Check for
Updates

SyzDirecT: Directed Greybox Fuzzing for Linux Kernel

Xin Tan®
Fudan University
18212010028 @fudan.edu.cn

Xin Xiong
Fudan University
xiongx18@fudan.edu.cn

ABSTRACT

Bug reports and patch commits are dramatically increasing for
OS kernels, incentivizing a critical need for kernel-level bug
reproduction and patch testing. Directed greybox fuzzing (DGF),
aiming to stress-test a specific part of code, is a promising approach
for bug reproduction and patch testing. However, the existing
DGF methods exclusively target user-space applications, presenting
intrinsic limitations in handling OS kernels. In particular, these
methods cannot pinpoint the appropriate system calls and the
needed syscall parameter values to reach the target location,
resulting in low efficiency and waste of resources.

In this paper, we present SyzDIRECT, a DGF solution for the
Linux kernel. With a novel, scalable static analysis of the Linux
kernel, SyzDIrecT identifies valuable information such as correct
system calls and conditions on their arguments to reach the target
location. During fuzzing, SyzDIRECT utilizes the static analysis
results to guide the generation and mutation of test cases, followed
by leveraging distance-based feedback for seed prioritization and
power scheduling. We evaluated SyzDIRECT on upstream Linux
kernels for bug reproduction and patch testing. The results show
that SyzDIRECT can reproduce 320% more bugs and reach 25.6%
more target patches than generic kernel fuzzers. It also improves
the speed of bug reproduction and patch reaching by a factor of
154.3 and 680.9, respectively.

CCS CONCEPTS

« Security and privacy — Software and application security;
Operating systems security.

KEYWORDS

Directed greybox fuzzing; Kernel fuzzing; OS security; Static
analysis
ACM Reference Format:

Xin Tan, Yuan Zhang, Jiadong Lu, Xin Xiong, Zhuang Liu, and Min Yang.
2023. SyzD1rECT: Directed Greybox Fuzzing for Linux Kernel . In Proceedings

*co-first authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3623146

Yuan Zhang’
Fudan University
yuanxzhang@fudan.edu.cn

Zhuang Liu
Fudan University
20210240039@fudan.edu.cn

1630

Jiadong Lu
Fudan University
21210240091 @m.fudan.edu.cn

Min Yang
Fudan University
m_yang@fudan.edu.cn

of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS °23), November 26-30, 2023, Copenhagen, Denmark. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3576915.3623146

1 INTRODUCTION

Kernel is the most important software component which supports
the entire operating system (OS) and all user applications. Thus, the
security of OS kernels is crucial and has gained massive attention
in recent years. Numerous static analysis techniques [8, 13, 16, 27,
29, 30, 41, 46] and fuzzing tools [4, 18, 24, 38, 40, 42] have emerged
and discovered a large number of security vulnerabilities in, for
instance, the Linux kernel. This incurs tremendous pressure on
kernel developers to analyze the bugs and develop high-quality
patches. In such a circumstance, directed greybox fuzzing (DGF)—
aiming to prioritize fuzz testing on a specific code location [10,
14, 15, 22, 26, 47]—is a promising technique for help. @ DGF can
automate the reproduction of bugs if their reports do not come
with a proof-of-concept (PoC) input. ® DGF can stress-test the
developed patches to assess their quality, reducing manual review
efforts. However, the existing DGF techniques primarily focus on
user-space applications [10, 14, 15, 22, 26, 47], which cannot be
adapted for OS kernels easily. The state-of-the-art DGF technique
for OS kernels is GREBE [28]. However, GREBE is a method tailored
to a specific task (i.e., exploring more error behaviors of a kernel
bug.), rather than a generic directed fuzzing solution. It requires
the PoC program as its input, which is not available in typical DGF
scenarios.

In general, the existing DGF techniques employ two major
strategies to approach the target location quickly: distance-guided
exploration [10, 14, 15, 26] and invalid input pruning [22, 47]. The
first strategy gathers runtime feedback to calculate the distance to
reach the target location and prioritizes test cases with a shorter
distance. The second strategy filters out test cases that cannot reach
the target location or follow an infeasible execution path, further
boosting the exploration.

While the generic strategies above can be applied to OS kernels,
achieving effective kernel-level DGF faces a series of obstacles
that the available tools do not consider or overcome. (1) Unlike
user-space applications which take a fixed entry point, OS kernels
implement hundreds of system calls (abbreviated as syscalls) as
the main interface to interact with the kernel. For instance, Linux
kernel has around 330 primitive syscalls and the SOTA kernel fuzzer,
Syzkaller [18], defines nearly 4,200 syscall variants for fuzzing.
Thus identifying the correct entry syscall and variant to reach the
target site is important for kernel-level DGF to avoid wasting time
exploring the infeasible syscalls. However, applying existing control

https://doi.org/10.1145/3576915.3623146
https://doi.org/10.1145/3576915.3623146
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623146&domain=pdf&date_stamp=2023-11-21

CCS *23, November 26-30, 2023, Copenhagen, Denmark

flow analysis techniques to identify entry syscall introduces a lot
of false positives due to the heavy use of indirect calls in Linux
kernel. In addition, there’s no work that considers how to match
the kernel code to the syscall variants. (2) In addition to syscalls,
it is also important to prepare needed syscall arguments to meet
the constraints on the execution path to the target. Otherwise, DGF
would easily get stuck in exploring the argument space. However,
existing generic static analysis methods, like the precondition
analysis adopted by Beacon [22], can unlikely work well due to the
complexity of the kernel. On the one hand, tracing the execution
of syscall requires analyzing the deep code. On the other hand,
the kernel code involves a great many indirect calls, linked list
operations, nested data structures, and many layers of pointer
dereference, making accurate data flow analysis of deep codes
challenging.

