
HowWell Industry-Level Cause Bisection Works in Real-World:
A Study on Linux Kernel

Kangzheng Gu
Fudan University
Shanghai, China

kzgu21@m.fudan.edu.cn

Yuan Zhang
Fudan University
Shanghai, China

yuanxzhang@fudan.edu.cn

Jiajun Cao
Fudan University
Shanghai, China

20210240046@fudan.edu.cn

Xin Tan
Fudan University
Shanghai, China

18212010028@fudan.edu.cn

Min Yang
Fudan University
Shanghai, China

m_yang@fudan.edu.cn

ABSTRACT
Bug fixing is a laborious task. In bug-fixing, debugging needs much
manual effort. Various automatic analyses have been proposed to
address the challenges of debugging like locating bug-inducing
changes. One of the representative approaches to automatically
locate bug-inducing changes is cause bisection. It bisects a range of
code change history and locates the change introducing the bug.
Although cause bisection has been applied in industrial testing
systems for years, it still lacks a systematic understanding of it,
which limits the further improvements of the current approaches.

In this paper, we take the popular industrial cause bisection sys-
tem on Syzbot to perform an empirical study of real-world cause
bisection practice. First, we construct a dataset consisting of 1,070
publicly disclosed bugs by Syzbot. Then, we investigate the overall
performance of cause bisection. Only one-third of the bisection
results are correct. Moreover, we analyze the causes why cause
bisection fails. More than 80% of failures are caused by unstable
bug reproduction and unreliable bug triage. Furthermore, we dis-
cover that correct bisection results indeed facilitate bug-fixing,
specifically, recommending the bug-fixing developer, indicating the
bug-fixing location, and decreasing the bug-fixing time. Finally, to
improve the performance of real-world cause bisection practice, we
discuss possible improvements and future research directions.

CCS CONCEPTS
• Security and privacy→ Operating systems security.

KEYWORDS
System Security, Operating System, Linux Kernel, Cause Bisection
ACM Reference Format:
Kangzheng Gu, Yuan Zhang, Jiajun Cao, Xin Tan, and Min Yang. 2024. How
Well Industry-Level Cause BisectionWorks in Real-World: A Study on Linux
Kernel. In Companion Proceedings of the 32nd ACM International Conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663828

on the Foundations of Software Engineering (FSE Companion ’24), July 15–
19, 2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3663529.3663828

1 INTRODUCTION
In recent years, fuzz testing (fuzzing) [13, 26, 41, 44, 49, 52, 55, 57]
has become one of the most popular techniques of bug discovery,
especially in industry [6, 9, 10]. While fuzzing has significantly im-
proved the efficiency of bug discovery, it also generates thousands
of bugs for developers to analyze and fix [32, 45], which brings
heavy pressure on developers. To mitigate debugging efforts, a
technology called cause bisection[4, 5] have been used to assist bug
analysis. The cause bisection aims to automatically locate the code
changes that introduce the bugs to facilitate developers compre-
hending and fixing these bugs. In the industrial scenario, software
programs are managed with repositories, and the code changes are
organized as commits. Thus, industrial cause bisection is designed
to find the bug-inducing commits, which helps developers rapidly
pinpoint the buggy code.

Cause bisection has been deployed in industrial testing systems
for years, like cause bisection in syzbot [10] and OSSFuzz [9]. Un-
fortunately, it is unclear whether the cause bisection is effective
enough in the real world. First, the correctness is questionable. Some
developers complain they are misled by current techniques [7, 8].
Second, the impact of cause bisection on bug fixing has not been
studied. Nobody knows whether it can significantly benefit bug
fixing under the blooming of bug reports. These two problems make
it unclear whether we should put more effort into improving the
current cause bisection and how to improve it.

To our knowledge, the only measurement of the industrial cause
bisection [1], i.e., the cause bisection of Syzbot [5] for Linux kernel,
involves 118 bugs discovered before March 2019. However, this
study is still limited. First, the study only shows coarse-grained
observations that are not systematic, which hardly helps to further
improve the techniques, since the measurement relies on manual
analyses on a few of the sampled cases. Second, this study does not
discuss the influence of cause bisection on the bug-fixing practice,
which we think is very important to comprehend the real-world
impact of cause bisection.

Although the study mentioned above is limited, it inspires us
to take Syzbot’s cause bisection as an evaluation target. First, the
Linux kernel is complex enough, whose bugs contain various kinds,

62

https://orcid.org/0009-0004-4909-3022
https://orcid.org/0000-0003-0726-9996
https://orcid.org/0009-0000-8797-2491
https://orcid.org/0009-0009-9018-0386
https://orcid.org/0000-0001-9714-5545
https://doi.org/10.1145/3663529.3663828
https://doi.org/10.1145/3663529.3663828

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Kangzheng Gu, Yuan Zhang, Jiajun Cao, Xin Tan, and Min Yang

on which the cause bisection can be comprehensively evaluated.
Second, a large number of kernel bugs have been analyzed by
Syzbot’s cause bisection, to be specific, 2,305, of which 1,359 have
been marked at least one bug-inducing commit by developers until
March 29, 2023. This provides a large-scale dataset. Thus, Syzbot’s
cause bisection is an ideal research target for evaluating the perfor-
mance and impact of industrial cause bisection.

In this paper, we perform a large-scale empirical study of Syzbot’s
cause bisection system. The purpose is to understand the perfor-
mance, reveal the limitations, and comprehend the impact when
cause bisection is applied in the industrial scenario. We intend to
answer three research questions: (1) how effective and efficient
the cause bisection is; (2) what the major causes of the failures are
in cause bisection; (3) how cause bisection facilitates bug fixing.
Based on the findings, we further discuss possible improvements
and research directions in the future.

To be specific, we first construct a dataset of real-world bug
reports on the Linux kernel. For each bug report, we collect the
bisection results provided by Syzbot and find the “ground-truth”
commit it should be. Then, we analyze the failures of cause bi-
section by reviewing the bisection log. Combining the ground
truth, we categorize and count the causes of bisection failures.
Next, we perform a statistical analysis to study the relationship
between cause bisection results and bug fixing, showing its signif-
icant influence on bug-fixing progress, which indicates that it is
valuable to further improve the cause bisection. Based on the find-
ings, we discuss the potential improvements of the current version
of cause bisection. Our artifacts and dataset are publicly available
at https://github.com/seclab-fudan/SyzbotCauseBisectionStudy.
Contributions. The major contributions and findings are summa-
rized below:

• Large-scale Dataset. We construct a dataset containing 1,070 bug
reports of the real-world Linux kernel with ground truth. To
our knowledge, it is the largest dataset to study a real-world
industrial cause bisection practice to date.
• Empirical Evaluation. We find that only one-third of cause bisec-
tion results are correct and reveal the most significant causes of
failures are unstable bug reproduction and unreliable bug triage
that leads to more than 80% of the failures, and should be the
most important issues to be addressed in the future.
• Impact Comprehension. We confirm the significant impact of
cause bisection in the real-world bug-fixing practice, showing
the prospects of cause bisection. Specifically, we discover that
a correct cause bisection will help report the bug to a proper
fixer, indicating the bug-fixing location, and finally decrease the
bug-fixing time.
• Promising Directions. Based on our findings, we hope to shed light
on the future research of real-world cause bisection. We discuss
the potential improvements both for the bisection algorithm and
the software testing techniques.

2 BACKGROUND
We first introduce the common methods of locating bug-inducing
commits, and then give a brief introduction to Syzbot, an industrial
kernel fuzzing system, especially explaining how Syzbot works to
locate bug-inducing commits and interacts with developers.

2.1 Methods of Locating Bug-inducing Commits
Locating bug-inducing commits can facilitate the bug-fixing progress.
Here are some popular methods that locate bug-inducing commits.

Patch-based Methods [19, 51, 54]. Such methods find the most
recent commits that modify the patch-related code. These commits
are thought to be bug-inducing commits. However, the availability
of a patch is the prerequisite. So patch-based methods cannot be
applied to zero-day bugs.

Information-retrieving-based Methods [23, 27, 46, 59, 61].
These methods extract useful information from bug reports. They
use such information as quires to retrieve the most related code
commits through lexical similarity or language models. Thus, the
performance of information-retrieving-based methods is affected
by the quality of bug reports. In the real world, the quality of bug
reports cannot be always guaranteed, which limits the large-scale
application of information-retrieving-based methods.

Fault-localization-based Methods [15, 16]. These methods
leverage the power of fault localization [60] to pinpoint a small code
slice that is highly related to the root cause of the bug. Then they use
the code slice to find which commit most recently introduces the
code slice. Fault-localization-based methods usually need a set of
failure inputs to precisely locate the root-cause code slice. However,
the set of failure inputs is not always available in the real world.

Compared to these methods, bisection-basedmethods is much
more preferred in real-world industrial scenarios since the indus-
trial system prefers simpler techniques (meaning more robustness)
and fewer restrictions (meaning more scalability). Although plenty
of methods have been proposed by the research community, we
think it is still necessary to evaluate and comprehend the currently
running method, i.e. the cause bisection.

