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ABSTRACT

For the safety assessment of autonomous driving systems (ADS),
simulation testing has become an important complementary tech-
nique to physical road testing. In essence, simulation testing is a
scenario-driven approach, whose effectiveness is highly dependent
on the quality of given simulation scenarios. Moreover, simulation
scenarios should be encoded into well-formatted files, otherwise,
ADS simulation platforms cannot take them as inputs. Without
large public datasets of simulation scenario files, both industry and
academic applications of ADS simulation testing are hindered.

To fill this gap, we propose a transformation-based approach
SCTrans to construct simulation scenario files, utilizing existing
traffic scenario datasets (i.e., naturalistic movement of road users
recorded on public roads) as data sources. Specifically, we try to
transform existing traffic scenario recording files into simulation
scenario files that are compatible with the most advanced ADS
simulation platforms, and this task is formalized as a Model Trans-
formation Problem. Following this idea, we construct a dataset
consisting of over 1,900 diverse simulation scenarios, each of which
can be directly used to test the state-of-the-art ADSs (i.e., Apollo
and Autoware) via high-fidelity simulators (i.e., Carla and LGSVL).
To further demonstrate the utility of our dataset, we showcase that
it can boost the collision-finding capability of existing simulation-
based ADS fuzzers, helping identify about seven times more unique
ADS-involved collisions within the same time period. By analyzing
these collisions at the code level, we identify nine safety-critical
bugs of Apollo and Autoware, each of which can be stably exploited
to cause vehicle crashes. Till now, four of them have been confirmed.
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1 INTRODUCTION

Due to the potential to reshape mobility, autonomous driving sys-
tems (ADS) have attracted significant attention from investors [91]
and companies [11]. Recently, autonomous vehicles (AV) have
emerged from laboratories and are starting test runs on public
roads. However, during these test runs, traffic accidents involving
AVs continue to occur. To date, the California DMV [3] (Department
of Motor Vehicles) has received more than 600 AV collision reports,
showing varied property damages or human injuries.

In this state of confusion, safety has become the main obstacle
to the widespread adoption of ADSs. Manufacturers are in severe
need of safety testing methodologies to identify ADS flaws that
may cause traffic accidents. Generally, there are two types of widely
used testing methodologies, including road testing [81, 92] and sim-
ulation testing [39, 49, 79, 80]. In practice, physical road testing
is usually costly and difficult to cover rare driving situations (e.g.,
surrounding vehicles cut in unexpectedly). Hence, simulation test-
ing has emerged as an important complementary technique for the
safety assessment of ADS, due to its sufficient flexibility. Gener-
ally, simulation testing is a scenario-driven testing methodology.
A simulation scenario consists of various configurable settings to
characterize each simulated object, agent, and scene during virtual
driving. These configurations should be encoded into simulation
scenario files (see §2.3) as inputs to the ADS simulation platform. In
practice, the quality of the simulation scenarios directly determines
the effectiveness of ADS simulation testing.
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Given the importance of simulation scenarios, however, the pub-
lic availability of simulation scenario files is quite limited, largely
hindering the applications of ADS simulation testing. Existing
datasets provide vehicle-side raw sensor data (e.g., camera, LiDAR,
and radar) [43, 54, 70, 72, 84, 87–90] or naturalistic trajectories of
traffic participants [41, 59], for the training and testing of standalone
algorithms within ADS (e.g., object detection, object tracking, and
motion planning). However, the formats of these traffic recording
files are usually self-defined and are far from compatible with ADS
simulation platforms. Although some groups [31] or companies [21]
claimed that they have curated adequate well-formatted simulation
scenario files to facilitate ADS simulation testing, these datasets are
not freely accessible due to commercial considerations. Without a
public dataset of simulation scenario files, both practitioners [64]
from ADS companies and academic researchers [52, 53, 62, 93]
have no choice but to manually curate desired ones, which is quite
time-consuming and expertise-dependent.

In light of this, we are highly motivated to construct a large
public dataset of ready-to-use simulation scenario files. However,
this is quite a challenging task due to the following two reasons:

• Hard to Ensure Diversity: Diversity means that the simulation
scenarios should cover as many realistic driving conditions (i.e.,
those can be seen during real-world driving) as possible, to en-
sure both the realism and the completeness of simulation testing.
Obviously, it cannot be done simply by referring to expert knowl-
edge, which is inevitably biased or inadequate.

• Hard to Ensure Usability: Usability means that the scenario config-
urations should be encoded into well-formatted files with domain-
specific languages (e.g., OpenScenario [2]), otherwise current
advanced simulators or ADSs cannot accept them as inputs. Un-
fortunately, these scenario specifications usually imply complex
grammar models for unambiguous descriptions of every possi-
ble configuration parameter, consequently imposing extensive
coding efforts. For example, it might take more than 200 lines of
well-formatted code to instantiate a simple lane-cutting scenario
with OpenScenario [2].

Our Work. To address the above challenges, our overall idea is
to convert existing traffic scenario datasets (i.e., inD [41], Com-
monRoad [37], highD [59]) into simulation scenario datasets. Our
approach is named SCTrans. The key rationale behind is that, these
traffic scenario datasets are usually collections of naturalistic behav-
iors of road users (e.g., naturalistic vehicle movement recorded on
highways), which contain very diverse and realistic traffic patterns
as data sources for the parameterization of simulation scenarios.
Although existing traffic scenario datasets have been encoded into
machine-readable formats (see Table 1), these formats are not com-
patible with advanced ADSs (i.e., Apollo [25] and Autoware [4])
and simulators (i.e., LGSVL [79] and Carla [49]). To tackle this issue,
we formalize the dataset transformation as a Model Transformation
Problem [67]. With carefully implemented transformation rules,
we ensure the generated scenario files can satisfy the specification
requirements (see Table 2) of these advanced simulators and ADSs.

Note that, although these traffic scenario datasets have claimed
that they can potentially be used for ADS testing, to the best of our
knowledge, we are the first to make them truly capable of whole-
system ADS testing in the most advanced simulation environment

(e.g., LGSVL+Apollo and Carla+Autoware). Among all these traffic
scenario datasets, CommonRoad [37, 86] takes a step further, com-
bining with the lightweight simulator SUMO [61] to evaluate the
ADS planning module. But, as a comparison, our curated scenario
files can be used to expose the safety flaws of all ADS modules
(i.e., perception, prediction, planning, and control) in high-fidelity
simulators (i.e., LGSVL and Carla).
Results. From existing traffic scenario datasets, we can potentially
construct over 13,000 simulation scenarios. Such a number is contin-
uously increasing since these traffic scenario datasets are actively
maintained. To evaluate the prototype of SCTrans, we try to con-
struct an initial version of the simulation scenario dataset, based on
2,000 randomly selected traffic scenarios from CommonRoad [37],
inD [41] and highD [59]. After ignoring 6/2,000 invalid traffic sce-
narios (e.g., incomplete files), we utilize SCTrans to transform the
remaining 1,994/2,000 traffic scenarios into simulation scenarios.
Results show that the scenario transformation has 100% syntactic
correctness (i.e., the generated files are syntactically correct), intro-
ducing only about 0.3% semantic deviations compared to the input
traffic scenarios (i.e., the generated scenarios are of high realism).

To evaluate the usability of our dataset, we run each generated
simulation scenario file in the most advanced ADS simulation plat-
forms, i.e., LGSVL+Apollo and Carla+Autoware. Results show that
100% of them can be properly parsed and loaded by these simulation
platforms. Besides, the dataset, even in its initial version, has already
shown high diversity according to the scenario labels (e.g., road
shapes and weather conditions) defined in ISO 21448 [20] (guiding
principles for ADS testing). Statistically, our dataset can over 78.5%
of simulation-capable scenario labels suggested by ISO 21448, signif-
icantly outperforming existing datasets. To further demonstrate the
utility of our dataset, we try to investigate whether our generated
simulation scenarios can boost the collision-finding capability of
existing simulation-based ADS fuzzers [52, 53, 62, 93]. Specifically,
we randomly select 50 scenarios from our dataset and feed them
to the ADS fuzzer as seed inputs. Compared to the manually cu-
rated seed scenarios utilized in existing works [52, 53, 62, 93], our
scenarios help identify about 7 times more unique traffic collisions
of Apollo and Autoware within the same time period. Through
code-level root cause analysis, we identify 9 safety-critical bugs of
Apollo and Autoware. After submitting the bug reports (i.e., bug
locations and root causes) to the developers, till now, 4 of them
have been confirmed.
Contributions. This paper makes the following contributions:

• We propose SCTrans to construct ready-to-use simulation sce-
nario files for ADS simulation testing, utilizing existing traffic
scenario datasets as data sources.