To address the above challenges, we present SyzDIRECT, the
first general directed greybox fuzzing solution for Linux kernel.
SyzDIRECT takes a target code location in the target kernel version
as input and aims to stress-test the target code. SYZDIRECT leverages
novel static analysis, which exploits the design of Linux kernel
and Syzlang [19], to identify important information to reach the
target site. First, SyzDIRECT identifies syscall variants that serve
as the entry point to the target site. To achieve this, SyzZDIRECT
matches kernel functions with syscall variants by modeling the
operations they perform and the resources they operate on, which
is challenging for traditional static analysis. Second, SYzZDIRECT
infers the syscall variants that are dependent on the entry syscalls
which set important contexts (e.g., generating suitable resources)
for triggering the target. Third, SyZDIRECT leverages a light-weight
method to identify the conditions on syscall arguments to reach
the target and refine the argument description for entry syscalls.
The method exploits the rich information of Syzlang descriptions to
avoid heavy-weight data flow analysis. Then SyzDIRECT assembles
the information as templates to guide the directed fuzzing. In
particular, SyzDIRECT adopts a customized mutation algorithm
that prefers to generate test cases following the templates and
leverages distance-based feedback for seed prioritization and power
scheduling.

We have implemented a prototype of SyzDIREcT based on
Syzkaller [18] and LLVM [25]. We evaluate SyzDIRECT against
Syzkaller and SyzGo (a variant of AFLGo [10] for Linux kernel)
in two typical application scenarios of DGF: patch testing and
bug reproduction. In addition, we have adapted GREBE[28] as a
general DGF approach and compared its ability of reproducing
bugs with SyzDIRecCT. The results show that SyzDIRECT outper-
forms Syzkaller, SyzGo, and GREBE in terms of efficiency and
effectiveness. For bug reproduction, SyzDIRECT could reproduce
320%, 281%, and 121% more bugs than Syzkaller, SyzGo, and GREBE,
respectively. For bugs that Syzkaller and SyzGo could reproduce,
SyzDIRECT reproduced 154.3x faster than Syzkaller and 81.9x faster
than SyzGo. For patch testing, SYZDIRECT can cover 25.6% and 36.1%
more targets than Syzkaller and SyzGo. Most of all, SyzDIRECT
discovered 4 known insecure patches that other fuzzers could not.
In addition, the experiment individually evaluated the benefits of
each key component of SyzDIRecT for kernel-level DGF.

In summary, we make the following contributions:

1631

Xin Tan, Yuan Zhang, Jiadong Lu, Xin Xiong, Zhuang Liu, and Min Yang.

e We propose a static analysis method to identify important
information for kernel-level DGF, including the correct entry
syscalls and the conditions on the arguments to reach the target.

e We present the design and implementation of SyzDIRECT, a
directed greybox fuzzing framework for Linux kernel, which
leverages the identified information to guide fuzzing.

e We conduct a comprehensive evaluation of SyZDIRECT against
the generic kernel fuzzer and the existing DGF techniques. The
results show that SyzDIRECT significantly outperforms them in
both efficiency and effectiveness.

Available Artifact. We open-source SyzDIRECT under the Apache-
2.0 license at https://github.com/seclab-fudan/SyzDirect. This ar-
tifact contains the prototype of SyzDIRECT as well as a modified
Clang compiler for customized instrumentation.

2 BACKGROUND AND MOTIVATION

2.1 Directed Greybox Fuzzing

Distance-guided Exploration. Directed greybox fuzzing (DGF)
aims to intensively test a target location in a program. Compared
to generic greybox fuzzing, DGF prioritizes the exploration toward
the target location and, thus, can approach the target location faster.
Existing methods of DGF [10, 14, 26] typically leverage a certain
type of distance to guide the fuzzing progress. They first measure
the distance of each input to the target location and then assign
more energy to mutate inputs closer to the target location. When
designing distance metrics, AFLGo [10] and Hawkeye [14] consider
the control-flow information, and CAFL [26] further incorporates
the data-flow information.

Optimization via Input Pruning. Distance-based guidance is
helpful but fails to accurately determine which inputs can hit
the target location. Thus, it still allows time to be spent on test
cases not reaching the target, leading to a waste of resources [22,
47]. To address this problem, recent research [22, 47] proposes
further optimizing DGF by pruning inputs that cannot reach the
target. Specifically, FuzzGuard [47] develops a deep-learning-based
approach to predict the reachability of inputs and filter out the
non-reachable ones before sending them to fuzzing. In contrast,
Beacon [22] tailors static analysis to compute preconditions for
reaching the target and early terminate inputs following execution
paths not satisfying the preconditions.

2.2 DGEF for OS Kernels

The existing DGF techniques primarily focus on user-space appli-
cations. However, OS kernels also represent an important kind of
targets where DGF is critically needed. Consider Linux kernel as an
example. The Bugzilla [5] receives a mass of bug reports without a
PoC, making reproduction and analysis extremely hard. DGF can
help derive the missing PoCs to offload the burden of post-mortem
analysis. Further, faulty patches are often committed to the Linux
kernel [1, 2, 43], which can also be identified and avoided via DGF.

While the generic idea of DGF can be adapted to OS kernels,
achieving effective kernel-level DGF face a series of obstacles that
the existing methods cannot overcome.

Challenge I: Entry Points. Unlike user-space applications, OS
kernels have many entry points represented as system calls (or

https://github.com/seclab-fudan/SyzDirect

SyzDIRecT: Directed Greybox Fuzzing for Linux Kernel

1 /* File: net/rds/send.c */

2 int rds_rm_size(...){

3 ce

4 //cmsg comes from the second argument of sendmsg

5 switch (cmsg->cmsg_type){

6 case RDS_CMSG_RDMA_ARGS:

7 e

8 retval =
rds_rdma_extra_size(CMSG_DATA(cmsg), iov);

9

10 }

11 /* File: net/rds/rdma.c */

12 int rds_rdma_extra_size(struct rds_rdma_args *args,

13 struct rds_iov_vector *iov){

14 oo

15 if (args->nr_local == @)

16 return -EINVAL;

17 //lead to a warning when args->nr_local is large

18 + iov->iov = kcalloc(args->nr_local,

19 + sizeof(struct rds_iovec),

20 + GFP_KERNEL) ;

21

22}

Figure 1: An exemplary faulty patch in Linux kernel [3].
The patch does not check the user-provided args—nr_local,
which can lead to an excessive allocation size for kcalloc
and a kernel warning,.

syscalls). A target location is usually only reachable from a small
subset of syscalls. For instance, the Linux kernel has around 330
syscalls while the faulty patch in Figure 1 can only be reached via
sendmsg and sendmmsg. Worse yet, each native syscall is often a
wrapper of many independent variants, and only certain variants
can reach the target. For example, Syzkaller defines 468 variants for
sendmsg, depending on which protocol/sub-protocol is used [6].
The faulty patch in Figure 1 is only reachable when sendmsg
uses the Reliable Datagram Socket (RDS) protocol. In total, the
Linux kernel has nearly 4,200 syscall variants based on Syzkaller’s
definition.