2.2 Cause Bisection in Syzbot
Syzbot is an industrial continuous fuzzing system for the Linux
kernel. And cause bisection is a mechanism provided by Syzbot
to facilitate bug fixing. The goal of cause bisection is to find the
commit that introduces the fuzzing-discovered bug, called bug-
inducing commit. The insight behind the cause bisection is that a
bug is usually established by certain bug-inducing commits, and
if the kernel contains the bug-inducing commits, the PoC found
by fuzzing should trigger the bug, otherwise it should not. Thus,
cause bisection uses the fuzzer-found PoC to test the kernel to find
out the bug-inducing commit. The phenomenon of whether the
bug has been triggered is usually a kernel crash caused by a kernel
panic, KASAN report, or some other predefined assertions.

Therefore, for a certain version of the kernel, cause bisection
could speculate the existence of the bug-inducing commits by ex-
ecuting the fuzzer-found PoC and monitoring whether a crash
happens. Using an iterative search on major release versions, cause
bisection first determines the version range where the bug-inducing
commit is located. Within this range, cause bisection leverages a
binary search algorithm to find out the exact bug-inducing commits.
The whole procedure is depicted in Figure 1.

Cause bisection consists of three stages: reproduction confirma-
tion, version-level iteration, and commit-level bisection:

2.2.1 Stage A: Reproduction Confirmation. When a bug is found
by fuzzing, the bug report usually contains a crash commit and

63

How Well Industry-Level Cause Bisection Works in Real-World: A Study on Linux Kernel FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

Stage A: Reproduction
Confirmation

Stage B: Version-level
Iteration

Stage C: Commit-level
Bisection

Result
Commit(s)?

PoC
configs

v4.6 v5.2 v5.3 v5.443 555 2 55

bisection range:
(v5.2, v5.3]

crash
commitc

??

?

v5.2 v5.3

?

?i ti

Figure 1: Overview of Cause Bisection in Syzbot. A: runs the fuzzer-found PoC to make sure the bug can be reproduced. B:
reversely tests the release versions. C: performs the bisection in a certain range until the bug-inducing commit is found.

a PoC. Cause bisection will first skip the crashes that are not able
to reproduce on the crash commit with the PoC since the Syzbot
cannot determine the existence of the non-reproducible bugs in the
next steps.

2.2.2 Stage B: Version-level Iteration. Once a bug is successfully
reproduced on the crash commit, cause bisection takes this commit
as the beginning of the subsequent tests. First, Syzbot locates the
latest release version before the crash commit. From the latest
release version before the crash commit, Syzbot reversely iterates all
the release versions, i.e., from the latest to the oldest, and executes
the PoC on them. If the kernel crashes, it means that the bug exists
in the corresponding version. When a non-crash version next to a
crash version is found, the bug-inducing commit should lay between
these two versions.

2.2.3 Stage C: Commit-level Bisection. After the version range of
the bug-inducing commit is confirmed, cause bisection performs a
binary search between the first commit of the non-crash version
and the last commit of the crash version. To be specific, the cause
bisection will test the commit in the middle of the range. If the bug
can be reproduced, the range will shrink to the left side, i.e., the
bug-inducing commit should be in the predecessors of the middle
commit, and vice versa. Cause bisection repeats this procedure
until the PoC crashes on a certain commit but does not crash on the
previous one. This certain commit is thought to be a bug-inducing
commit. Sometimes the cause bisection may fail to determine the
bug existence for all the commits within a certain range. In this
case, a set containing all the commits in this range will be outputted
rather than a single commit. For convenience, in the rest of this
paper, we uniformly use the term result commit(s) representing
the commit or the set of commits outputted by cause bisection.

2.3 Interaction between Syzbot and Developers
When a bug is found during fuzzing, Syzbot will report the bug
to kernel developers. First, it extracts the source file involved in
the crash report, finds the corresponding maintainers, and sends
the bug reports to these maintainers. If the bug has a PoC that
can reproduce it, the cause bisection will start. The result of cause
bisection usually contains one or a set of possible bug-inducing
commit(s) and a cause bisection log. The above information will
be sent to the developer whose mail address is recorded in the
bug-inducing commit(s).

The information in the result commits would facilitate the bug
fixing in several ways. First, Syzbot sends the result commits and
bisection log to the mailing addresses recorded in these commits. It
helps to find a proper developer who is familiar with the relevant
program logic to analyze and fix the bug, since the developers
recorded in the result commits might be more familiar with the
bug-related functionalities than other developers. Second, the bug-
inducing commit is a clue to comprehend the root cause of the bug.
The developers could rapidly understand the mechanism of the bug
by reviewing the code changes in the bug-inducing commit. As a
result, the bug-fixing progress would be largely facilitated, i.e., the
bug-fixing time is shortened.

3 RESEARCH QUESTIONS
We aim to perform a comprehensive evaluation of the cause bisec-
tion system of Syzbot to understand its performance, limitations,
and value in practice. Specifically, we study the following research
questions.

RQ1: How effective and efficient the cause bisection is.
Bisection has proven to be effective under ideal circumstances.
However, since some key assumptions like accurate bug existence
testing do not hold in the real world, cause bisection is not as
effective as expected. In addition, there is lots of negative feedback
from developers like [7, 8]. In a word, the performance of cause
bisection has not been clearly understood since its birth, motivating
us to investigate whether cause bisection works well in practice.

RQ2: What the major causes of the failures in cause bisec-
tion are.We are curious under which circumstances the theoreti-
cally effective bisection algorithm may fail and why it fails under
real-world noises. Therefore, we aim to perform a deep analysis of
the failure cases to reveal the technical limitation of current cause
bisection in the real world. Such analysis also guides us on how to
make improvements to cause bisection practices in the future.

RQ3: How the cause bisection facilitates the bug fixing. Al-
though the cause bisection has been running for years, it is unclear
whether it helps the real-world bug-fixing practice significantly. An-
swering this question would benefit future research on automatic
debugging. If cause bisection promotes the bug-fixing practice sig-
nificantly, it would be worthwhile to make further improvements.
Otherwise, it is considerable to turn to other techniques.

RQ4: How we can improve the real-world cause bisection
practice. The final goal of our study is to indicate the possible

64

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Kangzheng Gu, Yuan Zhang, Jiajun Cao, Xin Tan, and Min Yang

RQ1
Effectiveness & Efficiency

RQ3
Helpfulness

for Bug Fixing

Cause Bisection Results

CorrectIncorrectNo Output

RQ2
Failure Cause

Analysis

Figure 2: Relationships among RQs.

improvements of real-world cause bisection practice. So, we dis-
cuss the possible future directions according to our findings from
multiple perspectives of cause bisection.

The overall workflow of our study is shown in Figure 2. To this
end, we first construct a large-scale dataset of cause bisection results,
which will be introduced in §4. Then, in §5, we perform analysis
on the large-scale dataset to answer RQ1. In §6, we answer RQ2
by mining the failure cases (i.e., No output & Incorrect). Further,
we answer RQ3 in terms of incorrect results and correct results in
§7. Finally, in §8, we discuss possible improvements in real-world
cause bisection practice based on our findings.

4 DATASET CONSTRUCTION
To answer the three research questions proposed in §3, we need
to gather detailed information about cause bisection, including its
output and the analysis process. In addition to cause bisection infor-
mation, to determine whether the output result commit is correct
(effectiveness in RQ1), we need to identify the real bug-inducing
commit, i.e., ground-truth commit for each bug. Fortunately, the
output of cause bisection, as well as the analysis log, is publicly
available from Syzbot dashboard [11]. In the following, we will
introduce the data collection and ground truth construction.

4.1 Data Collection
Until March 29, 2023, Syzbot has disclosed 5,452 valid kernel bugs
on the “Linux” track [12]. However, not all of them are processed
with cause bisection, since some bugs do not have a reproducible
PoC. So, we filter out the bugs that are not processed by cause
bisection and get 2,305 valid bugs for our study. For each bug, we
extract useful information from cause bisection logs.