• We release a large public dataset of simulation scenario files,
which are compatible with state-of-the-art driving simulators
(i.e., LGSVL and Carla) and high-level ADSs (i.e., Apollo and
Autoware). Each scenario has labels for ease of scenario selection
(e.g., road types and driving tasks). Our dataset is available at
https://seclab-fudan.github.io/SCTrans/.

• We conduct experiments to demonstrate the usability, diversity,
and utility of our dataset. Results show that it can boost the
collision-finding capability of existing ADS fuzzers, helping iden-
tify 9 safety-critical bugs of Apollo and Autoware.

https://seclab-fudan.github.io/SCTrans/
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Figure 1: Architecture of ADS Simulation Testing.

2 BACKGROUND

2.1 Autonomous Driving System (ADS)

Levels of ADS. According to the levels of automation defined
by the Society of Automotive Engineers (SAE) [71], ADSs can be
categorized into 6 levels, ranging from L0 (no driving automation) to
L5 (full driving automation). Nowadays, manufacturers are engaged
to promote the deployment of high-level ADSs (e.g., L4). In this
work, our goal is to prepare simulation scenario files for simulation
testing of these high-level ADSs.
High-level ADS. High-level ADSs have multiple system modules,
which work together to achieve automatic driving in a real-time
fashion, mainly including Perception Module that perceives the driv-
ing environment via collected sensor data, Prediction Module that
estimates the future status of surrounding objects, Planning Mod-
ule that produces a feasible trajectory towards the destination and
Control Module that generates vehicle control commands (e.g., throt-
tle, brake and steering) along this trajectory. These modules work
asynchronously and are managed through a high-performance
middleware framework (e.g., Cyber-RT [13] and ROS [30]) during
runtime.

2.2 ADS Simulation Testing

Architecture of ADS Simulation Platform. Figure 1 demon-
strates the general architecture of the ADS simulation platform.
Given a scenario file (detailed in §2.3) as input, the simulation
platform can thus accordingly monitor the ADS misbehaviors in
this scenario. Generally, built on top of the graphics rendering en-
gine [33, 34], the driving simulator features 4 important components
to process the ADS simulation testing:
• The Ego Simulation is responsible for simulating the motion of the
ego vehicle. Specifically, the ego vehicle is equipped with various
virtual sensors. These sensors can produce realistic sensor data
inside the simulated environment, which is continuously fed
to the ADS as input through a communication bridge. After the
computation of the ADS, the generated vehicle control commands
are sent back to the simulator to control the ego movement.

• The Environment Simulation allows customization of environ-
mental attributes, mainly including weather conditions and light-
ing conditions. These attributes affect the way virtual sensors
perceive the scene.

• The Map Simulation aims to create virtual maps, which include
road networks and road infrastructures (e.g., traffic lights), etc.

• The Traffic Simulation aims to simulate the traffic actors (e.g.,
cars, bicycles, and pedestrians) around the ego vehicle.

2.3 Simulation Scenario

Definition. According to the literature [48], a simulation sce-
nario can be regarded as the collection of all necessary config-
urations to characterize simulated objects, agents, and scenes at
any instant of time during virtual autonomous driving. To be more
specific, as discussed §2.2, these configurations can be classified
into 4 categories, namely ego-related configuration (Config-ego),
environment-related configuration (Config-env), map-related con-
figuration (Config-map), and traffic-related configuration (Config-
tfc).
• Config-env specifies the parameters related to weather condi-
tions and lighting conditions (e.g., Carla simulator [49] features
14 pre-defined weather settings to choose from).

• Config-map determines the types and coordinates of road net-
works and road infrastructures (e.g., traffic lights).

• Config-ego specifies the basic calibration model [77] of the
ego vehicle (e.g., maximum steering angle), as well as the target
driving task (e.g., the destination and the initial speed).

• Config-tfc defines the behaviors of the traffic actors except for
the ego vehicle (e.g., moving along a pre-defined trajectory).

Description Languages. To avoid ambiguously describing the sim-
ulation scenarios, researchers [65] have proposed various domain-
specific languages (DSL) to concretely and formally express the
scenario configurations mentioned above. For example, GeoSce-
nario [76] or OpenScenario [2] are widely used to specify Config-
env, Config-ego and Config-tfc. In addition, OpenDrive [1],
OSM [28] and Lanelet [40] are used to specify Config-map.
Scenario File. Following the aforementioned DSLs, all configura-
tions of a simulation scenario should be saved in a well-formatted
system-independent file, a.k.a., a scenario file, so as to ensure its
portability to the different testing environments. As shown in Fig-
ure 1, a scenario file usually has three sub-files, namely Scenario
Description File, Map Description File and Map Assets File, each of
which is indispensable for one run of the simulation. Scenario De-
scription File specifies Config-env, Config-ego and Config-tfc.
Map Description File specifies Config-map. Additionally,Map Assets
file is usually a binary file for 3D map visualization (rendering),
which stores meshes, materials, and textures of map elements.
Existing Datasets of Simulation Scenario Files. After a system-
atic review of the literature, we find that some existing works [46,
55, 56, 69, 73, 85] also aim to construct ready-to-use simulation files.
However, among all these works, only D. Karunakaran et al. [56]
released 9 scenario files to the community. Besides, there exist
some third-party repositories [8, 16, 27] that provide open-source
simulation scenarios, however, only dozens are available. Hence,
we are highly motivated to construct and release a large public
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dataset of simulation scenario files to facilitate the applications of
ADS simulation testing. In particular, we also conducted extensive
experiments (see §6.4) to compare our curated dataset with these
existing ones in diversity.

2.4 Traffic Scenario

Traffic Scenario Datasets. There exists a line of research, namely
traffic scenario construction [37, 41, 59]. These works aim to au-
tomatically extract the concrete meta-information (i.e. agent type
and recording time) and moving trajectories (i.e., position, orienta-
tion, speed, and acceleration) of road users from real-world driving
records (e.g., videos), and further save them inmachine-readable file
formats (e.g., CSV and XML). For example, the highD dataset [59]
and the inD dataset [41] store the naturalistic trajectories of road
users recorded on highways or at intersections; CommonRoad[37]
dataset not only stores diverse traffic trajectories, but also accord-
ingly design benchmarks to evaluate ADS planning algorithms,
including target driving tasks and cost functions.
Description Languages. The authors of existing traffic scenario
datasets [37, 41, 59] have discussed the potential to apply them in
the (whole-system) simulation testing (see §2.2). However, these
traffic scenarios are usually described using self-defined XML-based
or CSV-based languages [10, 17, 19], which are largely different
from those of simulation scenarios (see §2.3).
Traffic Scenario Recording File. Existing datasets describe each
traffic scenario with a corresponding traffic scenario recording file.
In practice, such a traffic scenario recording file usually has two sub-
files, namely Traffic Description File andMap Description File. Traffic
Description File stores concrete values about the vehicle trajectories
captured, and other necessary meta information including vehicle
type, recording time, etc. Similar to theMap Description File of a sim-
ulation scenario (see §2.3), Map Description File of a traffic scenario
also formally specifies the road networks and infrastructures.

3 OVERVIEW

In this section, we first introduce our overall idea for simulation
scenario construction in §3.1. After that, in §3.2, we clarify the
data sources of scenario construction and usage scope of curated
scenarios. In §3.3, we present a running example of our approach.