The first challenge of kernel-level DGF is identifying the correct
syscalls and variants. Otherwise, we will waste tremendous time
exploring the right entry point. However, the existing DGF methods
neither consider this challenge nor provide solutions. Intuition
suggests we may find the entry point via control flow analysis. This
is not true. The faulty patch in Figure 1 is only reachable through the
call chain of sendmsg— . .. —rds_sendmsg—...—rds_rdma_e
xtra_ size, where rds_sendmsg is invoked via an indirect call
and the pointer pointing to rds_sendmsg is set up in another
syscall (socket). The only scalable method to resolve this indirect
call is type-based pointer analysis, which, unfortunately, introduces
false positives. For example, the state-of-the-art type-based pointer
analysis [31] reports that 235 different syscalls can reach the faulty
patch. Further, even given the primary syscall, control flow analysis
cannot separate different variants as all variants share the same
entry point (i.e., the primary system call).

Challenge II: Argument Preparation. Finding the correct entry
point helps but remains insufficient for kernel-level DGF. To reach
a target location, we must also prepare the needed arguments for

1632

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

the syscalls. Otherwise, DGF can easily get stuck in exploring the
argument space.

Determining the needed arguments requires understanding
the conditions enforced on them. Generic methods, like the
precondition analysis employed by Beacon [22], can unlikely work.
The conditions are often embedded in deep code. To associate
them with the arguments, precondition analysis must accurately
reason the long, complex trail from the deep code to the syscall
entry. Consider the example shown in Figure 1. To reach the
faulty patch, a field deeply nested in the second argument of
sendmsg must satisfy a condition right before the function call to
rds_rdma_extra_size (line 6 in Figure 1). The propagation of the
argument field from the syscall entry to the condition site involves
indirect calls, linked list operations, nested data structures, and
many layers of pointer dereference, making accurate precondition
analysis extremely challenging.

[Test Input |
| @ Target code Target |
| Location ~" Kernel |

Static Analyzer 1 Instrumentation

Entry Point

Identification Reachability Analysis

|

|

| Syscall Dependency
| Inference
|

|

Distance
Instrumentation

Syscall Argument
Refinement

| |
|

| |
| Distance Calculation |
| |
| |

| Directed Fuzzing engine |

| Template-guided
| Mutation

Distance-based |
Scheduling

Figure 2: Overview of SYzDIRECT.

3 APPROACH OVERVIEW

In this paper, we propose SYZDIRECT, a general DGF solution for
Linux kernel. SyzDIRECT takes a designated code location in the
target kernel version as input and follows the workflow presented
in Figure 2 to stress-test that location.

Entry Point Identification. Instead of relying on generic control
flow analysis, we exploit the design of Linux kernel to identify the
entry point. In essence, Linux kernel is a manager of resources
abstracted as files, sockets, devices, etc. Syscalls are interfaces to
operate on the resources (create, update, recycle, etc.), while kernel
functions provide the actual implementations for the operations.
This brings us the following key insight: we can match kernel

CCS *23, November 26-30, 2023, Copenhagen, Denmark

functions with syscalls based on what resources they operate on
and how they operate on the resource.

Consider the case shown in Figure 1 as an example. Based
on information in the sound call graph (constructed with over-
approximating point-to-analysis to resolve indirect calls), the
target function rds_rdma_extra_size can only be reached via
kernel function rds_sendmsg, which is a member function of data
structure rds_proto_ops. Leveraging a model we build to describe
the creation and operation of resources in the Linux kernel (see §4.1),
we can figure out that rds_proto_ops is used by rds_create to
register a socket with the SOCK_SEQPACKET type from the AF_RDS
family. This way, we learn that rds_rdma_extra_size operates
on a AF_RDS SOCK_SEQPACKET socket. By further referring to
Syzkaller’s descriptions (i.e., Syzlang) [6], we can see that only
syscall variants from the $rds family (socket$rds, bind$rds,
sendmsg$rds, etc.) provide interfaces to the same resource, en-
abling us to match our target function with those syscall variants.
Finally, applying the matching result to prune the sound call graph,
we can determine that the target function rds_rdma_extra_size
is only reachable via sendmsg$rds.

Syscall Dependency Inference. Kernel-level DGF often requires
a sequence of dependent syscalls to reach the target. For instance,
reaching the faulty patch in Figure 1 mandates sequential execution
of socket$rds and sendmsg$rds on the same socket.

We infer dependency between syscalls based on the resources
they operate on, following the static learning method proposed
by Healer [40]. Specifically, if syscall A may use resource created
by syscall 8, we consider that A depends on 8. In the example
shown in Figure 1, socket$rds creates the desired socket for
sendmsg$rds, enabling us to establish their dependency. The
remaining problem is to figure out which syscalls create/use what
resources. This is a trivial task, as Syzlang has already offered such
information at the syscall variant level.

Syscall Argument Refinement. Figuring out the syscall vari-
ants often automatically enforces some conditions on arguments.
In Figure 1, knowing that sendmsg$rds is the desired variant
enables us to restrict sendmsg’s first argument to be a AF_RDS
SOCK_SEQPACKET socket descriptor. But this is not enough because
many conditions are variant-independent (e.g., the condition at line
6 of Figure 1 checks the message type, which is not regulated by
syscall variant).

To identify variant-independent conditions on arguments, we
leverage the information available in Syzlang. Syzlang has de-
scribed the conditions of syscall arguments according to the
resources (e.g., a socket) or sub-resources (e.g., a socket for a
specific protocol). For instance, sendmsg$rds supports seven mes-
sage types (RDS_CMSG_RDMA_ARGS, RDS_CMSG_RDMA_DEST,
RDS_CMSG_RDMA_MAP, etc.), and Syzlang specifies the condi-
tions on the arguments (and their recursively nested fields) of
sendmsg for each type. In our approach, we identify all conditions
that dominate the target location or affect indirect calls, followed by
an attempt to match each identified condition with the argument
conditions included in Syzlang. The matching is based on light-
weight methods like literal/value-based comparison, which, once
successful, enables us to transfer a code condition to an argument
condition without any data flow or precondition analysis. For

1633

Xin Tan, Yuan Zhang, Jiadong Lu, Xin Xiong, Zhuang Liu, and Min Yang.

instance, the condition at line 6 of Figure 1 involves a union value
named “RDS_CMSG_RDMA_ARGS”, which matches the argument
conditions in Syzlang for the “RDS_CMSG_RDMA_ARGS” message
type. Thus, we borrow the corresponding argument conditions from
Syzlang for sendmsg during DGF.