A typical bisection log is shown in Figure 3, which consists of
the input crash commit, the run logs for three stages (stage A, B,
and C introduced in §2), and the summary of cause bisection result.
For each stage, the log records the tested commit or version and
the test result. Once the cause bisection locates a result commit, the
result commit information (e.g., commit ID and commit message)
and the total elapsed time is recorded as the result summary. If
any step goes wrong during cause bisection, the result summary
records the error message instead of the result commit information.
Given a bisection log, we first fetch the input crash commit from
the head of the log and extract the result commit or error message
from the result summary. Then we locate the log for each stage
by matching the keywords such as “testing release” and “git bisect
start”, and extract the tested commits and test results for each stage.

bisecting cause commit starting from 7ae77150
testing commit 7ae77150
all runs: crashed: KASAN: use-after-free Write in ...
testing release v5.7
all runs: crashed: KASAN: use-after-free Write in ...
testing release v5.6
all runs: OK
git bisect start v5.7 v5.6
testing commit 50a5de89
all runs: OK
git bisect good 50a5de89

testing commit 76313c70
run #4: crashed: general protection fault in ...
git bisect bad 76313c70

76313c70c is the first bad commit
revisions tested: 17, total time: 3h49m38.236199196s
(build: 1h45m37.563549345s, test: 2h2m45.921491052s)

bisecting cause commit starting from 7ae77150
testing commit 7ae77150
all runs: crashed: KASAN: use-after-free Write in ...
testing release v5.7
all runs: crashed: KASAN: use-after-free Write in ...
testing release v5.6
all runs: OK
git bisect start v5.7 v5.6
testing commit 50a5de89
all runs: OK
git bisect good 50a5de89

testing commit 76313c70
run #4: crashed: general protection fault in ...
git bisect bad 76313c70

76313c70c is the first bad commit
revisions tested: 17, total time: 3h49m38.236199196s
(build: 1h45m37.563549345s, test: 2h2m45.921491052s)

Stage A

Stage B

Stage C

Figure 3: Example of Cause Bisection Log.

4.2 Ground Truth Construction
To construct the ground truth for cause bisection, we need to locate
the bug-inducing commits for the 2,305 collected bugs. An intuitive
method is to manually analyze each bug and determine the real
bug-inducing commit. However, kernel bug analysis requires a high
level of domain expertise and is very time-consuming. Therefore,
it is infeasible to analyze all the 2,305 bugs manually.

Here we take another approach that is much more practical.
We notice that once a bug is fixed, the developer usually adds a
“Fixes” tag in the patch’s commit message pointing to the commit
that introduces the bug[3], as shown in Figure 4. Based on this
convention, for a given bug, we first locate its patch from the Syzbot
dashboard and extract the commit that the “Fixes” tag points to as
human-labeled bug-inducing commits. If there aremultiple commits
taggedwith “Fixes” in a patch, we take the latest commit. The reason
is that as the latest bug-inducing commit is introduced, the buggy
logic becomes complete and can be triggered with the fuzzer-found
PoC. Thus, the latest bug-inducing commit is the expected output of
the cause bisection because cause bisection finds the bug-inducing
commit according to the triggerability. Since not all bugs collected
are fixed and not all patches contain the “Fixes” tag, we locate the
human-labeled bug-inducing commits for 1,136 of them in the end.

sch_red: fix off-by-one checks in red_check_params()
This fixes following syzbot report:
UBSAN: shift-out-of-bounds in ./include/net/red.h:237:23

Fixes: 8afa10cbe281 ("net_sched: red: Avoid illegal values")
Reported-by: syzbot <syzkaller@googlegroups.com>

sch_red: fix off-ff by-one checks in red_check_params()
This fixes following syzbot report:
UBSAN: shift-out-of-ff bounds in ./include/net/red.h:237:23

Fixes: 8afa10cbe281 ("net_sched: red: Avoid illegal values")
Reported-by: syzbot <syzkaller@googlegroups.com>

Figure 4: Example of the “Fixes” Tag in a Patch’s Commit
Message.

To ensure the credibility of the ground-truth construction, we
further validate the human-labeled bug-inducing commits to filter
incorrect samples introduced by developer mislabeling. In partic-
ular, our validation consists of two heuristic rules, which exploit
the order among the real bug-inducing commit, crash commit, and

65

How Well Industry-Level Cause Bisection Works in Real-World: A Study on Linux Kernel FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

patch commit. (1) The real bug-inducing commit should be in the
predecessors of the crash commit reported by the fuzzer on the
git tree, i.e., the bug-inducing commit should occur earlier than
the commit where the crash is triggered. (2) The real bug-inducing
commit should not be in the successors of the patch commit, i.e., the
bug-inducing commit should not be later than the patch, because
the bug would no longer exist after patching. Applying these two
heuristics, we obtain highly reliable ground truth for 1,070 bugs out
of all the 1,136 bugs with human-labeled bug-inducing commits.

Finally, our dataset contains 1,070 samples (bugs), in which each
data sample has the result commit(s), the ground-truth commit,
and other information about the bisection process. The sampled
bugs are distributed from kernel version 2.6 to 6.3, reflecting the
abundance of our dataset.

5 EFFECTIVENESS AND EFFICIENCY (RQ1)
For effectiveness, we evaluate whether the cause bisection provides
a valid result commit and whether the provided commit is correct.
For efficiency, we evaluate the time of the cause bisection and the
number of tested commits.

5.1 Effectiveness
To evaluate the effectiveness, we sort the bisection results into three
categories.
• Correct. The process of cause bisection finishes without any error
and outputs at least one result commit. If the result commit is a
single commit, it should be the same as the ground-truth commit.
Otherwise, the set of result commits should include the ground-
truth commit.
• Incorrect. The process of cause bisection finishes without any
error. But the result commit is different from the ground-truth
commit or the set of result commits does not contain the ground-
truth commit.
• No Output. The process of cause bisection exits in the middle for
some reason, resulting in the cause bisection outputting no result
commit.
The ratio of each kind of result is shown in the third to the fifth

column in Table 1, which reflects the overall effectiveness of cause
bisection. Cause bisection fails to provide any result commit for 25%
bugs. For the remaining 75% bugs, cause bisection outputs at least
one result commit, in which 71.8% of the results contain exactly one
commit, while 3.2% contain multiple commits (median: 5). In these
cases, cause bisection only finds the correct bug-inducing commit
for 34% of the bugs, while the others are incorrect. In short, cause
bisection is only able to find the correct bug-inducing commit for
one-third of the bugs in our dataset. It seems that the cause bisection
is not effective enough in the real world, which may confuse the
developer who is going to fix the bug.

Finding 1: Cause bisection only finds the correct bug-inducing
commit for one-third of the bugs in our dataset, showing its
limited effectiveness in the real world.

5.2 Efficiency
We directly use the time recorded in the bisection log to evaluate
the efficiency of cause bisection. From the bisection log, we extract

Table 1: Overall Performance of Cause Bisection.
#Bugs=Number of bugs. #NO=no-output. #CR=correct.
#IN=incorrect. #Avg.V=average number of tested versions.
#Avg.C=average number of tested commits. #Avg.T=average
time for single bug: Build=average kernel building time.
Test=average testing time. Total=average total time.

Version #Bugs
Effectiveness Efficiency

#NO #CR #IN #Avg.V #Avg.C
#Avg.T

Build Test Total

v6.0-v6.3 102
56

(55%)
24

(24%)
22
(22)

6.40 13.55 3.34h 2.57h 5.91h

v5.0-v5.19 932
204
(22%)

331
(36%)

397
(43%)

5.28 16.45 2.20h 2.68h 4.88h

v4.16-v4.20 36
8

(22%)
9

(25%)
19

(53%)
8.25 11.64 1.48h 2.49h 3.97h

Total 1,070
268
(25%)

364
(34%)

438
(41%)

5.49 16.01 2.28h 2.66h 4.95h

the number of testing commits and total time elapsed according
to the keywords “revisions tested” and “total time”. Furthermore,
we extract the time of kernel building and testing respectively
according to the keywords “build:” and “test:”. We calculate the
average versions iterated in stage B, the average commits bisected
in stage C, and the average time the cause bisection takes. These
results are shown in the last five columns in Table 1. The average
time of cause bisection is 4.95h, while 70.09% cases are finished
within the average time. About 46.06% time is spent on kernel
building, while the remaining is spent on testing. To test a single
commit, it takes on average 13.20 minutes.

We further investigate why some cases spend much more time.
The data in Table 1 reflect that the time cost is higher related to
the number of tested commits rather than the number of tested
versions, indicating that the most of time is spent in stage C. The-
oretically, the expected number of tests in a bisection algorithm
is 𝑙𝑜𝑔2𝑛 in which the 𝑛 represents the number of commits in the
bisection range. However, for the cases whose time is beyond the
average, we compare the actual number of their tested commits
against the expected and observe that they perform 30.38 tests on
average, 2.19 times of the expected number (13.90). Through an-
alyzing their bisection logs, we find that these cases often meet
compilation errors and boot failures in stage C, which compels
the cause bisection to try more commits in stage C to isolate the
bug-inducing commit.

Finding 2: The compilation errors and boot failures waste a lot
of time during cause bisection.

6 FAILURE CAUSE ANALYSIS (RQ2)
The failure of cause bisection includes two different kinds: incorrect
and no-output. We try to dig out the causes behind these failures.

6.1 Methodology
6.1.1 Conjecture of Failure Causes. To investigate the possible
reasons why cause bisection fails, we review the design of cause

66

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Kangzheng Gu, Yuan Zhang, Jiajun Cao, Xin Tan, and Min Yang

bisection. The whole cause bisection can be divided into three dif-
ferent layers: algorithm, technique, and configuration layer. The
algorithm layer is the top layer, i.e., the binary search algorithm.
The technique layer is the middle layer containing the specific tech-
niques relied on by the algorithm to determine the bug’s existence
on a certain version, like kernel compilation and bug reproduc-
tion. The configuration layer is the bottom layer, including the
hyperparameters controlling the algorithmic behavior.