3.1 Overall Idea

To build diverse and realistic simulation scenarios, an appealing
idea is to digitalize real-world driving scenes in the simulation
world. However, the challenging point lies in that, to build a simu-
lation scenario, one should specify very low-level parameters (e.g.,
coordinates, width, length, speed, and so on) for each simulated
object, agent, or scene. These parameters are difficult to accurately
determine, even for human experts.
Key Insight.We observe that existing traffic scenario recording
files (see §2.4) use various detailed and concrete values to describe
real-world driving scenes (e.g., meta-information and moving tra-
jectories of road users), which should be valuable data sources for
parameterization of simulation scenario files. But the file formats
of such data sources are usually self-defined by their authors and

Table 1: Specification Formats of Traffic Scenarios.

Source Dataset

Traffic Scenario Recording File

Traffic Description

Format

Map Description

Format

CommonRoad [37] CommonRoad
Scenario [10] Lanelets [40]

inD [41] inD CSV [19] Lanelet2 [74]

highD [59] highD CSV [17] Lanelets [40] 1

1 highD itself does not provide map description files, but we can obtain them in a
third-party repository [18].

Table 2: Specification Formats of Simulation Scenarios.

Target ADS

or Simulator

Simulation Scenario File

Scenario

Description

Format

Map

Description

Format

Map

Assets

Format

Apollo [25] Apollo
HD Map [51]

Autoware [4] Autoware
Vector Map [5]

LGSVL [79] VSE Scenario [23] OpenDrive [1]
or Lanelet2 [74]

LGSVL
AssetBundle [22]

Carla [49] OpenScenario [2] OpenDrive [1]
Carla

Map Meshes [7]
(optional) 1

1 Carla features OpenDRIVE standalone mode which allows running a full
simulation using only an OpenDRIVE map file, without any additional map
assets. Therefore, we currently do not generate map assets for Carla.

are not standardized in the field of ADS simulation testing. Hence,
the ADS simulation platform cannot directly take them as inputs.
Transformation-based Approach: SCTrans. In light of this,
we propose to achieve a format transformation, i.e., to transform
traffic scenario recording files into simulation scenario files while
preserving the scenario semantics. To ensure the correctness of the
format transformation, we formalize this task as a Model Transfor-
mation Problem [67]. Specifically, we first create Meta-Models for
both traffic scenario recording files and simulation scenario files,
namely source Meta-Model and target Meta-Model. Here, a Meta-
Model describes the abstract syntax of a given language, including
its structure, elements, attributes, attribute constraints, etc. After
manually teasing out the fine-grained mappings between the ele-
ments and attributes of source Meta-Model and target Meta-Model,
we can then implement concrete transformation rules to automat-
ically convert a traffic scenario recording file into a simulation
scenario file. Our approach is named SCTrans.

3.2 Data Sources and Target Scope

In the following, we first clarify the data sources of SCTrans, and
then the target scope (i.e., target simulators andADSs) of the curated
simulation scenario files. Finally, we summarize the specification
formats of both source files and target files, providing guidance for
the format transformation of scenario files.
Data Sources. Our overall idea is to take advantage of real-world
traffic trajectories to parameterize simulation scenarios. There-
fore, some datasets (e.g., CityScapes [47] and CamVid [42]) are
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Figure 2: Example of using SCTrans to transform a traffic scenario file from the inD dataset [41] into simulation scenario files

that are compatible with the advanced LGSVL+Apollo and Carla+Autoware ADS simulation platforms.

not considered due to the lack of GPS trajectories of road partici-
pants. Finally, we chose three representative traffic scenario datasets
as data sources, i.e., CommonRoad [37], inD [41] and highD [59].
The reasons are two-fold: Firstly, these datasets contain more than
13,000 concrete traffic scenario recording files, based on which we
can build diverse simulation scenarios; Secondly, these datasets all
provide detailed documents about their data formats, which are
essential for precise file parsing.
Target ADSs. SCTrans aims to create simulation scenarios to
test high-level ADSs. Recently, Apollo [25] and Autoware [4], two
industry-grade ADSs, have emerged as frontrunners in the open-
source community, and have been widely adopted for commercial
usage. Beisdes, these two ADSs have been chosen as evaluation
targets in various research works [44, 52, 53, 62, 83, 93]. Except
for Apollo and Autoware, other ADSs are either of low-level au-
tomation (e.g., Level-2 OpenPilot [26]), or closed-source due to
commercial restrictions (e.g., Waymo [35] and Uber [32]). Hence,
we finally chose Apollo and Autoware as our target ADSs.
Target Simulators. A recent study [57] has extensively compared
multiple simulators for ADS testing, from the perspectives of fi-
delity, flexibility, stability, and so on. Results show that Carla [49]
and LGSVL [79] are the current state-of-the-art open-source simu-
lators for the end-to-end testing of ADSs. In particular, Carla and
LGSVL also provide user-friendly API interfaces which support
stable connections to our target ADSs (i.e., Apollo and Autoware).
Therefore, we chose Carla and LGSVL as our target simulators.
Source-to-Target Format Transformation. Table 1 summarizes
the specification formats of selected traffic scenario recording files,
and Table 2 illustrates the specification formats of simulation sce-
narios that are compatible with our target ADSs (i.e., Apollo and Au-
toware) and target simulators (i.e., Carla and LGSVL). In this work,
we aim to curate well-formatted scenario files that satisfy these
specification requirements. To be more specific, given a traffic sce-
nario recording file from Commonroad [37], inD [41] or highD [59],
we should accordingly construct 2 scenario description files (i.e.,
VSE Scenario [23] and OpenScenario [2]), 4 map description files

(i.e., Apollo HD Map [51], Autoware Vector Map [5], OpenDrive [1]
and Lanelet2 [74]) and 1 map assets file (i.e., LGSVL AssestBun-
dle [22]), so as to flexibly support diverse simulation environments
like LGSVL+Apollo and Carla+Autoware.

3.3 Running Example

Following the transformation-based idea, Figure 2 illustrates a run-
ning example of SCTrans. The generated simulation scenario files
can be directly used by the most advanced ADS simulation plat-
forms, without any further manual modifications.

4 APPROACH

SCTrans features a transformation-based approach, which con-
verts traffic scenario recording files into ready-to-use simulation
scenario files. In §4.1, we first introduce our design considerations
for carrying out the transformation task. After that, we formulate
the task as a Model Transformation Problem [67] in §4.2. Finally,
§4.3 and §4.4 introduce how to perform model transformation in
our problem domain.

4.1 Design Considerations

Decomposition of the Transformation Task. Conceptually, a
traffic scenario recording file (Source for short, see §2.4) consists of
2 sub-files, namely Map Description File and Traffic Description File;
a simulation scenario file (Target for short, see §2.3) consists of 3
sub-files, namely Map Description File, Scenario Description File and
Map Assets File. In general, the transformation task from Source to
Target can be divided into 3 sub-tasks: ❶ transforming the Map
Description File of Source to the Map Description File of Target;
❷ transforming the Map Description File of Source to the Map
Assets File of Target; ❸ transforming the Traffic Description File of
Source to the Scenario Description File of Target.
Design Choice. Theoretically, to achieve the above 3 sub-tasks,
SCTrans should support the transformation of each file format
listed in Table 1 and Table 2 (i.e., more than 10 file formats in
total), requiring extensive efforts. Here, fortunately, we find that
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Figure 3: Architecture of SCTrans.

the community has provided various open-source tools [6, 38, 66]
for converting formats of Map Description File, as well as a GUI
tool [24] that assists the manual creation of Map Assets File based
on given Map Description File. Therefore, we do not need to build
transformation tools for these map-related files from scratch. But,
in real practice, we find that existing tools are in an early stage
of development, which frequently return error results. As detailed
in §5, we invest non-trivial efforts to improve these tools (e.g., fix
bugs and automate the creation of Map Assets), so as to ensure the
reliability of SCTrans.

