source
apps. Their study categorizes compatibility issues into device-
specific and non-device-specific. According to this classification
method, evolution-induced compatibility issue belongs to non-
device-specific issues. Since Android API evolution is well doc-
umented, it is quite easy for systematical modeling [24]. Based
on Android API lifecycle, CiD [24] and IctApiFinder [16] leverage
program analysis techniques to detect missing checks of evolution-
induced compatibility issues. Huang et al. [17] discover another
kind of non-device-specific compatibility issue, called callback
compatibility issue, which is caused by the callback protocol
evolution. Wei et al. [26] recently present PIVOT which can help
to find device-specific compatibility issues by ranking API-device
correlations. ACRyL [37] detects compatibility issues by learning
the app changes in response to API changes. To understand the ob-
served incompatibilities in Android apps, Haipeng et al. [2] conduct
a study on installation-time and run-time app incompatibilities.
Ziyi et al. [53] give a study on the intentions of developers on

app compatibility. Existing works also measure the consequences
of compatibility issues: affecting application performance [28],
disappointing users [15, 21], and even leading to security risks [54].
In comparison, our work is the first to distinguish two kinds of
compatibility checks: SigChk and RplChk, and to perform a study
of a much larger scale on real-world practice in handling evolution-
induced API compatibility issues.

Program Repair/Fix. Monperrus [34] presents a systematic
survey on automatic software repair. To guide automated program
repair, Liu et al. [27] analyze bug fix commits in open source Java
projects to extract repair patterns. [30] presents some manual
analysis results on bugs in Defects4J to shed light on how to
automatically repair these bugs. [51] further proposes a way to
automatically repair Defects4J bugs based on API documents. More
advanced program analysis techniques are also incorporated into
this line of research. Koyuncu et al. [19] automatically mine repair
code pattern by differing the AST trees between fixed and unfixed
code, and utilize this pattern to guide program repair. Xuan et
al. [52] propose away to repair buggy conditional statements in Java
programs. [42] seeks to establish common root causes for Android
apps crashes, and propose generic transformation operators to
facilitate the remedy of these crashes, such as replacement code and
null pointer check. Compared to these works, this paper performs a
large-scale study on the developers’ practice in fixing compatibility
issues and the findings gained through the study could help to
investigate automatic repair techniques for these issues.

7 CONCLUSION

Previous works on evolution-induced API compatibility issues
mainly focus on detecting missing checks for incompatible APIs.
However, performing compatibility checks does not necessarily
mean the compatibility issues arewell-handled. This paper conducts
the first large-scale study on the practice of handling evolution-
induced compatibility issues with about 300,000 Android apps.
To perform such a large-scale study, this paper presents RAPID
which adopts a learning-based approach to determining whether
developers simply check an incompatible API invocation or provide
a replacement implementation on those incompatible API levels.
Through the study, many interesting findings are derived to help
us gain an in-depth understanding about the current status of
compatibility issue handling, and indicate several directions to
help developers to handle these issues.

ACKNOWLEDGEMENTS

We would like to thank anonymous reviewers for their helpful
comments. This work was supported in part by the National Natural
Science Foundation of China (U1636204, U1836210, U1836213,
U1736208, 61972099, 61602123, 61602121), Natural Science Founda-
tion of Shanghai (19ZR1404800), and National Program on Key
Basic Research (NO. 2015CB358800). The authors from Purdue
University were supported in part by NSF 1748764, 1901242 and
1910300. Min Yang is the corresponding author, and a faculty of
Shanghai Institute of Intelligent Electronics & Systems, Shanghai
Institute for Advanced Communication and Data Science, and Engi-
neering Research Center of CyberSecurity Auditing andMonitoring,
Ministry of Education, China.

896

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, Yang Wang, Xiangyu Zhang, et al.

REFERENCES

[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-
aware Taint Analysis for Android Apps. In Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI)

(Edinburgh, United Kingdom). ACM, 259–269. https://doi.org/10.1145/2594291.
2594299

[2] Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu. 2019. A Large-scale Study of
Application Incompatibilities in Android. In Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis (Beijing, China) (ISSTA
2019). ACM, New York, NY, USA, 216–227. https://doi.org/10.1145/3293882.3330
564

[3] Deeplearning4j. 2019. Deeplearning4j: Open-source, distributed deep learning
for the JVM. http://deeplearning4j.org/.