Following this framework, we sort the possible failure reasons
into categories. Since the algorithm layer contains only a provable
binary search, it is always reliable when the bug’s existence is cor-
rectly evaluated. So, the failure comes from the other two layers.
We named the failure causes from the technique layer as unreliable
techniques (T), and from the configuration layer as restrictive con-
figuration (C). The possible causes are organized in the Table 2 and
we will introduce them in the following text.

Unreliable Techniques. In stage A, the cause bisection tries to
confirm the reproducibility of the bug. So the only issue that may
lead to a failure in this stage is that the bug is not reproduced. There
are two possible reasons. First, the kernel itself is not successfully
built or booted, which we call unreliable kernel setup (T1). This
may due to the environment or dependencies are not properly
configured. Second, the kernel is ready but the PoC cannot trigger
the bug, which we call unstable bug reproduction (T2). Once stage A
fails due to T1 or T2, the cause bisection thinks the bug can not be
reproduced. As reproducibility is the prerequisite, cause bisection
would exit with no output.

In stage B and stage C, the cause bisection tests the versions
and commits of the kernel to locate the first version or commit
that introduces the bug. The criteria for the bug’s existence is
whether the bug could be reproduced. However, reproducibility
does not always reflect the bug’s existence. First, the bug may
exist but it is not triggered during testing, which is unstable bug
reproduction (T2). The reason is complex and we provide a detailed
analysis in §6.2.1. Second, the bug does not exist but a crash still
happens. The reasons might be the triggering of irrelevant bugs but
cause bisection does not recognize them, which we call inaccurate
bug triage (T3). Under these situations, the cause bisection would
misjudge the bug’s existence and finally locate an incorrect result
commit. Unreliable kernel setup (T1)will not directly lead to a failure
in stages B and C, because cause bisection will skip these kernels
and choose another one.

Restrictive Configuration. We notice that the developers also
introduce restrictive mechanisms to stop the cause bisection in
the middle. First, the total testing time is unpredictable because
the number of tests may fluctuate greatly. So, the developers limit
the running time of cause bisection to eight hours. If the running
time limit is reached, the cause bisection will exit with no output.
Second, the setup of the outdated kernel would easily fail, since the
outdated kernel usually needs a different compiling and running
environment from today. Thus, the developers make the cause
bisection stop at version 4.6 even if the bug-inducing version is
still undetermined after testing version 4.6. Once the release version
limit is reached, the cause bisection will also exit with no output.

6.1.2 Statistical Analysis of Failure Causes. To quantitatively eval-
uate the significance of failure reasons, we count the percentage

Table 2: Possible Failure Causes

Reason Stage Consequence

C1 - Running Time Limit B, C No Output
C2 - Release Version Limit B No Output
T1 - Unreliable Kernel Setup A No Output
T2 - Unstable Bug Reproduction A No Output
T2 - Unstable Bug Reproduction B, C Incorrect
T3 - Inaccurate Bug Triage B, C Incorrect

of different causes by analyzing the cause bisection log for all the
incorrect and no-output cases in our dataset, with the help of the
ground-truth commits. We check whether the test on each commit
in the bisection log derives a correct result. We only consider the
first error that the cause bisection’s judgment of the bug’s existence
is inconsistent with what it should be because studying the first
error is enough to comprehend why the cause bisection fails since
the nature of the bisection algorithm: the subsequent results after
the first error are no longer reliable.

We design the Algorithm 1 to find the first error in the bisec-
tion log. In lines 1 to 4, we extract the crash commit from the
bisection log (GetCrashCommit) and check whether there is any
record indicating the kernel is not successfully built and booted
(SetupKernelFailed). If so, the failure cause should be T1. In lines
5 to 19, we orderly examine whether an intermediate test gives
an incorrect result. We extract all the tested commits from the log
(GetTestedCommits). For a certain test, we determine the bug’s ex-
istence using the ground-truth commit in our dataset. If the current
commit to test is one of the post dominators of the ground-truth
commit on the git tree, it means that the tested kernel includes the
ground-truth commit and of course the bug, otherwise, the bug
does not exist (lines 7-11). Then we infer which kind of error occurs.
If the bug exists but the crash does not happen according to the
log (GetReproduceResult), the cause should be T2 (lines 13-15). If
the bug does not exist but it crashes actually, the cause should be
T3 (lines 16-18). At last, if a timeout occurs or the version limit is
reached, the cause should be C1 or C2. At last, we get the stage of
the first erroneous test (GetStage) since the stage can be inferred
from the log (Figure 3).

6.2 Results
The statistical results are demonstrated in Table 3. The most signif-
icant reason is T2, i.e., unstable bug reproduction, which accounts
for 50% of the failures. The second significant reason is T3, inac-
curate bug triage, accounting for 30.2%. These two reasons lead
to more than 80% failures in total. The hyper-parameter limit, i.e.,
C1, C2, contributes to about 17% of failures. It is worth noting that,
although we think T2 and T3 would not cause no-output in stages
B and C, the data in Table 3 imply that they actually include no-
output cases since the number of cases failing because of T2 and
T3 in stages B and C (508) exceeds the number of incorrect cases
(438). We will discuss this inconsistency in §9.

67

How Well Industry-Level Cause Bisection Works in Real-World: A Study on Linux Kernel FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

Algorithm 1: Failure Cause Analysis.
Input: The ground-truth commit 𝑐𝑜𝑚𝑚𝑖𝑡𝑔𝑡 and the cause

bisection log 𝑙𝑜𝑔.
Output: The stage 𝑠 where cause bisection makes the first

mistake and the cause 𝑐 of this mistake.

1 𝑐𝑜𝑚𝑚𝑖𝑡𝑐𝑟𝑎𝑠ℎ ← GetCrashCommit(𝑙𝑜𝑔);
2 if SetupKernelFailed(𝑐𝑜𝑚𝑚𝑖𝑡𝑐𝑟𝑎𝑠ℎ) then
3 return 𝑠 ← GetStage(𝑐𝑜𝑚𝑚𝑖𝑡𝑐𝑟𝑎𝑠ℎ , 𝑙𝑜𝑔), 𝑐 ← T1;
4 end

5 𝑐𝑜𝑚𝑚𝑖𝑡𝑠𝑡𝑒𝑠𝑡𝑒𝑑 ← GetTestedCommits(𝑙𝑜𝑔);
6 for 𝑐𝑜𝑚𝑚𝑖𝑡 in 𝑐𝑜𝑚𝑚𝑖𝑡𝑠𝑡𝑒𝑠𝑡𝑒𝑑 do
7 𝑔𝑡 ← whether 𝑐𝑜𝑚𝑚𝑖𝑡 ∈ PostDominators(𝑐𝑜𝑚𝑚𝑖𝑡𝑔𝑡);
8 status← GetReproduceResult(𝑐𝑜𝑚𝑚𝑖𝑡 , 𝑙𝑜𝑔);
9 if 𝑔𝑡 == 𝑇𝑟𝑢𝑒 and 𝑠𝑡𝑎𝑡𝑢𝑠 == 𝑛𝑜𝑡𝐶𝑟𝑎𝑠ℎ then
10 return 𝑠 ← GetStage(𝑐𝑜𝑚𝑚𝑖𝑡 , 𝑙𝑜𝑔), 𝑐 ← T2;
11 end
12 if 𝑔𝑡 == 𝐹𝑎𝑙𝑠𝑒 and 𝑠𝑡𝑎𝑡𝑢𝑠 == 𝑐𝑟𝑎𝑠ℎ then
13 return 𝑠 ← GetStage(𝑐𝑜𝑚𝑚𝑖𝑡 , 𝑙𝑜𝑔), 𝑐 ← T3;
14 end
15 end

16 𝑐𝑜𝑚𝑚𝑖𝑡𝑙𝑎𝑠𝑡 ← GetLastCommit(𝑙𝑜𝑔);
17 if Timeout(𝑙𝑜𝑔) then
18 return 𝑠 ← GetStage(𝑐𝑜𝑚𝑚𝑖𝑡𝑙𝑎𝑠𝑡 , 𝑙𝑜𝑔), 𝑐 ← C1;
19 end
20 if ReachVersionLimit(𝑙𝑜𝑔) then
21 return 𝑠 ← GetStage(𝑐𝑜𝑚𝑚𝑖𝑡𝑙𝑎𝑠𝑡 , 𝑙𝑜𝑔), 𝑐 ← C2;
22 end

Table 3: Breakdown of the First Failure Causes. The number
in the table is the number of cases belonging to each category.

Stage
Cause

C1 C2 T1 T2 T3

Stage A - - 20 (2.8%) 58 (8.2%) -
Stage B 13 (1.8%)86 (12.2%) - 241 (34.1%) 94 (13.3%)
Stage C 21 (3.0%) - - 54 (7.6%) 119 (16.9%)

All Stages 34 (4.8%)86 (12.2%)20 (2.8%)353 (50.0%)213 (30.2%)

6.2.1 Analysis of T2 - Unstable Bug Reproduction. According to the
result in Table 3, problem T2 influences all three stages. In stage
A/B/C, the percentages of T2 are respectively 8.2%, 34.1%, and 7.6%.