Directed Kernel Fuzzing. We adapt Syzkaller [18] to perform
directed fuzzing. @ Our analyses above identify the sequence
of necessary syscalls and the conditions on their arguments to
reach the target location, which we assemble as templates to guide
Syzkaller. Specifically, we customize the seed mutation process
to generate test cases following the templates with a dominating
probability. This way, we reduce the testing further away from the
target location. @ We force Syzkaller to prioritize the mutations
of seeds closer to the target location and assign higher energy to
those seeds. Doing so enables us to approach the target location
at a faster pace. ® We extend the scheme to preserve test cases.
Besides test cases covering new code edges, we also preserve those
resulting in a shorter distance to the target location, considering
that they represent a closer step to the target.

Summary. To facilitate directed kernel fuzzing, SyzDIRECT features
two new techniques, i.e., entry point identification (§4.1) and syscall
argument refinement (§4.3). By exploiting the unique design of the
Linux kernel and leveraging the syscall descriptions written in
Syzlang, these two techniques overcome the limitations of existing
static analysis, i.e., identifying correct syscalls for triggering
the target site and preparing the needed syscall arguments, as
introduced in §2.2. Besides, SyzDIRECT infers syscall dependencies
by adapting the static learning algorithm in Healer [40] (§4.2). To
our knowledge, SyzDIRECT is the first solution to automatically
identify the syscall variants (not only primitive syscalls) and
parameters that are required to reach a specific target site in deep
kernel code, with the help of all these static analysis techniques.

In addition, SyzDIRECT extends Syzkaller to support directed
fuzzing from two aspects. On the one hand, SyzDIRECT introduces
tailored seed mutation and generation strategies (§4.5) to cooperate
with the templates generated by the static analysis. On the other
hand, SyzDIReCT realizes distance calculation (§4.4) and distance-
guided scheduling by adapting and optimizing the algorithms
of AFLGo [10]. Combining the template-assisted mutation and
distance guidance, SYzDIRECT can effectively approach given target
locations in the kernel.

4 DESIGN
4.1 Entry Point Identification

Our goal is to identify syscall variants that can serve as the entry
point to the target site (we denote them as entry syscalls). To
overcome the obstacles of entry point identification introduced
in §2.2, we propose a new approach which matches kernel functions
with syscall variants by modeling what resources they operate on and
how they operate on the resource. Our new approach comes from
two observations about the Linux kernel. @ Each syscall variant
describes a specific operation on a specific resource in Syzlang
language, providing a more fine-grained representation of kernel
functionality compared to the coarse-grained primitive syscalls. @&
After entering a syscall entry, the kernel performs function dispatch
to determine which function needs to be executed. The dispatch

SyzDIRecT: Directed Greybox Fuzzing for Linux Kernel

process parses the syscall arguments to determine what resources
are being processed and what operation should be performed, and
thus determines which function to execute subsequently. Based
on these observations, we propose to match the syscall variants
to the kernel functions by modeling the operations performed and
the resources operated on in a uniform way. Assisted with the
matching results, SyzDIRECT could locate the entry point at the
syscall variant level and reduce false positives due to inaccurate
indirect call analysis.

Anchor Functions. Considering that not all kernel functions
explicitly reflect the resources they operate on and the operations
they perform, we cannot model all functions in a straightforward
way. Since the process of function distribution naturally involves
the handling of resources and the determination of operations,
We mainly analyze the dispatch process to understand what
resources are manipulated and what operations are performed by
the subsequent codes. We denote the first functions executed after
the dispatch process as anchor functions. We first model and match
the anchor functions to the syscall variants. For other functions,
we identify the anchor functions from which this function can be
reached and map it to the syscall variants corresponding to those
anchor functions.

Operation Modeling. In general, the primitive syscall entry
corresponds to a set of related operations and the kernel determines
which specific operation to perform based on the value of command
parameters passed in. We therefore take the syscall names as well
as the value of the command parameters to model how the kernel
function and Syzlang variants operate on resources respectively.
For the syscall variant analysis, we extract the syscall name directly
from the Syzlang description. We then parse all its parameters and
use the numeric constants among them as the command value. For
the kernel function analysis, we combine control flow and data
flow analysis to extract the command values. In particular, given
a syscall name, we perform forward analysis from its code entry
and locate all switch statements from the CFG. We then perform
data flow analysis to determine whether the variables of the switch
statement are related to the syscall parameters. For the parameter-
tainted switches, we take the functions in each case branch as
anchor functions and use the constant value of that case as their
command value.

// Command parameter (i.e., code) is set to KEYCTL_UPDATE
keyctl$update(code const[KEYCTL_UPDATE], ...)
// Its operation is modeled as [keyctl,KEYCTL_UPDATE]

(a) Operation Modeling for keyctl$update

/* code snippet File: security/keys/keyctl.c*/

1 SYSCALL_DEFINES(keyctl,...,option, ...){

3 //perform function dispatch based on the incoming command
(i.e., option)

4 switch(option){

5

6 case KEYCTL_UPDATE:

7 return keyctl_update_key(...);//anchor function

8 //operation for keyctl_update_key is modeled as
[keyctl,KEYCTL_UPDATE]

9 o)

(b) Operation Modeling for Anchor Function
corresponding to keyctl$update

Figure 3: Example of Operation Modeling.