To sum up, in this work, we focus on transforming the Traffic De-
scription File of Source into the Scenario Description File of Target.
As summarized in Table 1 and Table 2, we mainly consider 3 formats
for the Traffic Description File (i.e., CommonRoad Scenario [10], inD
CSV [19] and highD CSV [17]), and 2 formats for the Scenario De-
scription File (i.e., VSE Scenario [23] and OpenScenario [2]). Since
open-source toolkits [14] are available to convert inD CSV [19] or
high CSV [17] to CommonRoad Scenario [10], we finally target
two types of format transformation tasks (i.e., to accomplish these
tasks from scratch), including ❶ transforming CommonRoad Sce-
nario [10] into OpenScenario [2]; ❷ transforming CommonRoad
Scenario [10] into VSE Scenario [23].

4.2 Problem Formulation

Here, we first introduce the basic concepts of model transformation,
and then the general architecture of SCTrans
Basic Concepts. A Meta-Model specifies the syntactic grammar of
a language, mainly including its structures, elements, and relations
between elements. AModel refers to a concrete instance conforming
to a Meta-Model. The Transformation Rules determine how a given
Model that conforms to Source Meta-Model can be converted into a
new Model that conforms to Target Meta-Model.
Architecture of SCTrans. Based on the aforementioned concepts,
Figure 3 demonstrates the architecture of SCTrans. In §4.3 and
§4.4, we will, respectively, introduce how to build Meta-Models and
Transformation Rules in our problem domain.

4.3 Source/Target Meta-Models

Symbol Definition. The Meta-Model MM := (MC,MA) describes
the format syntax, based on a set of meta-classes MC and a set
of meta-associations MA. Each meta-class𝑚𝑐 ∈ MC has a set of
data attributes 𝐴(𝑚𝑐). Furthermore, each attribute 𝑎𝑚𝑐

𝑖
(𝑖𝑑,𝑇 , 𝑅) ∈

𝐴(𝑚𝑐) is specified with the identifier name 𝑖𝑑 , the attribute type

𝑇 , and the attribute sanity 𝑅 (i.e., valid value range). Each meta-
association 𝑚𝑎(𝑚𝑐𝑖 ,𝑚𝑐 𝑗 , 𝑄) ∈ MA indicates that 𝑚𝑐𝑖 associates
with𝑚𝑐 𝑗 with association type Q (e.g., one-to-many reference).
Overview. Among the three considered formats of scenario de-
scription files (see §4.1), CommonRoad Scenario [10] and Open-
Scenario [2] all provide scheme files (i.e., XSD files) to precisely
describe the language syntax. These scheme files can be automati-
cally converted into semantically equivalent meta-model files using
the model transformation framework 1 (see §5). Hence, we only
need to manually construct the meta-model for VSE Scenario [23]
from scratch. Our key observation is that a scenario description lan-
guage, if lacking a scheme file to define its syntax, should necessarily
come with a hand-written serialization/deserialization program to
ensure its usability. Such a program should contain implicit meta-
models in its object-oriented design. In the following, we introduce
the formalized steps to manually construct meta-classes and meta-
associations from the serialization/deserialization program 2 of VSE
Scenario [23] (written in C#).
Meta-class Construction. We first enumerate all data objects
O := {𝑜1, 𝑜2, ..., 𝑜𝑛} that have a chance to be accessed (i.e., read-
/write) during the scenario serialization/deserialization. Given each
data object 𝑜 ∈ O, we accordingly construct a meta-class𝑚𝑐𝑜 . After
that, the set of data attributes 𝐴𝑚𝑐𝑜 is constructed by collecting
serializable/deserializable data fields of 𝑜 . Specifically, to construct
a data attribute 𝑎(𝑖𝑑,𝑇 , 𝑅) ∈ 𝐴(𝑚𝑐𝑜 ) from a given field, the field
name is set as 𝑎.𝑖𝑑 , the field property (e.g., data type, default value,
required or not, etc) is set as 𝑎.𝑡𝑦𝑝𝑒 , and 𝑎.𝑅 is set by merging
its value constraints implemented in the initialization/serializa-
tion/deserialization functions (i.e., from if-checks, loop-conditions,
assertions, etc).
Meta-association Establishment. Given an object 𝑜 ∈ O, each of
its object-typed fields (the object type is denoted as 𝑜 𝑓 ) uniquely
represents a meta-association (𝑚𝑜 ,𝑚𝑜 𝑓 , 𝑄) between meta-classes
𝑚𝑜 and𝑚𝑜 𝑓 . Specifically, under the model transformation frame-
work [82], the association type Q is usually specified by the lower-
bound and upper-bound of object reference times. For instance,
if both lower-bound and upper-bound are set to 1, it represents a
one-to-one reference relation between meta-classes.
Running Example. For ease of understanding, Figure 4 illus-
trates a running example of meta-model construction for VSE
Scenario [23]. According to the deserialization program shown
in Figure 4(a), we can accordingly build 3 meta-classes and their
meta-associations. Besides, for each data attribute, we carefully
collect its name and sanity. Finally, Figure 4(b) and Figure 4(c) for-
mally describe the constructed meta-classes and meta-associations,
respectively based on the UML class diagram (graph-based repre-
sentation) and the BNF formulas (textual representation).

4.4 Source-to-Target Transformation

Symbol Definition. The model transformation MT : MM𝑠 →
MM𝑡 consists of a finite set of transformation rules F𝑠→𝑡 . Each
transformation rule 𝑓 ∈ F𝑠→𝑡 can be denoted as a three-tuple

1https://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf
2https://github.com/lgsvl/simulator/tree/release-2021.1/Assets/Scripts/ScenarioEditor/Data
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# Deserializes scenario agents from the json data
JsonScenarioDeserializer::DeserializeAgents(){
   var variantName = agentNode["variant"];
   var variant = SourceVariants.Find(variantName);
   if (variant == null) { ... //Error}

# Deserialize WaypointNode
Class AgentWaypoints {
  public List<ScenarioWaypoint> Waypoints;
  void DeserializeFromJson(){
    var waypointsNode = agentNode["waypoints"] as JSONArray;
    if (waypointsNode == null) return;
    foreach(var waypointNode in waypointsNode.Children){
      ScenarioWaypoint waypoint =  
      waypoint.transform.position = waypointNode["position"].ReadVector3();
      waypoint.transform.Rotation = waypointNode["angle"].ReadVector3();
      waypoint.WaitTime = waypointNode["waitTime"];
      waypoint.Speed = waypointNode["speed"];
      waypoint.index = waypointNode["ordinalNumber"];
      ...
      Waypoints.Add(waypoint)

Call

<agent>::=[<variant><waypoints>...]
<variant>::=car | truck | pedestrian | ...
<waypoints>::=<waypoint> | 
<waypoint>＇,＇<waypoint>
<waypoint>::=[<ordinalNumber><position>
<angle>
<waitTime><speed>]
<ordinalNumber>::=<int>
<position>::=[<x><y><z>]
<angle>::=[<x><y><z>]
<waitTime>::=<float>
<speed>::=<float>
<x>::=<double>
<y>::=<double>
<z>::=<double>

agent
waypoints: waypoint

 
[0..*]

[1..1]

(b) UML Class Diagram 
of Meta-Model

(c) BNF Formalism 
of Meta-Model

(a) Deserialization Program 
of VSE Scenario (Written in C#)

variant：Enum{...}

attribute.id
attribute.type
attribute.sanity
meta-association.type

# Omitted During Deserialization
Class Transform { 
   Vector3 position
   Vector3 Rotation }

Class ScenarioWaypoint {
    float Speed
    float WaitTime
    int IndexInAgent
    Transform transform }

Class Vector3{
   double x
   double y
   double z }

[1..1]

refer

refer

refer

waypoint

angle: Vector3
position: Vector3
ordinalNumber: int

speed: float
waitTime: float

Vector3

z:  double
y:  double
x:  double

Figure 4: Example of Meta-model Construction (for VSE Sce-

nario [23]).