In stage A, the cause bisection fails to reproduce the bug so it
takes the bug as invalid and exits with no output. To increasingly
understand the reason, we randomly sample 10 cases out of the 58
cases and investigate the root cause of the failure manually. We
find that five of them are due to the nature of the bug, in which
four involve race conditions, and one is probabilistically triggered
because it relies on uncontrollable stack content. The rest of them
are due to the difference in the compiler used in fuzzing and bisect-
ing, in which for four cases the compiler used in bisecting does not
support KASAN so the bug is not observed, and for the remaining
one case the compiler optimizes out the buggy path.

In stages B and C, the failure of reproduction means that cause
bisection does not observe a bug behavior on a bug-existing kernel.

To understand the underlying root causes, we randomly sample 10
cases 1 out of all the 241 cases in stage B and 10 cases out of all the
54 cases in stage C (20 cases in total). Different from stage A, each
bug has at least one reproducible commit, i.e., the starting commit
of bisection. Thus, we compare the kernel behavior when the bug
is reproduced or not to study why the PoC cannot trigger a bug
behavior on a bug-existing kernel.

We find that twelve cases involve race conditions. The rest are
due to the kernel changes. Among them, four cases are due to the
lack of necessary configuration options on the commit being tested,
because the kernel has changed a lot from the tested commit to
the crash commit and the configuration for the crash commit does
not enable the PoC’s bug-triggering logic on the tested commit.
The remaining four cases are due to the PoC for the crash commit
cannot be directly applied on the tested commit because the logic
or path constraints to trigger the bug have changed.

Finding 3: Unstable bug reproduction is one of the major causes
of the failure of cause bisection. We observe the reasons include
race conditions, compiler differences, and kernel changes.

6.2.2 Analysis of T3 - Inaccurate Bug Triage. In our dataset, 30.2% of
failures are due to the inaccurate bug triage, i.e., the cause bisection
fails to determine whether the reproduced bug is the same as the
original bug. We review the implementation of the cause bisection
and find that cause bisection simply regards any reproduced bug
as the same bug found by fuzzing without any checking.

To confirm that the T3 is indeed caused by irrelevant bugs, we try
to reproduce the phenomenon that a crash occurs on the bug-free
commit. Among all the 213 cases, the phenomenon is reproduced
in 35 cases of them. We use a cross-patching strategy to validate
that the crash triggered on the bug-free commit is irrelevant to the
original bug. For the reproduced crash, we search the crash title
on the Syzbot to determine whether it is a known bug. If so, we
apply the corresponding patch on the bug-free commit and observe
whether it still crashes. There are 17 cases that no longer crash after
we apply the patch, indicating they really trigger the irrelevant
bugs. Oppositely, we can also apply the patch of the original bug
on the bug-free commit. If it still crashes, we can tell they also
trigger the irrelevant bug. Five more cases are confirmed in this
way. For the remaining 13 cases that conflict with the patches or
the reproduced crash cannot be confirmed as a known bug, we
perform manual analysis. Seven are confirmed as irrelevant bugs
and others are unsure. In short, we believe that at least 29 out of
35 cases (83%) fail because of triggering an irrelevant bug, which is
the major reason for T3.

Finding 4: Inaccurate bug triage is one of the major causes of the
failure of cause bisection. Themajor reason is that irrelevant bugs
disturb the cause bisection’s judgment of the bug’s existence.

6.2.3 Analysis of C1 and C2 - Hyperparameter Limit. The time limit
brings about 4.8% of failures and the version limit brings about 12.2%
of failures. Firstly, We investigate C1. We sample 10 cases out of
1Manual analysis in this section is performed by two kernel developers with more than
three-year experience. Every case is examined by both two developers. No divergence
appears to the analyzing results. Due to the expensive cost of manual analysis, we
only sample a few of bugs for analysis. Possible threats are discussed in §9.3.

68

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Kangzheng Gu, Yuan Zhang, Jiajun Cao, Xin Tan, and Min Yang

the 34 cases, prolong the time limit to 72 hours and observe the
cause bisection result. After 72 hours, all 10 cases finish. The av-
erage running time is 19.0 hours, while the longest is 41.4 hours.
Among them, six cases give a correct result. We further investigate
the reason why these cases need longer time. Reviewing the cause
bisection log, we find that for these cases, the tests on middle com-
mits for bisection in stage C often fails due to T1, making the cause
bisection frequently re-selects the middle commit and performs
plenty of extra tests. For the remaining cases, one fails because of
unstable reproduction (T2). Three fail because of inaccurate bug
triage (T3). Although prolonging the time limit could increase the
success rate, failures still occur due to technical issues, implying
that the time limit is not the major factor leading to the failure.

As for C2, we random sample 20 out of 86 cases failing with
version limit, we relax the restriction on the version to unlimited
and retry the cause bisection. However, all the cases still fail. Among
them, 4 cases fail because they meet the T2 or T3. The remaining
16 cases fail due to the unsuccessful build or boot on the old Linux
kernel before 3.16. Upon this observation, we speculate that the
main reason cause bisection avoiding analyzing the outdated kernel
is that it is nontrivial to boot these outdated kernels in the modern
environment. Although it is a reasonable design, the cause bisection
may overlook such long-standing bugs which may be occasionally
found but have serious impact [2].

7 HELPFULNESS FOR BUG FIXING (RQ3)
To study how the cause bisection may affect the bug-fixing practice
from various perspectives, we remove the cases in our dataset
whose result of cause bisection has no impact on the bug fixing.
The cases that need to be removed share a common character that
the bug fixing is earlier than when the bug is found by Syzbot,
implying that the bug has been fixed without the help of cause
bisection results. This is because developers also keep auditing
kernel code, making some bugs first found by developers instead of
Syzbot and quickly fixed. After removing such cases, the number of
cases we used in this section is 952 out of 1,070 cases in the whole
dataset. Besides, we show the p-value of the Wilcoxon rank-sum
test [53] that represents the probability of rejecting our conclusion
to validate the significance of statistics.

7.1 Recommendation of Bug-fixing Developer
In practice, it is better to assign the same author of the bug-inducing
commit to fix the bug. A developer familiar with bug-related func-
tionality generally pays less effort to bug fixing than a non-familiar
developer. We study whether the cause bisection result would help
to notify a proper developer, i.e., the result commits include the
author of the patch, which is a kind of fixer recommendation. The
baseline is the notification policy with only crash reports, which
was introduced in §2. The results are shown in Table 4.

First, we find that a correct result of cause bisection would notify
a proper bug-fixing developer more significantly than incorrect
results, with a p-value less than 10−24. If the result of cause bisection
is correct, about 70.5% bugs are notified to the author of the real-
world patch, which is 2.78× chances compared to the incorrect
results. Second, for correct results, we compare the notification
policy of cause bisection and crash report. If only the crash report

Table 4: Effectiveness of Notification under Different Situa-
tions.

Bisection Status #Bugs #Bugs notified
to the patch’s author

Correct Bisection 308 217 (70.45%)
Incorrect Bisection 395 100 (25.32%)

No Bisection (Crash Report) 308 123 (39.93%)

is available, 39.93% of the bugs can be notified properly, 0.43× less
than the cause bisection result, implying that the cause bisection
result is much more effective to recommend a proper developer
than the crash report, with a p-value less than 10−10.

Finding 5: The correct cause bisection result can help to recom-
mend a proper developer to fix the bug.

7.2 Indication of Bug-fixing Location
Intuitively, the patch of a bug might be close to the code introducing
the bug. So we measure the relationship between the modifications
in the result commit and the patch commit. If the code modification
in the bisection’s result commits lies in a close location to the patch
commit, the cause bisection result would help the developers fast
focus on the possible fix location. We evaluate in three granularity,
including the line level, function level, and file level.

Table 5: Relationship between Result Commit and Bug-fixing
Location.

Bisection
result #Bugs #Bugs modify

same line
#Bugs modify
same function

#Bugs modify
same file

Correct 308 176 (57.14%) 250 (81.17%) 280 (90.91%)
Incorrect 395 8 (2.03%) 24 (6.08%) 67 (16.96%)

The results are shown in Table 5. At the line level, about 57% of
the correct result commits modify the same line where the patch
modifies, but incorrect results hardly cover the patch lines. At the
function level, about 81% of the correct result commits modify
the same function in the patch, but the ratio is only 6.08% for
the incorrect results And at the file level, more than 90% of the
correct result commits intersect the patch commit at the same file,
which is the 5.4× probability of the incorrect results. In all three
granularity, the chance of the code modification of correct result
commits colliding with the patch exceeds the chance of incorrect
results by a large margin. Thus, we conclude that a correct cause
bisection result significantly shares a strong relationship with the
patch. The p-value to reject this conclusion for line, function, and
file level are respectively less than 10−35, 10−64, 10−62.