1634

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Figure 3 illustrates an example of operation modeling. The

syscall variant keyctl$update takes KEYCTL_UPDATE as its com-
mand value to indicate that the variant performs the operation
to update the key. We thus model its operations as [keyctl,
KEYCTL_UPDATE]. From the code of keyct1, the switch statement
takes the first parameter of the syscall as its condition and leads
to several case branches. Therefore, we locate anchor functions
for each case branch and extract the constant values from case
statements to model the operation for each anchor function.
For example, we extract KEYCTL_UPDATE from line 6 and model
the anchor function keyctl_update_key in line 8 as [keyctl,
KEYCTL_UPDATE].
Resource Modeling. As the same resource may be named and
defined differently between the kernel code and the Syzlang
description, we cannot model them with resource names. In order
to build a resource model across Syzlang descriptions and kernel
code, we propose to model them using invariants in resource
creation. Specifically, in order to specify a resource type, creating
a resource requires a corresponding string or numeric constants.
For example, creating device and file system resources requires a
constant string indicating the file system/device path while creating
sockets requires the family and socket type. We therefore model a
resource with all the string and numeric constants associated with
the creation of this resource.

For the syscall variants, we can obtain the resource it takes by
parsing its parameters. To model the obtained resource, we first
locate the syscall variant that created the resource and then parse
the parameters of the creation syscall variant, extracting all constant
strings and constant values from it. In the Syzlang descriptions
shown in Figure 4, sendmsg$rds takes a resource named sock_rds
as input in line 2. The producer of sock_rds takes several constants
as input in line 1, we thus model sock_rds with the list of constants
[AF_RDS,SOCK_SEQPACKET]. The case in line 6 is similar, we
model £d_1915 as the constant string involved in its creation (i.e.,
openat$i915). In particular, we removed the path prefix from the
string and kept only the name of the device.

1 socket$rds(domain const[AF_RDS], type
const[SOCK_SEQPACKET], ...) sock_rds
2 sendmsg$rds(fd sock_rds, ...)
3 //sock_rds is modeled as [AF_RDS,SOCK_SEQPACKET]
4
5 openat$i915(fd const[AT_FDCWD], file ptr[in, string["/dev/
i915"1], ...) fd_i915
6 ioctl1$DRM_IOCTL_I915_ GETPARAM(fd fd_i915, ...)
//fd_i915 is modeled as ["i915"]

Figure 4: Example of Resource Modeling for Syscall Variants.

For kernel functions, we determine the required resources by
analyzing the target of the indirect call. We observe that different
types of resources are usually assigned a unique virtual table-
like data structure in the kernel. After entering the syscall entry,
the kernel performs function dispatch via an indirect call. This
indirect call queries the virtual table corresponding to this resource,
thus directing the control flow to the code that performs the
corresponding functionality. Therefore, we take all the functions
in the virtual table as anchor functions and they all belong to the
resource which the virtual table belongs to. However, there is still

CCS *23, November 26-30, 2023, Copenhagen, Denmark

a gap between the virtual table of a resource and the invariants in
the creation of this resource.

To resolve this gap, we investigated the resource creation process
and observed that most of the resource creation process in the kernel
follows such a manner. ® During module loading or kernel initial-
ization, the kernel invokes some generic registration functions
which take key information, such as constant information about
the resource and the resource creation function as arguments. &
When creating a resource, the kernel invokes the corresponding
creation function. ® The resource creation function will assign
other constants and virtual tables to the kernel structure which
represents the resource object. Based on these observations, we
develop a customized static analysis to correlate the virtual tables
to the invariants of resources (i.e., constant string and numeric
values). Our approach consists of three steps. First, we manually
collect a list of commonly used registration functions and locate all
their callsites. For each call site, we exploit the domain knowledge
to extract key constant values and the creation function based on
the variables’ names. Second, we look into the creation function.
We analyze all of the assignment statements and identify the
assignment of resource-related constants and the assignment of
resource virtual tables based on variable names and variable types.
Third, for each callsite of the registration function, we take all
the extracted resource-related constants to model the resources
corresponding to the virtual table. Our approach requires some
domain knowledge such as registration functions and the names of
the key variables and key structures related to resource creation. In
total, we have manually collected about 20 registration functions
and key variables involving general resources such as sockets,
devices and filesystems, covering most of the syscall variants.

Take the motivating case in Figure 1 as an example. Triggering
rds_rdma_extra_size involves an indirect call, which directs the
control flow to rds_sendmsg. Thus we denote rds_sendmsg as
an anchor function and inspected all its references. It turns out that
rds_sendmsg belongs to rds_proto_ops which is a virtual table-
like structure of RDS socket. Next, we analyze the resource creation
to determine which resource-related constants the rds_proto_ops
correspond to. The creation of RDS socket is shown in Figure 5.
First, the initialization of RDS module invokes a socket registration
function in line 4. By analyzing its argument and its recursively
nested fields, we obtain the family type and the create function We
then further trace into rds_create and obtain the assignment of
rds_proto_ops in line 22. What’s more, we could find a check
on the socket type in line 16 and informs the value of socket type
is SOCK_SEQPACKET, which is similar to an assignment statement.
Therefore, we figure out that, the anchor function rds_sendmsg
requires a AF_RDS SOCK_SEQPACKET resource.

Matching based on Anchor Functions. Given a kernel function
as the target, we match it to syscall variants based on the anchor
functions associated with it from the control flow. Specifically, we
perform a backward control flow analysis from the target kernel
function and record all the paths. For each path, we locate all anchor
functions on the path and combine their models as the model of
the path. Then, we match the path to syscall variants by checking
whether they share the same operation and resource model. At last,
we take the merge of matched syscalls of all paths as the matching
results of the target function. Note that if the backward control

1635

Xin Tan, Yuan Zhang, Jiadong Lu, Xin Xiong, Zhuang Liu, and Min Yang.

/* Code snippet of File: net/rds/af_rds.c*/
1 // Initialization of RDS module
2 static int __init rds_init(void){
3 .
4 ret = sock_register(& ami 5);
5
6 }
7 e
8 struct net_proto_family rds 1ily ops = {
9 .family = AF_RDS, //socket family
10 .create = rds_create, //creation function
11 .owner = THIS_MODULE,
12}
13 e
14 static int rds_create(...){
15 // checking socket type
16 if (sock->type != SOCK_SEQPACKET || protocol)
17 cee
18 return _ rds_create(sock, sk, protocol);}
19
20 static int _ rds_create(struct socket *sock,...){
21 . // asign function table
22 sock->ops = &rds 0_ops;
23
24}

Figure 5: Example of Resource Modeling for Kernel
Functions.

flow introduces an incorrect path due to the incorrect indirect
call analysis, the path will not match any syscall variant because
developers do not write Syzlang descriptions for a patch that does
not exist. Therefore, our matching does not introduce false positives
because of the inaccurate control flow analysis.