(MC𝑓𝑠 ,MC
𝑓
𝑡 ,Φ

𝑓
𝑠→𝑡 ), MC

𝑓
𝑠 ⊂ MM𝑠 .MC, MC

𝑓
𝑡 ⊂ MM𝑡 .MC. Be-

sides, Φ𝑓
𝑠→𝑡 denotes the source-to-target attribute mapping be-

tween MC𝑓𝑠 and MC𝑓𝑡 , i.e., Φ
𝑓
𝑠→𝑡 : {𝑎𝑠 (𝑖𝑑,𝑇 , 𝑅) |𝑚𝑐 ∈ MC𝑓𝑠 , 𝑎𝑠 ∈

𝐴(𝑚𝑐)} → {𝑎𝑡 (𝑖𝑑,𝑇 , 𝑅) |𝑚𝑐 ∈ MC𝑓𝑡 , 𝑎𝑡 ∈ 𝐴(𝑚𝑐)}, which also im-
plies the matching relations between the attribute sanity 𝑎𝑠 .𝑅 and
𝑎𝑡 .𝑅 (i.e., valid value range).
Overview. In this work, we aim to manually construct two sets
of transformation rules, respectively for ❶ transforming Common-
Road Scenario [37] into OpenScenario [2], and ❷ transforming
CommonRoad Scenario [37] into VSE Scenario [23]. Given a source
meta-model and a target meta-model, we first match their meta-
classes. After that, we further match and transform data attributes
among each matched pair of meta-classes. Details are as follows.
Meta-class Matching. The meta-class matching aims to identify
all possible semantic correspondences between meta-classes. To
practically reduce the matching scope of meta-classes, we first
classify meta-classes into 3 general categories (i.e., Config-env,
Config-tfc and Config-ego, see §2.3), and only consider matching
meta-classes within the same category. After that, given a set of
source meta-classesMC𝑠 and a set of target meta-classesMC𝑡 , we
utilize a matrix 𝑃𝑚𝑐 ∈ {0, 1} |MC𝑠 |× |MC𝑡 | to record their pairwise
semantic correspondences, where 𝑃𝑚𝑐 [𝑖, 𝑗] = 1 only if the meta-
class𝑚𝑐𝑖𝑠 ∈ MC𝑠 has shared semantics with the meta-class𝑚𝑐

𝑗
𝑡 ∈

MC𝑡 (otherwise, 𝑃𝑚𝑐 [𝑖, 𝑗] = 0). To be specific, the semantics of a
meta-class𝑚𝑐 , denoted as 𝑠𝑒𝑚(𝑚𝑐), which are featured by its class
name, class descriptions in the document (if available), its attribute
names, and corresponding attribute descriptions in the document
(if available). Based on the matrix 𝑃𝑚𝑐 , we can obtain all matched
pairs of meta-classes ({𝑚𝑐𝑠 }, {𝑚𝑐𝑡 }), s.t., ∀𝑚𝑐𝑖𝑠 ∈ {𝑚𝑐𝑠 }, ∃𝑚𝑐

𝑗
𝑡 ∈

{𝑚𝑐𝑡 }, 𝑃𝑚𝑐 [𝑖, 𝑗] = 1. Obviously, the matched pair ({𝑚𝑐𝑠 }, {𝑚𝑐𝑡 })
forms a |{𝑚𝑐𝑠 }|-to-|{𝑚𝑐𝑡 }| matching relation, which could be one-
to-one, one-to-many or many-to-many.
Attribute Matching and Transformation. Given a matched pair
of meta-classes ({𝑚𝑐𝑠 }, {𝑚𝑐𝑡 }), we denote all their non-object at-
tributes as 𝐴𝑠 and 𝐴𝑡 respectively. Similar to the way mentioned
above, we utilize another matrix 𝑃𝑎𝑡𝑡𝑟 ∈ {0, 1} |𝐴𝑠 |× |𝐴𝑡 | to enu-
merate the pairwise semantic correspondences between their data
attributes. Based on the matrix 𝑃𝑎𝑡𝑡𝑟 , we then extract all matched
pairs of data attributes ({𝑎𝑠 }, {𝑎𝑡 }), which could be one-to-one,
one-to-many or many-to-many.

Given a matched pair of attributes ({𝑎𝑠 }, {𝑎𝑡 }), we should corre-
late their semantic-equivalent attribute values to achieve attribute
transformation, i.e., 𝑎1𝑠 .𝑅 × 𝑎2𝑠 .𝑅 × ... × 𝑎𝑛𝑠 .𝑅 → 𝑎1𝑡 .𝑅 × 𝑎2𝑡 .𝑅 ×
... × 𝑎𝑚𝑡 .𝑅. After transforming all the matched pairs of attributes
of ({𝑚𝑐𝑠 }, {𝑚𝑐𝑡 }), we can finally get a transformation rule 𝑓 :=
({𝑚𝑐𝑠 }, {𝑚𝑐𝑡 },Φ𝑓

𝑠→𝑡 ) (i.e., the symbol Φ𝑓
𝑠→𝑡 is defined at the be-

ginning of this subsection). However, since the source meta-model
MM𝑠 and the target meta-modelMM𝑡 naturally express different
semantics, it may require additional semantic completion or mu-
tation to ensure the completeness of transformation. ❶ Semantic
Mutation. For each mapping between semantically equivalent at-
tribute values from Φ

𝑓
𝑠→𝑡 , denoted as 𝑔 := 𝑎𝑠 .𝑅 → 𝑎𝑡 .𝑅, if there

exists a source attribute value 𝑣 ∈ 𝑎𝑠 .𝑅 such that 𝑔(𝑣) = 𝑁𝑈𝐿𝐿, we
apply the semantic mutation to update 𝑔 to 𝑔 ∪ {𝑣 → 𝑥} where
𝑥 ∈ 𝑎𝑡 .𝑅 shares the closest semantic with 𝑣 . For example, Common-
Road Scenario [10] allows specifying the agent type as Motocycle,
which is not allowed by OpenScenario [2]. During the transforma-
tion, we would intentionally mutate it to Bicycle (i.e., the most
similar agent type allowed by OpenScenario [2]). ❷ Semantic Com-
pletion. If there exists a required target attribute 𝑎𝑡 , such that for
any 𝑎𝑠 ∈ {𝑎 |𝑚𝑐 ∈ {𝑚𝑐𝑠 }, 𝑎 ∈ 𝐴(𝑚𝑐)}, Φ𝑓

𝑠→𝑡 (𝑎𝑠 ) ≠ 𝑎𝑡 , we set 𝑎.𝑡 to
a default/random value 𝑥 ∈ 𝑎𝑡 .𝑅 (i.e., x is within the valid value
range of 𝑎.𝑡 ). For example, VSE Scenario [23] requires an attribute
to describe the weather, which, however, is not supported by Com-
monRoad Scenario [10]. During the transformation, we randomly
set the weather conditions (e.g., sunny, foggy, etc).
Running Example. For ease of understanding, Figure 5 illustrates
a running example of transform rule construction. Following the
3-step procedure, we can precisely convert the source meta-classes
{state, position, point} into the target meta-classes {waypoint, angle,
position}.

5 IMPLEMENTATION

Model Transformation Framework. The implementation of
SCTrans is based on the Eclipse Modeling Framework (EMF) [82].
EMF is a well-established model transformation framework, offer-
ing a great set of tools or techniques, including the meta-modeling



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jiarun Dai, Bufan Gao, Mingyuan Luo, Zongan Huang, Zhongrui Li, Yuan Zhang, and Min Yang

WorldPosition
h: Double (0.86)
x: Double (143.93)
y: Double (67.67)
z: Double (0.0)
...

x y z val ...
point.x
point.y
velocity

...

1 1 1 0
1 1 1 0
0 0 0 1

...

WorldPosition AbsoluteTragetSpeed ...

State
Point

Position
...

1 1
1 0
1 0

...