Finding 6: The correct cause bisection result can help to indicate
the location for bug fixing.

7.3 Impact on Bug-fixing Time
At last, we explore the potential impact of cause bisection results on
bug-fixing time. The bug-fixing time is calculated by the difference
between the patch application time and the bug-reporting time. We
count the average bug-fixing time by the quantile respectively for
the correct, incorrect, and no-output cause bisection results. The
statistics are shown in Table 6.

69

How Well Industry-Level Cause Bisection Works in Real-World: A Study on Linux Kernel FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

Table 6: Impact on Bug-fixing Time (day).

Bisection result #Bugs 25% 50% 75% Avg.

No output 249 (26.16%) 5.0 22.0 107.0 114.22
Correct 308 (32.35%) 1.0 5.0 15.0 22.73
Incorrect 395 (41.49%) 3.0 13.0 57.5 88.34

Total 952 3.0 9.0 45.0 73.88

The bug-fixing time with a no-output cause bisection is the
longest because the developer cannot get any information and has
to learn the bug from scratch. The average bug-fixing time with
a correct bisection result is 22.73 days, saving about 80% of time
when a cause bisection result is inaccessible and 74% of time when
a cause bisection result is incorrect. Half of the bugs can even be
fixed within five days if they have a correct cause bisection result.

Finding 7: The correct cause bisection result can help to speed
up the bug-fixing practice.

Another interesting observation is that even an incorrect bisec-
tion result would facilitate bug fixing compared to no bisection
results. It implies that improving the stability of the cause bisection
to give a valid result, i.e., providing at least one result commit, is
somewhat meaningful.

The p-value is less than 10−9 to reject the finding that the correct
result brings a shorter fixing time than incorrect results, while less
than 0.01 to reject the finding that the incorrect result brings a
shorter fixing time than no output.

8 OPPORTUNITIES FOR FUTURE WORK (RQ4)
After answering the research questions, we conclude that cause
bisection is quite valuable in real-world debugging practice since it
facilitates the bug fixing progress. Based on the failure reasons we
observed, we discuss the possible improvements.

8.1 Error-tolerant Bisection Algorithm
First, we observe that the intermediate testing results are usually
unreliable. However, the correctness of bisection is based on the
assumption that every testing result should be correct. Thus, a
possible direction is to enhance the cause bisection even if the as-
sumption is broken. In other words, the bisection algorithm should
be tolerant of the inaccuracy of the intermediate testing results.

A topic called Noisy Binary Search has been studied for a long
time [20, 30, 40]. Waeber et al. [56] discuss a probabilistic bisection
algorithm (PBA) proposed by Horstein et al. [34]. The insight is
that although intermediate testing results are not always reliable,
we could still estimate the confidence of the results and use the
confidence to update a probability distribution model to locate the
bug-inducing object, which means even if an error occurs on the in-
termediate testing result, it still has a chance to give a correct result
in the end. Since the noises in the real world are inevitable, com-
bining error-tolerant searching algorithms would be a promising
research direction like [33].

8.2 Better Software Testing
Since the current cause bisection supposes the accuracy of interme-
diate tests, improving the reliability of testing is also a possible way.
According to the evaluation results, we find that the reliability of

bug reproduction affects the bisection progress most significantly.
To be specific, an existing bug may not be stably reproduced, and
an irrelevant bug may be mistaken as the target bug. Besides cause
bisection, bug reproduction is also critical to other security-related
applications, like root cause analysis[25].

Reproduction Stabilization. Even though a bug exists in a
certain version of the software, it may not be stably triggered on
this version. For the kernel bugs in our dataset, the causes mainly
include race conditions, compiling options, and code changes.

(1) For racing (concurrency) bugs, many existing works [18, 24,
35, 37, 47, 58, 62, 63, 65] have explored how to reproduce them.
For example, Musuvathi et al. [47] propose CHESS to determinis-
tically schedule the threads and search for a thread-interleaving
order that may trigger a kernel bug. Aviram et al. [18] design a
special OS kernel to provide a deterministic execution environment.
Jeong et al. [37] leverage virtualization to control and search for a
fine-grained data-racing order to trigger the bug. Huang et al. [36]
analyze the possible memory dependencies according to the exe-
cution log and find a scheduling order to reproduce the bug via
constraint solving. Leesatapornwongsa et al. [42] propose FlakeRe-
pro to reproduce concurrency failures for .NET applications. During
cause bisection, when the PoC looks to be concurrent, these tech-
niques may help stabilize the bug reproduction. (2) For compiling
options, the reproducer should carefully align the settings between
fuzzing and reproducing, to keep the environment as similar as
possible. (3) For the code changes, the technique named PoC migra-
tion may address this problem. Some existing work like [29, 39] can
help adapt the original PoC on a certain version, e.g. the version
for fuzzing, to another version, e.g. the version to confirm the bug’s
existence. If the PoC can be successfully migrated, the existence of
the bug can be confirmed.

Combining Multiple Bug Detection Techniques. Besides
making the testing robust, different techniques rather than test-
ing can be involved to justify the bug’s existence. One possible
approach is static vulnerability detection[43]. The cause bisection
could combine the results of static analysis and dynamic testing to
determine whether the bug exists in a certain software version.

Irrelevant Bug Recognition. The current version of cause
bisection does not check whether the reproduced bug is the same as
the original bug, resulting in false judgment on the bug’s existence.
The identification of the same bugs is non-trivial[31, 38]. Tomitigate
the influence of irrelevant bugs with relatively low overhead, we
suggest utilizing some easily available information to make a simple
verification. When a crash is triggered during cause bisection, the
bug title, crashed object, functions in call trace, etc., can be extracted
to retrieve whether a bug is a known bug. Once a bug is suspected
to be a known bug, cause bisection could automatically apply the
corresponding patch and test again. If it no longer crashes, the
reproduced crash might be a false positive.

9 THREATS TO VALIDITY
9.1 Reliability of Ground Truth
We take the “fixes” tag provided by the developer in a patch as the
ground truth for cause bisection. However, developers may make
mistakes sometimes. Although we introduce heuristics to filter out
some incorrect ground truths, it is impossible to remove all of them.

70

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Kangzheng Gu, Yuan Zhang, Jiajun Cao, Xin Tan, and Min Yang

This may harm the validity of our conclusion on cause bisection’s
effectiveness. To address this concern, we sample 90 cases from
our dataset and perform manual confirmation. Only four (4.4%) of
them are marked with incorrect ground truth. Although they are
incorrect, we observe that none of them truly mislead our judgment
on the correctness of the bisection result. In the future, we intend
to improve the reliability of the ground truth of our dataset and
study the possible reasons why the developer makes mistakes.

9.2 Consistency of Theoretical Analysis and
Statistics

In our theoretical analysis, the reason T2 and T3 would not lead to
no output in stage B and stage C. However, the number of cases that
fail because of T2 and T3 in stage B and stage C (Table 3) is beyond
the number of incorrect cases, meaning the cases failing because of
T2 and T3 also include some no-output cases. It is due to we only
consider the first error of the bisection process. Although T2 and
T3 would not directly lead to no output, they may combine with
other no-output reasons and finally result in no output. For such
cases, we still think the failing reasons belong to T2 or T3 rather
than a typical no-output reason like timeout because even if they
provide a result commit, it must be wrong. So, the statistical results
are consistent with our theoretical category of failure reasons.

9.3 Significance of Discovered Causes behind T2
In §6, we only sample 30 cases to study the underlying causes of
unstable reproduction because it costs expensive manual effort.
Indeed, this approach may not cover all the possible causes. But
we think we have covered the most significant causes that occupy
more than 20% among all causes. If such a significant cause occurs,
random sampling 30 cases out of 353 cases provide a 99.9% proba-
bility of discovering this cause. Thus, we believe that sampling 30
cases is reasonable without harming the validity of our findings.

9.4 Generalization of Conclusions
Although our study is performed on the Linux kernel, we believe
our conclusions are generalizable to a certain degree. First, the
major issues we found like bug reproducibility [48] and same-bug
identification [31] are the common challenges for various software
testing and bug analysis. Second, some of our constructive propos-
als, e.g. involving probabilistic bisection, are not limited to Syzbot’s
cause bisection. Other industrial cause bisection can also introduce
such methods since they share a similar bisection algorithm.

10 RELATEDWORKS
10.1 Evaluation of Bug-inducing Commit

Localization
In general, there are two kinds of evaluation: (1) academic research
that proposes a new method would evaluate its method with pre-
vious works, and (2) empirical study for a series of algorithms
like VSS [28, 50]. Both kinds of evaluation are just for clean algo-
rithms rather than industrial systems, which would not consider
system preparation like the kernel setup and system setting like
version/time limitation. To the best of our knowledge, the only eval-
uation for an industrial bug-inducing commit localization system is

performed manually with only 118 bugs before March 2019 [1]. We
perform a larger scale and more comprehensive study on a more
recent dataset that aims to draw a systematic image of the current
industrial cause bisection system.