Identifying Entry Syscalls. Given a target code location, we
combine the traditional control flow analysis and our matching
approach to identify its entry syscalls. We first perform control flow
analysis with the type-based indirect call analysis [31] to construct
the control flow graph (CFG) and identify primitive syscalls that
can reach the target. Then we model kernel functions with the
constructed CFG and match the target function with syscall variants.
At last, we take the intersection of the reachable primitive syscalls
and the matched syscall variants as the entry syscalls for the target
location, which prunes the infeasible analysis results.

4.2 Syscall Dependency Inference

In addition to the entry syscall that serves as the entry point,
triggering the target site requires other syscalls to provide the entry
syscall with resources or to set the kernel status. We refer to these
system calls as related syscalls. In general, we determine related
syscalls by inferring the syscalls that the entry syscall depends on
via analyzing the creation and use of resources. Since the result
of static inference is not sound, SyzDIRECT balances the use of
the inferred related syscalls with the exploration of other syscalls
during the fuzzing process (see §4.5).

Specifically, we adopt the static learning algorithm proposed by
Healer [40] to identify syscalls that have explicit relations with the
entry syscall. The algorithm first analyzes the entry syscall’s input
parameters and extracts the parameters’ resource types. Then it
recognizes the syscalls that can generate these resource types as
related syscalls by analyzing the return value type of all syscalls.
Since Syzlang supports inheritance between resource types, we

SyzDIRecT: Directed Greybox Fuzzing for Linux Kernel

also take the inheritance relationships when analyzing the return
value type. In some cases, the resource parameter required by the
target system call is of a very generic type, resulting in hundreds of
related system calls being recognized by the above steps. Therefore,
when too many related syscalls are identified (e.g., greater than
10), we only keep related syscalls in the same module as the entry
syscall.

4.3 Syscall Argument Refinement

After determining the entry syscall, we further identify the variant-
independent conditions required to reach the target location on
the syscall arguments and refine the entry syscall’s argument
description. Due to the complexity of performing field-sensitive
condition analysis of syscall parameters in the kernel, we propose
a light-weight method to identify conditions on arguments instead
of performing precondition analysis [9, 12, 33] or symbolic execu-
tion [11, 36].

Our light-weight condition identification consists of two steps.
First, given a target location and one of its entry syscalls, we identify
two kinds of conditions that dominate the target location. Similar
to existing data condition sensitive fuzzing [7, 17], we focus on the
conditions of comparison with constants (e.g., magic numbers) and
extract the constant value as well as the literal of the constant. In
addition, we also take the resource condition which affects indirect
calls into consideration. That is, a syscall variant might take some
sub-resource (e.g., a control message to send) as its argument, and
the type of sub-resource determines the target of indirect call in a
similar way to the motivation case described in §2.2. To model the
resource conditions, we analyze the sub-resource registering and
represent a sub-resource with the constants associated with it, as
what we do for resource modeling in §4.1.

After extracting the conditions on the arguments from the
kernel code, we match each extracted condition with the argument
conditions included in the Syzlang description of the entry syscall.
We perform condition matching by inspecting whether the literal of
the extracted condition appears in the definition of any argument
(as well as its recursively nested fields) and whether the value of
the literal in the kernel code is the same as that in the Syzlang
description. Our literal/value-based matching takes advantage of
the fact that the well-written Syzlang descriptions clearly define
the syscall parameters (including object parameters) as well as the
constants in parameter definitions and the naming of constants
refers to the linux header files. Once a condition is matched, we
obtain constraints about which field of the argument should be
set to which value/type for triggering the target site. That is, the
other values/types for the constrained field are useless for DGF and
should be pruned from the description. Thus, we refine the syscall
argument description by removing the definition of these useless
values/types from the description.

For example, as shown in Figure 6, the second parameter of
sendmsg$rds is a msghrd_rds object and its structure is defined
in line 3 to line 7. One of its nested structures, cmsghrd_rds is
defined in line 9 to line 13. cmsghrd_rds is a union and could be
any of the legal control message objects. Syzlang further defines
seven legal control message type from line 10 to line 12 and
specifies the value of the type field (RDS_CMSG_RDMA_ARGS,

1636

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

sendmsg$rds(fd sock_rds, msg ptr[in,
//definition of the msghdr_rds structure

{

_rds], ...)

ctrl ptr[in, array[shdr

1
2
3
4
5 1, opt]
6

7

}
8 //cmsghdr_rds is a union structure, which can be any types
defined in the following list

9 cme C ds [

10 rdma_args cmsghdr_rds_t[RDS_CMSG_RDMA_ARGS, ...]
11 rdma_dest cmsghdr_rds_t[RDS_CMSG_RDMA_DEST, ...]
12

13]

Figure 6: Example of Argument Refinement.

RDS_CMSG_RDMA_DEST, etc.) for each message type. From the
condition at line 6 of Figure 1, we extract a potential argument
condition named “RDS_CMSG_RDMA_ARGS”, and it matches
the argument description in line 10 of Figure 6. Thus we know
reaching rds_rdma_extra_size requires sendmsg$rds take a
“RDS_CMSG_RDMA_ARGS” message and other types of message
objects are useless. At last, we refine the argument definition by
removing the definition of other message objects (i.e., line 11 - line
12) from the definition of cmsghdr_rds.

4.4 Distance Calculation and Instrumentation

SyzDIRECT mainly follows AFLGo’s method to calculate the static
basic block level distance and makes some adaptations for the
Linux kernel. First, SYZDIRECT constructs the call graph (CG) of
the Linux kernel with the MLTA algorithm [31] which handles
the indirect calls based on type-based analysis. Based on the
constructed CG, SyzDIRECT performs reachability analysis for the
target site to find out the reachable functions and unreachable
functions. For basic blocks in unreachable functions, their distance
to the target site is recorded as infinity. Then, SyzDIRECT performs
intra-procedural analysis to construct the CFG for each reachable
function. Based on the CFG and CG, SyzDIrecT follows the formula
proposed in AFLGo to calculate the basic block level distance dj, for
each basic block in reachable functions. Compared to the original
implementation of AFLGo, we introduce the reachability analysis to
reduce the overhead caused by the unrelated code during distance
calculation.