(a) Meta-Class Matching

(b) Attribute Matching

 sem(WorldPosition) = [＂Position＂,＂x＂,＂y＂,＂z＂, ]
 sem(State) = [ ＂Point＂,＂Position＂, ]

sem(point.x) = [＂an x-,y-Coordinate,two-dimensional ＂, ]
sem(y) = [＂ left-handed ZXY coordinate system ＂, ]

Meta-class mapping:
{State, Position, Point} {WorldPosition, AbsoluteTargetSpeed}

Attribute mapping:
{point.x,point,y} {x,y,z}, {velocity} {val}

(c) Attribute Transformation

State

...
orientation: Double (0.86)
position: Position
velocity: Double (15.0)

Position
point: Point...

Point
x: Double (13.1)
y: Double (32.8)

AbsoluteTargetSpeed
val: Double (15.0)

CommonRoad Scenario OpenScenario

has shared 
semantics

has shared 
semantics

Figure 5: Example of Transformation Rule Construction

(from CommonRoad Scenario [10] to OpenScenario [2]).

language Ecore to encode Meta-Models, the ATL transformation
language to implement Transformation Rules, etc.
Meta-Models. With the help of EMF, we specify Meta-Models (see
§4.3) for CommonRoad Scenario [10], OpenScenario [2] and VSE
Scenario [23], with Ecore files that contain 2,898, 667 and 4,212
lines of code. To be more specific, CommonRoad Scenario [10]
and OpenScenario [2] are XML-based description languages. They
all provide XML schema files (i.e., XSD files), which define the
structure and data elements of XML files. We follow the official
documents [12] of EMF, to automatically convert these XSD files
into Ecore files. Differently, VSE Scenario [23] is a JSON-based
language specific to the LGSVL simulator [79]. We manually audit
its parsing code [23] to create an Ecore file from scratch.
Transformation Rules.We implement two sets of transformation
rules (see §4.4): one for the transformation from CommonRoad Sce-
nario [10] to OpenScenario [2], and the other for the transformation
from CommonRoad Scenario [10] to VSE Scenario [23]. These two
sets of rules are implemented via ATL files that contain 272 and 642
lines of code, using several ATL-specific language mechanisms (e.g.,
rule-nesting3) to ensure the correctness of model transformation.

3https://wiki.eclipse.org/Henshin/Transformation_Meta-Model

Map Converter and Map Assets Generator. Similarly, we do
not create Meta-Models for map-related files (i.e., Map Description
File and Map Assets File) from scratch, since the community has
provided various tools [6, 24, 38, 66] for converting map formats
and generating map assets. However, existing tools [6, 38, 66] might
produce incorrect or incomplete map transformation results due to
implementation issues. We carefully fix these issues to ensure the
correctness of conversion results. For instance, the CommonRoad
Map Toolbox [66], which we used for converting maps formats from
Lanelets [40] to Lanelet2 [74], would ignore the conversation of
traffic lights and traffic signs. To address this issue, we add 290 lines
of Python code to implement this desired functionality. For map
assets generation, the existing tool [24] is only a GUI-based one that
assists manual assets generation. We further leverage xdotool [36]
to automate the process of GUI interaction, with a script file that
contains 228 lines of code. As such, we can generate map asset files
automatically in a scalable manner.

6 EVALUATION

In this section, we first elaborate on the experiment setup (§6.1) and
report the general results (§6.2) of dataset transformation (e.g., syn-
tactic/semantic correctness and time cost). For all curated simula-
tion scenarios, we carried out extensive experiments to demonstrate
their usability (§6.3), diversity (§6.4), and utility (§6.5).

6.1 Experiment Setup

Inputs of SCTrans. We considered 3 representative traffic sce-
nario datasets as inputs of SCTrans, i.e., CommonRoad [37], inD [41]
and highD [59]. These traffic scenario datasets are actively main-
tained and have indexed more than 1,3000 traffic scenario recording
files. Here, to evaluate the prototype of SCTrans, we randomly se-
lected 2,000 traffic scenario recording files as its inputs, marked as
𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑇𝐹𝐶 , with 1,000/2,000 from CommonRoad [37], 500/2,000
from inD [41] and 500/2,000 from highD [59]. These 2,000 concrete
traffic scenarios are built upon 410 different maps.
ADS Simulation Platforms. We set up stable versions of the
target ADSs and simulators (i.e., Apollo 6.0, Autoware 1.15+open-
planner 2.5, LGSVL 2021.2.2 and Carla 0.9.13) on our server, so as to
convincingly verify whether our curated simulation scenario files
are compatible with advanced LGSVL+Apollo and Carla+Autoware
simulation platforms. Besides, a simulator should rely on a scenario
player (see Figure 1) to parse the simulation scenario files, and
accordingly build the virtual world. However, we found that the
scenario player of Carla 0.9.13 cannot correctly instantiate NPC
vehicles with pre-defined trajectory waypoints. We fixed this issue
with 374 lines of Python code to avoid biased evaluation results.
Server Environment. All our experiments were conducted on a
Ubuntu 18.04 server with 64 GB memory, 32 CPU cores (Intel(R)
Xeon(R) Silver 4215R) running at 3.20 GHz, and a single NVIDIA
GeForce RTX 3070 GPU. The GPU is utilized to support the runtime
computation of ADSs, and also the 3D rendering of simulators.

6.2 General Transformation Results

Experiment Design. According to the specification formats (see
Table 2) of our two target simulation platforms, we should utilize
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Table 3: General Transformation Results of SCTrans.

Inputs

(𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑇𝐹𝐶 )

Syntactic

Accuracy

Semantic

Perseverance

Avg. Time Cost

SF
1

MF
2

CommonRoad [37] 994/994 (100%) 99.77% 2.3s 97.9s

inD [41] 500/500 (100%) 99.88% 3.2s 107.4s

highD [59] 500/500 (100%) 99.90% 2.2s 86.7s
1
SF: Scenario Description File;

2
MF: Map Description File and Map Assets File;

SCTrans to convert each input from 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑇𝐹𝐶 into 2 scenario
description files (i.e., VSE Scenario [23] and OpenScenario [2]), 4
map description files (i.e., Apollo HD Map [51], Autoware Vector
Map [5], OpenDrive [1] and Lanelet2 [74]) and 1 map assets file (i.e.,
LGSVL AssestBundle [22]). Here, we mainly evaluate the following
aspects of scenario transformation:

• Syntactic Accuracy, i.e., whether the output simulation scenarios
are syntactically correct. Here, we use EMFValidation Tool [15] to
automatically check whether each generated simulation scenario
file conforms to its corresponding Meta-Model.

• Semantic Perseverance, i.e., whether the input traffic scenarios
and the output simulation scenarios express the same semantics.
Specifically, we count the percentage of data attributes that go
through semantic mutation or completion, i.e.,

1 − |{𝑀𝑢𝑡𝑎𝑡𝑒𝑑 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}| + |{𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}|
|{𝐴𝑙𝑙 𝑇𝑎𝑟𝑔𝑒𝑡 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠}| , so as to

quantify the semantic deviations.
• Time Cost, i.e., how much time is required to generate the desired
simulation scenario files and map description files.

Experiment Results. SCTrans, as a model-transformation ap-
proach, can work properly only when the given inputs have correct
syntax. Hence, we first utilized the EMF Validation Tool [15] to
check the syntactic correctness of input traffic scenarios. Results
show that 6 CommonRoad scenario files have format errors (e.g.,
incomplete files or duplicated data elements). Thus, we chose the
remaining 1,994/2,000 traffic scenarios as inputs of SCTrans.

As shown in Table 3, SCTrans has 100%(=1,994/1,994) syntactic
accuracy when transforming traffic scenario recording files into
simulation scenario files. That is, all the data attributes in simula-
tion scenarios satisfy the constraints (e.g., value sanity and name
specification) encoded in the meta-model, indicating the reliability
of our constructed transformation rules.