10.2 Research on Factors that Impact Bug-fixing
To improve the bug-fixing practice and better schedule software
releases, it is essential to understand the factors that impact bug-
fixing. Othmane et al. [22] conduct a qualitative study at the SAP
company and identified 65 factors that impact the fixing time of
vulnerabilities Furthermore, Othmane et al. [21] quantitatively in-
vestigate the major factors that impact the time of fixing a given
security issue and propose machine learning models to predict the
fixing time. Zhang et al. [64] examine factors affecting bug-fixing
time from bug reports, source code involved in the fix, and code
changes. Arora et al. [17] study how the vulnerability disclosure
affects patch release time. Different from the above research, we
study the impact of an auxiliary technique for bug fixing, i.e., cause
bisection, in a real-world industrial scenario. A recent study [14]
discusses the factors that shorten the fixing time of fuzzer-exposed
bugs including cause bisection. Our work increasingly studies how
the cause bisection affects bug fixing from various aspects like
bug-fixing indication and developer recommendation.

11 CONCLUSION
In this paper, we comprehensively study the performance, limita-
tions, and impacts of an industrial cause bisection system, i.e., the
cause bisection of Syzbot. First, we build a dataset containing 1,070
bugs from the database of Syzbot, in which we collect the cause bi-
section result and ground-truth bug-inducing commit for each case.
We find that only one-third of the bugs find a correct bug-inducing
commit through case bisection, showing the limited effectiveness
of cause bisection in the real world. The most significant problems
leading to the failure of cause bisection are unstable bug repro-
duction and inaccurate bug triage, resulting in more than 80% of
errors. Moreover, we figure out the cause bisection significantly
facilitates bug-fixing practice, including recommending bug-fixing
developers, indicating bug-fixing locations, and accelerating the
bug-fixing time. At last, we propose possible suggestions that may
improve the performance of the current version of cause bisection
and discuss the promising research directions in the future.

ACKNOWLEDGMENTS
We appreciate the anonymous reviewers for their valuable com-
ments. This work was supported in part by the National Natural Sci-
ence Foundation of China (62172105,62172104,62102091, 62102093)
and the Funding of Ministry of Industry and Information Technol-
ogy of the People’s Republic of China under Grant TC220H079.
Yuan Zhang was supported in part by the Shanghai Rising-Star
Program 210A1400700 and the Shanghai Pilot Program for Basic
Research-Fudan University 21TQ1400100 (21TQ012). Min Yang is
the corresponding author, and a faculty of Shanghai Institute of
Intelligent Electronics & Systems and Engineering Research Center
of Cyber Security Auditing and Monitoring.

71

How Well Industry-Level Cause Bisection Works in Real-World: A Study on Linux Kernel FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] 2019. Syzbot bisection analysis. https://groups.google.com/g/syzkaller/c/

sR8aAXaWEF4/m/tTWYRgvmAwAJ.
[2] 2021. Serious Security: The Linux kernel bugs that surfaced after 15

years. https://nakedsecurity.sophos.com/2021/03/17/serious-security-the-linux-
kernel-bugs-that-surfaced-after-15-years.

[3] 2023. A guide to the Kernel Development Process. https://www.kernel.org/doc/
html/latest/process/submitting-patches.html.

[4] 2023. Bisection in OSV. https://github.com/google/osv.dev.
[5] 2023. Bisection in Syzbot. https://github.com/google/syzkaller/blob/master/

docs/syzbot.md#bisection.
[6] 2023. ClusterFuzz. https://google.github.io/clusterfuzz.
[7] 2023. Mailing list about Syzbot-bug-39b72114. https://groups.google.com/g/

syzkaller-bugs/c/RYROqSKy2qY/m/risLySvtEQAJ.
[8] 2023. Mailing list about Syzbot-bug-c54b440c. https://groups.google.com/g/

syzkaller-bugs/c/DCP4rJ6UInM/m/YH25wC4fCgAJ.
[9] 2023. OSS-Fuzz. https://github.com/google/oss-fuzz.
[10] 2023. Syzbot. https://github.com/google/syzkaller/blob/master/docs/syzbot.md.
[11] 2023. Syzbot dashboard. https://syzkaller.appspot.com.
[12] 2023. Syzbot dashboard of Linux upstream. https://syzkaller.appspot.com/

upstream.
[13] 2023. Syzkaller. https://github.com/google/syzkaller.
[14] Rui Abreu, Franjo Ivančić, Filip Nikšić, Hadi Ravanbakhsh, and Ramesh

Viswanathan. 2021. Reducing time-to-fix for fuzzer bugs. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 1126–
1130.

[15] Gabin An, Jingun Hong, Naryeong Kim, and Shin Yoo. 2023. Fonte: Finding Bug
Inducing Commits from Failures. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 589–601.

[16] Gabin An and Shin Yoo. 2021. Reducing the search space of bug inducing commits
using failure coverage. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1459–1462.

[17] Ashish Arora, Ramayya Krishnan, Rahul Telang, and Yubao Yang. 2010. An empir-
ical analysis of software vendors’ patch release behavior: impact of vulnerability
disclosure. Information Systems Research 21, 1 (2010), 115–132.

[18] Amittai Aviram, Shu-ChunWeng, Sen Hu, and Bryan Ford. 2012. Efficient system-
enforced deterministic parallelism. Commun. ACM 55, 5 (2012), 111–119.

[19] Lingfeng Bao, Xin Xia, Ahmed E Hassan, and Xiaohu Yang. 2022. V-SZZ: auto-
matic identification of version ranges affected by CVE vulnerabilities. In Proceed-
ings of the 44th International Conference on Software Engineering. 2352–2364.

[20] Michael Ben-Or and Avinatan Hassidim. 2008. The bayesian learner is optimal
for noisy binary search (and pretty good for quantum as well). In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
221–230.

[21] Lotfi Ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, and Achim D
Brucker. 2017. Time for addressing software security issues: Prediction models
and impacting factors. Data Science and Engineering 2 (2017), 107–124.

[22] Lotfi ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, Achim D
Brucker, and Philip Miseldine. 2015. Factors impacting the effort required to fix
security vulnerabilities: An industrial case study. In Information Security: 18th
International Conference (ISC). Springer, 102–119.

[23] Ranjita Bhagwan, Rahul Kumar, Chandra Sekhar Maddila, and Adithya Abraham
Philip. 2018. Orca: Differential Bug Localization in {Large-Scale} Services. In
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18). 493–509.

[24] Francesco A Bianchi, Mauro Pezzè, and Valerio Terragni. 2017. Reproducing
concurrency failures from crash stacks. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. 705–716.

[25] Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi, Joel Frank,
Simon Wörner, and Thorsten Holz. 2020. AURORA: Statistical crash analysis for
automated root cause explanation. In Proceedings of the 29th USENIX Security
Symposium (USENIX Security). 235–252.

[26] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP). 711–725.

[27] Agnieszka Ciborowska and Kostadin Damevski. 2022. Fast changeset-based bug
localization with BERT. In Proceedings of the 44th International Conference on
Software Engineering. 946–957.

[28] Daniel Alencar Da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta
Coelho, and Ahmed E Hassan. 2016. A framework for evaluating the results of
the szz approach for identifying bug-introducing changes. IEEE Transactions on
Software Engineering 43, 7 (2016), 641–657.

[29] Jiarun Dai, Yuan Zhang, Hailong Xu, Haiming Lyu, ZichengWu, Xinyu Xing, and
Min Yang. 2021. Facilitating vulnerability assessment through PoC migration. In
Proceedings of the 28th ACM SIGSAC Conference on Computer and Communications
Security (CCS). 3300–3317.

[30] Dariusz Dereniowski, Aleksander Lukasiewicz, and Przemyslaw Uznanski. 2021.
An Efficient Noisy Binary Search in Graphs via Median Approximation. In Com-
binatorial Algorithms - 32nd International Workshop (Lecture Notes in Computer

Science, Vol. 12757). Springer, 265–281.
[31] Jayati Deshmukh, KM Annervaz, Sanjay Podder, Shubhashis Sengupta, and

Neville Dubash. 2017. Towards accurate duplicate bug retrieval using deep learn-
ing techniques. In 2017 IEEE International conference on software maintenance
and evolution (ICSME). IEEE, 115–124.

[32] Zhen Yu Ding and Claire Le Goues. 2021. An Empirical Study of OSS-Fuzz Bugs.
In Proceedings of the 18th IEEE/ACM International Conference on Mining Software
Repositories (MSR). 131–142.

[33] Tim AD Henderson, Bobby Dorward, Eric Nickell, Collin Johnston, and Avi
Kondareddy. 2023. Flake Aware Culprit Finding. In 2023 IEEE Conference on
Software Testing, Verification and Validation (ICST). IEEE, 362–373.

[34] Michael Horstein. 1963. Sequential transmission using noiseless feedback. IEEE
Transactions on Information Theory 9, 3 (1963), 136–143.

[35] Jeff Huang and Charles Zhang. 2012. Lean: Simplifying concurrency bug repro-
duction via replay-supported execution reduction. In Proceedings of the ACM
international conference on Object oriented programming systems languages and
applications. 451–466.