[4] Android Documentation. 2019. Android API Document. https://developer.androi
d.com/reference/packages.

[5] Android Documentation. 2019. Android API Document for AccountManager. http
s://developer.android.com/reference/android/accounts/AccountManager.html.

[6] Android Documentation. 2019. Android API Document for
android.content.res.Resources.getColor(int). https://developer.android.co
m/reference/android/content/res/Resources#getColor(int).

[7] Android Documentation. 2019. Android API Document for WifiMan-
ager.startScan(). https://developer.android.com/reference/android/net/wifi/Wi
fiManager.html#startScan().

[8] Android Documentation. 2019. Android API Level. https://developer.android.co
m/guide/topics/manifest/uses-sdk-element#ApiLevels.

[9] Android Documentation. 2019. Android Manifest File. https://developer.android.
com/guide/topics/manifest/manifest-intro.

[10] Android Documentation. 2019. Android SDK Platform release notes. https:
//developer.android.com/studio/releases/platforms.

[11] Android Documentation. 2019. api-versions.xml in Android SDK.
https://android.googlesource.com/platform/development/+/refs/heads/m
aster/sdk/api-versions.xml.

[12] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao
Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang. 2018. Understanding Android
Obfuscation Techniques: A Large-Scale Investigation in the Wild. In Security and

Privacy in Communication Networks: SecureComm 2018 International Workshops.
Springer.

[13] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical Program
Repair via Bytecode Mutation. In Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis (Beijing, China) (ISSTA
2019). ACM, New York, NY, USA, 19–30. https://doi.org/10.1145/3293882.3330559

[14] Mahmoud Hammad, Joshua Garcia, and Sam Malek. 2018. A Large-scale
Empirical Study on the Effects of Code Obfuscations on Android Apps and
Anti-malware Products. In Proceedings of the 40th International Conference on

Software Engineering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA,
421–431. https://doi.org/10.1145/3180155.3180228

[15] Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong, and Eleni
Stroulia. 2012. Understanding android fragmentation with topic analysis of
vendor-specific bugs. In 19th Working Conference on Reverse Engineering (WCRE).
IEEE, 83–92.

[16] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue.
2018. Understanding and Detecting Evolution-induced Compatibility Issues in
Android Apps. In Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering (ASE) (Montpellier, France). ACM, New York,
NY, USA, 167–177. https://doi.org/10.1145/3238147.3238185

[17] HuaxunHuang, LiliWei, Yepang Liu, and Shing-Chi Cheung. 2018. Understanding
and Detecting Callback Compatibility Issues for Android Applications. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering (ASE) (Montpellier, France). ACM, New York, NY, USA, 532–542.
https://doi.org/10.1145/3238147.3238181

[18] M. E. Joorabchi, A. Mesbah, and P. Kruchten. 2013. Real Challenges in Mobile
App Development. In 2013 ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement. https://doi.org/10.1109/ESEM.2013.9
[19] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein,

Martin Monperrus, and Yves Le Traon. 2018. Fixminer: Mining relevant fix
patterns for automated program repair. arXiv preprint arXiv:1810.01791 (2018).

[20] Davy Landman, Alexander Serebrenik, and Jurgen J Vinju. 2017. Challenges for
static analysis of Java reflection-literature review and empirical study. In 2017

IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE,
507–518.

[21] Huoran Li, Xuan Lu, Xuanzhe Liu, Tao Xie, Kaigui Bian, Felix Xiaozhu Lin,
Qiaozhu Mei, and Feng Feng. 2015. Characterizing smartphone usage patterns
from millions of android users. In Proceedings of the 2015 Internet Measurement

Conference (IMC). ACM, 459–472.

[22] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick
McDaniel. 2015. Iccta: Detecting inter-component privacy leaks in android
apps. In Proceedings of the 37th International Conference on Software Engineering

(ICSE). IEEE Press, 280–291.
[23] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016. DroidRA:

Taming Reflection to Support Whole-Program Analysis of Android Apps. In The

International Symposium on Software Testing and Analysis (ISSTA).
[24] Li Li, Tegawendé F. Bissyandé, Haoyu Wang, and Jacques Klein. 2018. CiD:

Automating the Detection of API-related Compatibility Issues in Android Apps. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing

and Analysis (ISSTA). ACM, 153–163. https://doi.org/10.1145/3213846.3213857
[25] Yue Li, Tian Tan, and Jingling Xue. 2015. Effective soundness-guided reflection

analysis. In International Static Analysis Symposium (SAS). Springer.
[26] Wei Lili, Liu Yepang, and Cheung Shing-Chi. 2019. PIVOT: Learning API-Device

Correlations to Facilitate Android Compatibility Issue Detection. In Proceedings of
41st ACM/IEEE International Conference on Software Engineering (ICSE) (Montréal,
QC, Canada).