In addition, we compute several utilities that are used to facilitate
the directedness in kernel fuzzing based on the block-level distance.

(1) Syscall level distance describes the distance of the execu-
tion path of a syscall to the target site. The syscall distance
is computed by taking the shortest distance of all the basic
blocks executed by the syscall.

(2) Seed level distance describes the distance of the input seed
execution to the target code. We use the minimum syscall
distance of all syscalls included in the input seed as the seed
level distance.

(3) Template level distance describes the distance of all the
seeds generated by the template to the target site. We take
the average of the top 5 short seed distances generated from
a template to calculate the template level distance.

We modify the KCOV module [23] to instrument the kernel
to track the basic block level distance. Since the KCOV module

CCS *23, November 26-30, 2023, Copenhagen, Denmark

monitors the execution of an entire syscall, we also modified the
KCOV module to dynamically calculate the syscall distance. After
receiving distance feedback from the KCOV, the fuzzer calculates
the seed level distance and template level distance.

4.5 Directed Kernel Fuzzing with Template
Guidance

SyzDIRECT generates templates based on the static analysis results.
In particular, SYZDIRECT generates a template for each pair of entry
syscall and its related syscall with the refined argument description.
In the directed fuzzing process, SyzDIRECT utilizes the generated
templates and runtime distance feedback to guide the fuzzer. In
general, the mutation and scheduling strategies of the directed
fuzzer follow two principles to improve its effectiveness.

(1) Template guided mutation. The template provides the nec-
essary syscall sequence and important argument conditions
for triggering the target site, that the static analysis identi-
fies. Therefore, SyzZDIRECT performs seed mutation under the
guidance of templates. That is, it tends to generate seed inputs
that not only contain the syscall sequence indicated by the
template but also satisfy the parameter constraints indicated by
the template.

Distance guided scheduling. Similar to the existing directed
fuzzers [10, 14], SyzDIRECT schedules the seed priority based
on the distance feedback. Seeds that are closer to the target site
have a greater probability to be mutated. In addition, since static
analysis may provide multiple templates, the fuzzer also needs
to prioritize the templates based on the distance information.

Based on these principles, we develop new seed selection policies
and seed mutation strategies and introduce the template selection
mechanism. In the following, we introduce these strategies in detail.
Initial Corpus Filtering and Generation. The fuzzer takes an
initial corpus as the initial seeds. Since the initial corpus has a great
impact on the performance of the fuzzer [34, 37], SyzDIRrecT filters
out the initial seeds that are of no use for reaching the target site.
Specifically, SyzDIRECT analyzes the seeds in the initial corpus and
matches them with the templates provided by the static analysis. If
the syscall sequence of a seed contains the sequence provided by
a certain template, SyzDIRECT keeps this seed. If not, SyzZDIRECT
rejects the seed.

In addition, SYzDIRECT performs initial seed generation if there
are no valuable initial seeds. Given a template, SYZDIRECT generates
several programs which consist of the syscalls provided by the
template and leverage sSyzkaller’s argument generation to fulfill
their arguments. In addition, SYZDIRECT ensures that the resource
generated by the related syscall is provided as the parameter to the
entry syscall when generating the seeds.

Seed Preservation and Scheduling. As introduced in §4.4, We
define the distance of a test seed as the shortest distance of all
syscalls contained in that seed. As a directed fuzzer, SYZDIRECT
regards a test case as interesting and preserves it as a seed
if the test case has new edge coverage or achieves a shorter
distance. SyzDIRECT schedules the seed in two aspects. First, in the
seed selection process, SYZDIRECT prioritizes seeds with shorter
distances because a shorter distance indicates that the seed is
more beneficial for triggering the target site. Second, SYzZDIRECT

1637

Xin Tan, Yuan Zhang, Jiadong Lu, Xin Xiong, Zhuang Liu, and Min Yang.

introduces power scheduling into the fuzzer which assigns different
mutation chances to the test cases. A test case that is very close to
the target site has more chances to trigger the target and should be
assigned with more energy. Specifically, SYZDIRECT migrates the
annealing-based power scheduling algorithm used by AFLGo [10].
Seed Mutation and Generation. SyzDIRECT utilizes templates
to guide the seed mutation process in two dimensions: syscall
mutation and parameters mutation. From the syscall perspective,
for a given template, SYZDIRECT ensures that the test case generated
by mutation contains both the entry syscall and the related syscall
provided by the template. Specifically, SyzDIRECT checks whether
the syscall sequence of the mutated test case matches a certain
template. If there is no matching template, SyzDIRECT selects a
template and inserts the syscall sequence of the selected template
at the end of the test case. From the parameter perspective,
SyzDIRECT ensures that the mutation process adheres to the
parameter constraints in the template. In addition, since mutating
the parameters of the target system call is more valuable for
triggering the target, SyZDIRECT increases the parameter mutation
probability for the entry syscall.

When the seed queue is empty, Syzkaller might generate a new

seed directly. Similar to the adjustments made to the mutation
strategy, we also modified the seed generation strategy. Specifically,
SyzDIrecT likewise selects a template, generates a new program,
and then inserts the syscalls from the template at the end of that
program. During the generation process, SYZDIRECT ensures that
the generated seed conforms to the parameter constraints of the
template.
Template Selection. When the static analysis provides multi-
ple templates, the fuzzer needs to select a template from them
during the seed mutation. Since a shorter distance indicates that
the template is of higher quality compared to other templates,
SyzDIRECT also prioritizes the templates based on the template
distance. Specifically, SyzDIRECT assigns weights values to each
template based on distance and then calculates the probability of a
template ¢ being selected based on the weights.

weight;

N
i=1

Probability(t) =
weight;

5 EVALUATION

In this section, we comprehensively evaluate SyzZDIRECT in various
aspects. First, we evaluate the performance of SyzDIRECT in
two significant application scenarios of directed fuzzing—bug
reproduction and patch testing, which is an important criterion
for measuring DGFs’ capabilities. We also compare SYzZDIRECT
with Syzkaller, SyzGo (the kernel port of AFLGo) and GREBE [28].
Second, we evaluated the the contribution of each key compo-
nent of SyzDIRECT, including the syscall identification (i.e., the
combination of entry point identification and syscall dependency
inference), syscall argument refinement, and distance guidance.
Third, we evaluate the accuracy of the static analysis, considering
its significant impact on the performance of the directed fuzzer.
In summary, we aim to answer the following questions:

e RQ1:How does SyzDIRECT perform in reproducing the target
bugs?