[36] Jeff Huang, Charles Zhang, and Julian Dolby. 2013. Clap: Recording local ex-
ecutions to reproduce concurrency failures. Acm Sigplan Notices 48, 6 (2013),
141–152.

[37] Dae R Jeong, Minkyu Jung, Yoochan Lee, Byoungyoung Lee, Insik Shin, and
Youngjin Kwon. 2023. Diagnosing kernel concurrency failures with AITIA. In
Proceedings of the Eighteenth European Conference on Computer Systems. 94–110.

[38] Zhiyuan Jiang, Xiyue Jiang, Ahmad Hazimeh, Chaojing Tang, Chao Zhang, and
Mathias Payer. 2021. Igor: Crash Deduplication Through Root-Cause Clustering.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security. 3318–3336.

[39] Zheyue Jiang, Yuan Zhang, Jun Xu, Xinqian Sun, Zhuang Liu, and Min Yang.
2023. AEM: Facilitating Cross-Version Exploitability Assessment of Linux Kernel
Vulnerabilities. In Proceedings of the 2023 IEEE Symposium on Security and Privacy
(SP). 588–603.

[40] Richard M Karp and Robert Kleinberg. 2007. Noisy binary search and its ap-
plications. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 881–890.

[41] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In Proceedings
of the 27th Annual Network and Distributed System Security Symposium (NDSS).

[42] Tanakorn Leesatapornwongsa, Xiang Ren, and Suman Nath. 2022. FlakeRepro:
automated and efficient reproduction of concurrency-related flaky tests. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1509–1520.

[43] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An empirical
study on the effectiveness of static C code analyzers for vulnerability detection.
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA). 544–555.

[44] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In
Proceedings of the 28th USENIX Security Symposium (USENIX Security). 1949–1966.

[45] Dongliang Mu, Yuhang Wu, Yueqi Chen, Zhenpeng Lin, Chensheng Yu, Xinyu
Xing, and Gang Wang. 2022. An In-depth Analysis of Duplicated Linux Kernel
Bug Reports. In Proceedings of the 29th Annual Network and Distributed System
Security Symposium (NDSS).

[46] Vijayaraghavan Murali, Lee Gross, Rebecca Qian, and Satish Chandra. 2021.
Industry-scale ir-based bug localization: A perspective from facebook. In 2021
IEEE/ACM 43rd International Conference on Software Engineering: Software Engi-
neering in Practice (ICSE-SEIP). IEEE, 188–197.

[47] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagamArumugaNainar, and IulianNeamtiu. 2008. Finding and Reproducing
Heisenbugs in Concurrent Programs.. In OSDI, Vol. 8.

[48] Mohammad Masudur Rahman, Foutse Khomh, and Marco Castelluccio. 2020.
Why are Some Bugs Non-Reproducible?:–An Empirical Investigation using Data
Fusion–. In 2020 IEEE international conference on software maintenance and evolu-
tion (ICSME). IEEE, 605–616.

[49] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In
Proceedings of the 24th Annual Network and Distributed System Security Symposium
(NDSS).

[50] Giovanni Rosa, Luca Pascarella, Simone Scalabrino, Rosalia Tufano, Gabriele
Bavota, Michele Lanza, and Rocco Oliveto. 2021. Evaluating szz implementa-
tions through a developer-informed oracle. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 436–447.

[51] Emre Sahal and Ayse Tosun. 2018. Identifying bug-inducing changes for code ad-
ditions. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. 1–2.

[52] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel,
and Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS
Kernels. In Proceedings of the 26th USENIX Security Symposium (USENIX Security).

72

https://groups.google.com/g/syzkaller/c/sR8aAXaWEF4/m/tTWYRgvmAwAJ
https://groups.google.com/g/syzkaller/c/sR8aAXaWEF4/m/tTWYRgvmAwAJ
https://nakedsecurity.sophos.com/2021/03/17/serious-security-the-linux-kernel-bugs-that-surfaced-after-15-years
https://nakedsecurity.sophos.com/2021/03/17/serious-security-the-linux-kernel-bugs-that-surfaced-after-15-years
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://github.com/google/osv.dev
https://github.com/google/syzkaller/blob/master/docs/syzbot.md##bisection
https://github.com/google/syzkaller/blob/master/docs/syzbot.md##bisection
https://google.github.io/clusterfuzz
https://groups.google.com/g/syzkaller-bugs/c/RYROqSKy2qY/m/risLySvtEQAJ
https://groups.google.com/g/syzkaller-bugs/c/RYROqSKy2qY/m/risLySvtEQAJ
https://groups.google.com/g/syzkaller-bugs/c/DCP4rJ6UInM/m/YH25wC4fCgAJ
https://groups.google.com/g/syzkaller-bugs/c/DCP4rJ6UInM/m/YH25wC4fCgAJ
https://github.com/google/oss-fuzz
https://github.com/google/syzkaller/ blob/master/docs/syzbot.md.
https://syzkaller.appspot.com
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://github.com/google/syzkaller

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Kangzheng Gu, Yuan Zhang, Jiajun Cao, Xin Tan, and Min Yang

167–182.
[53] David J Sheskin. 2020. Handbook of parametric and nonparametric statistical

procedures. crc Press.
[54] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do

changes induce fixes? ACM sigsoft software engineering notes 30, 4 (2005), 1–5.
[55] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting Chen, and

Aiguo Cui. 2021. HEALER: Relation Learning Guided Kernel Fuzzing. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP).
344–358.

[56] Rolf Waeber, Peter I Frazier, and Shane G Henderson. 2013. Bisection search
with noisy responses. SIAM Journal on Control and Optimization 51, 3 (2013),
2261–2279.

[57] Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V. Krish-
namurthy, and Nael Abu-Ghazaleh. 2021. SyzVegas: Beating Kernel Fuzzing
Odds with Reinforcement Learning. In Proceedings of the 30th USENIX Security
Symposium (USENIX Security). 2741–2758.

[58] Dasarath Weeratunge, Xiangyu Zhang, and Suresh Jagannathan. 2010. Analyzing
multicore dumps to facilitate concurrency bug reproduction. In Proceedings of
the fifteenth International Conference on Architectural support for programming
languages and operating systems. 155–166.

[59] MingWen, RongxinWu, and Shing-Chi Cheung. 2016. Locus: Locating bugs from
software changes. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE). 262–273.

[60] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[61] Rongxin Wu, Ming Wen, Shing-Chi Cheung, and Hongyu Zhang. 2018. Change-
locator: locate crash-inducing changes based on crash reports. Empirical Software
Engineering 23 (2018), 2866–2900.

[62] Tingting Yu, Tarannum S Zaman, and Chao Wang. 2017. DESCRY: reproducing
system-level concurrency failures. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. 694–704.

[63] Xiang Yuan, Chenggang Wu, Zhenjiang Wang, Jianjun Li, Pen-Chung Yew, Jeff
Huang, Xiaobing Feng, Yanyan Lan, Yunji Chen, and Yong Guan. 2015. ReCBuLC:
reproducing concurrency bugs using local clocks. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 1. IEEE, 824–834.

[64] Feng Zhang, Foutse Khomh, Ying Zou, and Ahmed E Hassan. 2012. An empirical
study on factors impacting bug fixing time. In Proceedings of the 19th Working
Conference on Reverse Engineering (WCRE). 225–234.

[65] Gefei Zuo, Jiacheng Ma, Andrew Quinn, Pramod Bhatotia, Pedro Fonseca, and
Baris Kasikci. 2021. Execution reconstruction: Harnessing failure reoccurrences
for failure reproduction. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 1155–1170.

Received 2024-02-08; accepted 2024-04-18

73

	Abstract
	1 Introduction
	2 Background
	2.1 Methods of Locating Bug-inducing Commits
	2.2 Cause Bisection in Syzbot
	2.3 Interaction between Syzbot and Developers

	3 Research Questions
	4 Dataset Construction
	4.1 Data Collection
	4.2 Ground Truth Construction

	5 Effectiveness and Efficiency (RQ1)
	5.1 Effectiveness
	5.2 Efficiency

	6 Failure Cause Analysis (RQ2)
	6.1 Methodology
	6.2 Results

	7 Helpfulness for Bug Fixing (RQ3)
	7.1 Recommendation of Bug-fixing Developer
	7.2 Indication of Bug-fixing Location
	7.3 Impact on Bug-fixing Time

	8 Opportunities for Future Work (RQ4)
	8.1 Error-tolerant Bisection Algorithm
	8.2 Better Software Testing

	9 Threats to Validity
	9.1 Reliability of Ground Truth
	9.2 Consistency of Theoretical Analysis and Statistics
	9.3 Significance of Discovered Causes behind T2
	9.4 Generalization of Conclusions

	10 Related Works
	10.1 Evaluation of Bug-inducing Commit Localization
	10.2 Research on Factors that Impact Bug-fixing

	11 Conclusion
	Acknowledgments
	References