[27] Kui Liu, Dongsun Kim, Anil Koyuncu, Li Li, Tegawendé F Bissyandé, and Yves
Le Traon. 2018. A closer look at real-world patches. In 2018 IEEE International

Conference on Software Maintenance and Evolution (ICSME). IEEE, 275–286.
[28] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and

detecting performance bugs for smartphone applications. In Proceedings of the

36th International Conference on Software Engineering (ICSE). ACM, 1013–1024.
[29] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning

Correct Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (St. Petersburg, FL, USA)
(POPL ’16). ACM, New York, NY, USA, 298–312. https://doi.org/10.1145/2837614.
2837617

[30] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic repair of real bugs in java: A large-scale experiment
on the defects4j dataset. Empirical Software Engineering 22, 4 (2017), 1936–1964.

[31] Sergey Mechtaev, Xiang Gao, Shin Hwei Tan, and Abhik Roychoudhury. 2018.
Test-Equivalence Analysis for Automatic Patch Generation. ACM Transactions

on Software Engineering and Methodology 27 (10 2018), 1–37. https://doi.org/10.1
145/3241980

[32] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the

38th International Conference on Software Engineering (Austin, Texas) (ICSE ’16).
ACM, New York, NY, USA, 691–701. https://doi.org/10.1145/2884781.2884807

[33] mmihaltz. 2019. Word2vec Google News model. https://github.com/mmihaltz/
word2vec-GoogleNews-vectors/.

[34] Martin Monperrus. 2018. Automatic software repair: a bibliography. ACM

Computing Surveys (CSUR) 51, 1 (2018), 17.
[35] J. Park, Y. B. Park, and H. K. Ham. 2013. Fragmentation Problem in Android. In

2013 International Conference on Information Science and Applications (ICISA). 1–2.
https://doi.org/10.1109/ICISA.2013.6579465

[36] John Platt. 1998. Sequential minimal optimization: A fast algorithm for training
support vector machines. (1998).

[37] Simone Scalabrino, Gabriele Bavota, Mario Linares-Vásquez, Michele Lanza, and
Rocco Oliveto. 2019. Data-driven Solutions to Detect API Compatibility Issues in
Android: An Empirical Study. In Proceedings of the 16th International Conference

on Mining Software Repositories (Montreal, Quebec, Canada) (MSR ’19). IEEE Press,
Piscataway, NJ, USA, 288–298. https://doi.org/10.1109/MSR.2019.00055

[38] Sentence-similarity. 2019. Comparing Sentence Similarity Methods. http://nlp.to
wn/blog/sentence-similarity/.

[39] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin
Bravenboer. 2015. More sound static handling of Java reflection. In Asian

Symposium on Programming Languages and Systems. Springer, 485–503.
[40] Stanford. 2019. Stanford Log-linear Part-Of-Speech Tagger. https://nlp.stanford

.edu/software/tagger.html.
[41] ShinHwei Tan, ZhenDong, XiangGao, andAbhik Roychoudhury. 2018. Repairing

Crashes in Android Apps. In Proceedings of the 40th International Conference on

Software Engineering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA,
187–198. https://doi.org/10.1145/3180155.3180243

[42] ShinHwei Tan, ZhenDong, XiangGao, andAbhik Roychoudhury. 2018. Repairing
crashes in android apps. In Proceedings of the 40th International Conference on

Software Engineering (ICSE). ACM, 187–198.
[43] Shin Hwei Tan and Abhik Roychoudhury. 2015. Relifix: Automated Repair

of Software Regressions. In Proceedings of the 37th International Conference on

Software Engineering (Florence, Italy) (ICSE ’15). IEEE Press, Piscataway, NJ, USA,
471–482. http://dl.acm.org/citation.cfm?id=2818754.2818813

[44] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. IBM Corp., 214–224.