In total, the generated simulation files (i.e., 1,994 VSE Scen-
rio [23] files and 1,994 OpenScenario [2] files) have 40,967,668 data
attributes. To ensure the syntactic correctness of generated sce-
nario files, only 4,119 data attributes are semantically mutated and
18,0323 data attributes are semantically completed, i.e., keep over
99.7% semantics of the input scenario files. This result indicates the
high realism of our curated simulation scenarios.

Table 3 also shows that, given a traffic scenario recording file,
it cost about 99.9s to generate all needed files for our target ADS
simulation platforms. The generation of map-related files costs
most of the time, mainly due to the heavy-weight 3D rendering
process for map assets preparation.

Table 4: Usability Results of Curated Simulation Scenarios.

Simulation

Platform

Scenario

Format

# of failed runs Caused by

Scenario

Usable RateSimulator

Flaws

ADS

Flaws

SCTrans

Flaws

LGSVL 2021.2.2 +

Apollo 6.0
VSE Scenario 0 59 0 1,994/1,994 (100%)

Carla 0.9.13 +

Autoware 1.15

(openplanner 2.5)

OpenScenario 59 600 0 1,994/1,994 (100%)

6.3 Usability of Curated Simulation Scenarios

Experiment Design.As mentioned above, we successfully curated
1,994 simulation scenarios. We further conducted experiments to
verify the usability of these scenarios, i.e., whether state-of-the-art
ADS simulation platforms can indeed take them as inputs to run
testing. Here, we chose LGSVL+Apollo and Carla+Autoware as
our target ADS simulation platforms, which respectively take VSE
Scenario [23] files and OpenScenario [2] files as inputs.

Intuitively, the bidirectional communication (see §2.2) between
the simulator and the ADS can be considered as the key evidence
of one successful run of ADS simulation testing (i.e., the given sim-
ulation scenario file is usable). But note that, except for the format
errors of simulation scenario files, flaws or incapabilities of ADSs or
simulators would also cause failed runs of simulation testing (e.g.,
ADS crashes caused by memory bugs). To avoid biased results when
evaluating the scenario validity, we inserted logging statements
to simulators and ADSs to collect necessary runtime information,
based on which we can determine whether a failed run is caused by
the format errors of the simulation scenario file or not. To be more
specific, advanced ADSs or simulators all provide high-level APIs to
load and parse scenarios or maps (e.g., lgsvl.Simulator.load()).
We can monitor the runtime status of such APIs to verify whether
our curated scenario files are usable. If so, we further analyze run-
time error logs to confirm whether a failed run originates from
ADS flaws or simulator flaws.
Experiment Results. In total, it cost 68.2 CPU hours to dynam-
ically run all of the 1,994 simulation scenarios on our two target
simulation platforms. As shown in Table 4, the simulation scenario
files generated by SCTrans have a 100% usable rate on these state-
of-the-art ADS simulation platforms. This result is consistent with
the 100% syntactic accuracy of our curated scenarios (i.e., reported
in §6.2). Thus, we believe our dataset can drive practical value for
the safety testing of these two advanced high-level ADSs.

It is also surprising that Carla, Apollo, and Autoware, even emerg-
ing as front-runners in the open-source community, still have vari-
ous implementation flaws that cause 59+59+600 failed runs during
this experiment. Here, we also invested extensive efforts to confirm
these failed runs are indeed caused by flaws of simulators and ADSs,
rather than those of SCTrans (detailed as follows).
• 59 failed runs on LGSVL+Apollo. After careful diagnosis, we found
that these failed runs are all caused by unsynchronized data be-
tween LGSVL and Apollo. Specifically, LGSVL would intention-
ally standardize the path of a given map (i.e., modify the folder
name) without synchronizing with the map loader of Apollo.
Consequently, Apollo cannot correctly load necessary maps.

• 59+600 failed runs on Carla+Autoware. Through manual case
studies, we found that these failed runs are either caused by the



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jiarun Dai, Bufan Gao, Mingyuan Luo, Zongan Huang, Zhongrui Li, Yuan Zhang, and Min Yang

Table 5: Diversity Results of Curated Simulation Scenarios.

Dataset
# of

Scenarios

Scenario

Format

Diversity Measures

Label

Coverage

Vendi

Score

Esmini [16] 41 OpenX [2] 55.4% (+23.4%) 13.3 (×2.47)
OSC-ALKS [27] 15 OpenX [2] 21.4% (+57.1%) 2.86 (×11.5)

Carla [8] 9 OpenX [2] 33.9% (+44.6%) 5.15 (×6.39)
D. Karunakaran [56] 9 OpenX [2] 14.3% (+64.2%) 2.03 (×16.2)

Ours 1,994 OpenX [2]
VSE [23] 78.5% 32.9

rendering errors of the simulator, or the functional insufficien-
cies of the ADS (e.g., cannot plan the trajectory in complicated
driving conditions). To confirm this, we chose LGSVL+Apollo as
a baseline and fed the 59+600 scenario files to it. After 6.9 CPU
hours of testing, we confirmed the success of all the 59+600 runs.
This evidence supports the view that the 59+600 failed runs are
not caused by incorrect scenario files.

6.4 Diversity of Curated Simulation Scenarios

Experiment Design. The 1,994 usable simulation scenarios make
up the initial version of our public scenario dataset. Here, we carried
out experiments to demonstrate the diversity of our dataset and
also made comparisons with existing simulation scenario datasets.
• Existing Datasets. To conduct this experiment, we tried our best
to collect open-source simulation scenario datasets from either
research works or third-party repositories. Notably, we only con-
sidered datasets whose file formats are compatible with the most
advanced ADS simulation platforms (e.g., LGSVL+Apollo and
Carla+Autoware). During the data collection process, we found
that the public availability of simulation scenarios is quite limited
(shown in Table 5). Among existing works [46, 55, 56, 69, 73, 85]
that aim to construct ready-to-use simulation scenario files, only
D. Karunakaran et al. [56] released 9 scenario files to the commu-
nity. Similarly, the number of simulation scenario files in public
repositories is also limited.

• Diversity Measures. We mainly consider two diversity measures.
❶ Label Coverage: ISO 21448 [20] (guiding principles for ADS test-
ing) suggests 13 categories of scenario factors (e.g., road shapes),
consisting of 119 concrete scenario labels. Specifically, 56/119
labels can be used to specify simulation scenarios 4 (i.e., can be
expressed by standard scenario DSLs and can be supported by
our target simulators), while the others are commonly for phys-
ical scenarios. Label Coverage measures how many of these 56
labels can be covered. ❷ Vendi Score [50] is the SOTA metric to
quantify the effective number of unique or dissimilar samples in
a dataset. The calculation of Vendi Score requires a pairwise sam-
ple similarity function, which is set as the conventional Jaccard
similarity between scenario labels in our problem domain.

Experiment Results. To compare our dataset with existing ones
in diversity, we first spent 17.3 manual hours labeling all these
simulation scenarios, considering a complete set of 56 simulation-
capable scenario labels suggested by ISO 21448 [20]. After scenario
labeling, we can then accordingly calculate the diversity measures.
Table 5 presents the diversity measures of different datasets. Results
4We list these labels at https://seclab-fudan.github.io/SCTrans/.

Table 6: ADS Fuzzing Results with Different Seeds.

Target

ADS

Results (# of Collisions / # of Unqiue&Reproducible Collisions)
1

AV-Fuzzer [63] AutoFuzz [93] Ours

S1 S2 Avg. S3 S4 S5 S6 Avg. Avg.

Apollo 6.0 15/2 38/1 26.5/1.5 21/1 5/0 24/0 21/0 17.8/0.25 86.7/3.7

Autoware 1.15

(openplanner 2.5)
0/0 1/0 0.5/0 42/0 47/2 17/0 0/0 26.5/0.5 84.6/3.5

1
Unique Collisions: Enhance existing heuristics [93] to filter similar collision scenarios.

2
Reproducible Collisions: Ignore ego collisions that can not be stably reproduced.

show that our dataset significantly outperforms existing ones, either
in Label Coverage or Vendi Score [50].