[45] Yan Wang and Atanas Rountev. 2017. Who changed you?: obfuscator
identification for Android. In Proceedings of the 4th International Conference

on Mobile Software Engineering and Systems. IEEE Press, 154–164.

897

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/3293882.3330564
https://doi.org/10.1145/3293882.3330564
http://deeplearning4j.org/
https://developer.android.com/reference/packages
https://developer.android.com/reference/packages
https://developer.android.com/reference/android/accounts/AccountManager.html
https://developer.android.com/reference/android/accounts/AccountManager.html
https://developer.android.com/reference/android/content/res/Resources#getColor(int)
https://developer.android.com/reference/android/content/res/Resources#getColor(int)
https://developer.android.com/reference/android/net/wifi/WifiManager.html#startScan()
https://developer.android.com/reference/android/net/wifi/WifiManager.html#startScan()
https://developer.android.com/guide/topics/manifest/uses-sdk-element#ApiLevels
https://developer.android.com/guide/topics/manifest/uses-sdk-element#ApiLevels
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/studio/releases/platforms
https://developer.android.com/studio/releases/platforms
https://android.googlesource.com/platform/development/+/refs/heads/master/sdk/api-versions.xml
https://android.googlesource.com/platform/development/+/refs/heads/master/sdk/api-versions.xml
https://doi.org/10.1145/3293882.3330559
https://doi.org/10.1145/3180155.3180228
https://doi.org/10.1145/3238147.3238185
https://doi.org/10.1145/3238147.3238181
https://doi.org/10.1109/ESEM.2013.9
https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/3241980
https://doi.org/10.1145/3241980
https://doi.org/10.1145/2884781.2884807
https://github.com/mmihaltz/word2vec-GoogleNews-vectors/
https://github.com/mmihaltz/word2vec-GoogleNews-vectors/
https://doi.org/10.1109/ICISA.2013.6579465
https://doi.org/10.1109/MSR.2019.00055
http://nlp.town/blog/sentence-similarity/
http://nlp.town/blog/sentence-similarity/
https://nlp.stanford.edu/software/tagger.html
https://nlp.stanford.edu/software/tagger.html
https://doi.org/10.1145/3180155.3180243
http://dl.acm.org/citation.cfm?id=2818754.2818813

How Android Developers Handle Evolution-induced API Compatibility Issues: A Large-scale Study ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[46] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android
Fragmentation: Characterizing and Detecting Compatibility Issues for Android
Apps. In Proceedings of the 31st IEEE/ACM International Conference on Automated

Software Engineering (ASE) (Singapore, Singapore). ACM, New York, NY, USA,
226–237. https://doi.org/10.1145/2970276.2970312

[47] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In Proceedings of the

31st International Conference on Software Engineering (ICSE ’09). IEEE Computer
Society, Washington, DC, USA, 364–374. https://doi.org/10.1109/ICSE.2009.5070
536

[48] Wikipedia. 2019. Jaccard Index. https://en.wikipedia.org/wiki/Jaccard_index.
[49] Wikipedia. 2019. Word2vec. https://en.wikipedia.org/wiki/Word2vec.
[50] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Mining:

Practical machine learning tools and techniques. Morgan Kaufmann.
[51] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu

Zhang. 2017. Precise condition synthesis for program repair. In 2017 IEEE/ACM

39th International Conference on Software Engineering (ICSE). IEEE, 416–426.
[52] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian Lame-

las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2017.
Nopol: Automatic repair of conditional statement bugs in java programs. IEEE
Transactions on Software Engineering (TSE) 43, 1 (2017), 34–55.

[53] Ziyi Zhang and Haipeng Cai. 2019. A Look into Developer Intentions
for App Compatibility in Android. In Proceedings of the 6th International

Conference on Mobile Software Engineering and Systems (Montreal, Quebec,
Canada) (MOBILESoft ’19). IEEE Press, Piscataway, NJ, USA, 40–44. http:
//dl.acm.org/citation.cfm?id=3340730.3340741

[54] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng
Wang. 2014. The peril of fragmentation: Security hazards in android device driver
customizations. In 2014 IEEE Symposium on Security and Privacy (S&P). IEEE,
409–423.

898

https://doi.org/10.1145/2970276.2970312
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/ICSE.2009.5070536
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Word2vec
http://dl.acm.org/citation.cfm?id=3340730.3340741
http://dl.acm.org/citation.cfm?id=3340730.3340741