6.5 Utility of Curated Simulation Scenarios

Experiment Design. In previous experiments (see §6.3 and §6.4),
we have demonstrated that our curated simulation scenarios have
high usability and diversity. To further showcase their utility, we
fed them as inputs to advanced simulation-based ADS testing tools,
to see whether the effectiveness of testing can be improved. Finally,
we chose simulation-based ADS fuzzers [52, 53, 58, 62, 93] as our
evaluation targets. This is because we observe that, without pub-
licly available simulation scenario files, these fuzzers commonly
use simple hand-crafted scenarios as seed inputs. But unfortunately,
it has long been proved [78, 95] that low-quality seed inputs would
largely hurt the fuzzing performance. Hence, we are highly moti-
vated to investigate whether our curated simulation scenarios can
boost the collision-finding capabilities of ADS fuzzers.

We randomly selected 50 simulation scenarios from our dataset
as seeds to be evaluated, andwe collected 6 open-source seed scenar-
ios utilized in existing ADS fuzzers (i.e., 2 seeds from AV-Fuzzer [63]
and 4 seeds from AutoFuzz [93]) as comparison targets. Specifically,
inspired by existing practice [78], we ran ADS fuzzer each time
with only one seed scenario for 3 hours and deactivated all runtime
seed scheduling mechanisms. After finishing 50+6 fuzzing tasks,
we can faithfully compare the collision-finding capability of each
seed. We implemented the fuzzing framework on LGSVL 2021.2.2
with over 4,000 lines of Python code, according to the mutation
strategies of DriveFuzz [58]. The ADSs under test are Apollo 6.0
and Autoware 1.15 (with openplanner 2.5).
ExperimentResults.After 336 CPU hours (=(50+6)*3*2) of fuzzing,
Table 6 summarizes the collision-finding capability of each seed
scenario. Results show that our curated simulation scenarios can
significantly boost the collision-finding capability of advanced
simulation-based ADS fuzzer. Compared to simple hand-crafted
seed scenarios utilized in existing works [63, 93], our simulation
scenarios help identify over 3.2 times more ego-involved collisions,
and over 7.0 times more unique ego-involved collisions within the
same time period (3h). The key reason lies in that, our simulation
scenarios are digitalization of real-world driving scenes, which
capture complex and realistic moving behaviors of various traf-
fic agents. These surrounding agents pose great challenges to the
robustness of ADSs under test. Hence, utilizing such simulation
scenarios as seed inputs, ADS fuzzers can quickly identify ego-
involved accidents with fewer mutation efforts. As summarized in
Table 7, after carefully analyzing all ego-involved unique collisions,
we identified 4 bugs of Apollo 6.0 and 5 bugs of Autoware 1.15
(openplanner 2.5), each of which can be stably exploited to cause

https://seclab-fudan.github.io/SCTrans/
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Table 7: Identified Bugs on Apollo and Autoware.

ADS ID Module Bug Description Confirmed

Apollo

R1 Planning Imprecise calculation of drivable areas
R2 Planning Insufficient braking force in emergencies

R3 Prediction Incorrect prediction of obstacle
trajectories at intersections

R4 Planning Fail to avoid rear-end vehicles

Autoware

R5 Control Keep removing when destination reached ✓
R6 Planning Fail to avoid rear-end vehicles

R7 Planning Follow driving paths that
may run off the road ✓

R8 Planning Incorrect prediction of collision points ✓
R9 Control Fail to handle sharp turns ✓

traffic accidents. After submitting the bug reports (including bug lo-
cations and root causes) to the developers of Apollo and Autoware,
till now, 4 of them have been confirmed. Through this experiment,
we demonstrate that our curated simulation scenarios have large
practical value for the safety assessment of high-level ADSs.

7 DISCUSSION

Portability of Our Dataset. At present, the OpenX standards (e.g.,
OpenScenario [2] and OpenDrive [1]) are the most widely used
specification formats in the field of ADS simulation testing. Accord-
ing to a recent survey [94], popular commercial driving simulators
(e.g., CarMaker [9] and PreScan [29]) can also take OpenX [1, 2] files
as inputs. Hence, we believe that our curated simulation scenario
files can be smoothly migrated to other ADS simulation platforms.
Need for Diverse Real-world Data. As a transformation-based
approach to curate simulation scenarios, SCTrans is highly de-
pendent on the diversity of the input real-world data. To curate
more realistic simulation scenarios with SCTrans, a practical so-
lution is to involve new data sources (i.e., other traffic scenario
datasets [45, 60, 68, 75, 96] which record concrete vehicle trajecto-
ries). We plan to explore the possibility of transforming these data
sources into simulation scenarios in the future.
Limitations. Though the experiment results show that SCTrans
can effectively transform traffic scenario recording files into ready-
to-use simulation scenario files, it still has several limitations: ❶

Generally, the construction of meta-models and transformation
rules requires non-trivial manual efforts, which might hinder the
direct application of SCTrans on other data sources or target sce-
nario formats. However, we believe that our formalized approach
can offer practical guidance for different scenario transformation
tasks, or inspire the design of automated transformation tools. ❷
As shown in Figure 2, our curated simulation scenarios only have
road meshes for traffic actors to navigate through. Other additional
assets such as buildings or vegetation will not be created. This is
mainly because our data sources (i.e., traffic scenario datasets) do
not describe such information. Although this issue would to some
extent hurt the realism of curated simulation scenarios, however,
as proved in §6.5, our scenario dataset can still help convincingly
identify safety-critical ADS flaws.

8 RELATEDWORKS

Data-driven Simulation Scenario Construction. After a sys-
tematic literature review, we find that some existing works [55,
56, 69, 73, 85] exploit a similar idea with SCTrans, i.e., to trans-
form real-world traffic recording files into ready-to-use simulation

scenario files. However, most of existing works [56, 69, 73] take
vehicle-side raw sensor data (e.g., LiDAR data recorded by a sensor-
equipped vehicle on public roads) as inputs. Raw sensor data is
usually noisy, thus cannot provide a precise estimate of the sur-
roundings. AC3R [55] elaborates police reports as data sources,
which are high-level abstraction forms of driving scenarios. It heav-
ily depends on expert knowledge to specify low-level scenario
configurations. Besides, existing works [56, 69, 73, 85] commonly
leverage a maneuver-based methodology to build simulation sce-
narios. They rely on heuristic-based rules to identify maneuvers of
surrounding vehicles (e.g., accelerate, cut-in, etc) from real-world
data, and then randomly specify low-level scenario configurations.
However, heuristic-based maneuver identification cannot precisely
digitalize complex driving conditions. Due to these limitations, it
is quite hard to leverage existing works to generate diverse and
realistic simulation scenarios. Besides, among all these works, only
[56] releases 9 usable simulation scenario files to the community.
Mutation-based Simulation Scenario Generation. Some recent
works [52, 53, 58, 62, 93] try to leverage mutation-based techniques
to automatically build previously unknown simulation scenarios for
ADS testing. These techniques work by mutating the configurations
of initial scenario files to generate new ones (e.g., adding a new
traffic actor). As demonstrated in §6.5, SCTrans is orthogonal to
this line of research, having the capability to prepare high-quality
initial inputs for ADS fuzzers.

9 CONCLUSION

In this work, we propose SCTrans to construct diverse simulation
scenario files, which can be directly used to test state-of-the-art
ADSs (i.e., Apollo and Autoware) with high-fidelity driving sim-
ulators (i.e., LGSVL and Carla). The key idea of SCTrans is to
transform the file formats of existing traffic scenario datasets (i.e.,
datasets that record the naturalistic movement of road users) into
the ones that can be accepted by popular ADSs and simulators.
With the help of SCTrans, we construct and release a large pub-
lic scenario dataset, consisting of over 1900 diverse ready-to-use
simulation scenario files. We also conducted extensive experiments
to demonstrate the utility of our dataset. Results show that it can
significantly boost the collision-finding capability of existing ADS
fuzzers, and help identify 9 safety-critical bugs of Apollo and Auto-
ware. Till now, 4 of them have been confirmed.
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