SyzDIRecT: Directed Greybox Fuzzing for Linux Kernel

e RQ2: What is the performance of SyzDIRECT in patch
testing?

e RQ3: How does each component contribute to SYZDIRECT s
performance respectively?

e RQ4: How effective is the static analysis of SyzDIRECT at
extracting entry syscalls/arguments constraints?

5.1 Evaluation Setup

Evaluation Dataset. We construct two datasets to evaluate the
performance of SyzDIRECT in the application scenario of bug
reproduction and patch testing.

e Known bugs. We collect disclosed bugs that affect stable Linux
kernel versions (i.e., v5.10-v6.2) from the Syzbot platform as the
bug dataset. In order to mitigate the influence of the stability
of bug triggering on our evaluation, we filter out the bugs that
can not be steadily reproduced with the reproducer provided by
Syzbot.

To ensure the diversity of the bug dataset, we follow two different
strategies to select bugs from the remaining bugs. @ The first
strategy is a purely random selection. We randomly pick 50 bugs
that involve different bug types including WARNING, GPF, panic,
etc. ® The second strategy is to select security-related bugs. In
particular, we randomly pick 50 bugs that associate with Kernel
Address Sanitizer (KASAN) because memory corruption errors
are the most common security bugs in the kernel. Following
such selection strategies, the dataset covers different types of
kernel bugs and includes a lot of security-related flaws. Finally,
the dataset consists of 100 bugs and we evaluate SYZDIRECT’s
ability for bug reproduction on them.

Patches. To ensure patch diversity, we take two different
approaches to collect benign and faulty patches respectively. @
We randomly collected 33 patch fixes from the Syzbot platform.
We manually confirmed that all 33 patches have correctly fixed
the bugs and we took them as benign patches. @ As there is no
publicly available dataset of faulty patches for the Linux kernel,
we manually located faulty patches in the Linux kernel repository
by reviewing the commit messages. Specifically, we inspected
the “fixes” field of a commit, which points to the bug-introducing
commit, and checked whether the bug-introducing commit was
also a bug-fix commit. If it was, the bug-introducing commit was
a faulty patch. In the end, we inspected commits from Linux
kernel v5.10 to v5.18 and randomly selected 29 samples from the
manually collected faulty patches, and the patch dataset consists
of 62 (33+29) patches in all.

Due to the limited space of the paper, these two datasets are
shown in detail in our github repository.
Evaluation Metrics. For patch testing and bug reproducing, we
mainly focus on the number of cases each fuzzer could cover
within the time limit. That is, the number of patches the fuzzer
can successfully touch and the number of bugs it can successfully
reproduce. For each case, we use the hitting-round and Time-
to-Exposure (TTE) as the evaluation metrics, which are widely
used by directed fuzzing papers[10, 14]. Specifically, hitting-round
represents the times that a fuzzer triggers the target bug or reaches
the target site in several repeated experiments. TTE is the first time
that a fuzzer completes the target task (triggering target bug and so

1638

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

on). We calculate the arithmetic average of TTE in multiple repeated
experiments as pTTE. In specific, if a fuzzer does not trigger the
target over the fuzzing timeout (e.g., 24 hours), the TTE of this case
is regarded as the timeout.

Baseline Fuzzers. We compare SyzDIRECT with three fuzzers:
Syzkaller[18], SyzGo and GREBE [28].

o Syzkaller is the most widely used coverage-guided kernel fuzzer.
We choose Syzkaller as a baseline for non-directed fuzzers.

e SyzGo is a fuzzer where we adopt the method of AFLGo[10]
(one of the state-of-art DGFs) to Syzkaller and we take it as a
baseline for directed fuzzers. In particular, SyzGo collects the
seed distance via the method introduced in §4.4 and leverages
AFLGo’s annealing-based power scheduling to prioritize seeds.
GREBE is the most related work of SyzDIRECT. It takes a directed
fuzzing approach to explore more error behaviors of a kernel
bug. In particular, we made two adjustments to migrate GREBE
to our evaluation tasks. First, GREBE requires the PoC program
as its initial corpus which is not available in bug reproduction
and patch testing. Thus GREBE takes the default corpus provided
by Syzkaller as its initial seeds in our evaluation. Second, the
original GREBE’s analysis failed in some cases of our dataset
because it does not fit the latest version of KASAN. Thus, we
extended GREBE’s bug report parsing and fixed these failures.

We use Syzkaller, SyzGo and GREBE as baselines to show that
SyzDIREcT is far more efficient than existing directed and non-
directed fuzzers.

Environment and Configuration. In all experiments, we utilize
LLVM to compile the kernel with the configuration files provided
by Syzbot. Since the initial seed corpus greatly impacts the
effectiveness of fuzzers[34, 37], we use the same initial seeds for
the three fuzzers, provided by the default setting of Syzkaller. All
experiments are conducted on a server machine with 144 Intel(R)
Xeon(R) Gold 6254 CPUs (3.10GHz) and 384 GB RAM, running a
64-bit Ubuntu 18.04 LTS system.

5.2 RQ1: Bug Reproduction

In this experiment, we apply SyzDIRECT as well as three baseline
fuzzers to reproduce bugs in the known bug dataset with their
crash reports. For each bug, we analyze the stack trace of the crash
reports and then manually determine the target code location for
SyzDIrecT and SyzGo. GREBE takes the crash reports as input
and automatically identifies the critical objects. For each target,
we set a fuzzing time limit of 24 hours for SyzDIRECT and SyzGo.
Since Syzkaller is not a directed fuzzer, we give it 48 hours to
have a fair comparison. Each experiment is repeated 10 times
to reduce statistical errors. In addition, we run GREBE for 7
days for each case, as the authors of GREBE suggested in the
paper. Since it is inaccurate to confirm whether the target bug is
reproduced by matching the crash title[32], we manually checked
all crashes generated during fuzzing to determine if the target bug
was successfully reproduced by a fuzzer.

Comparison with Syzkaller. During the experiment, Syzkaller
and SyzDIRECT reproduced 43 bugs. We present the detailed results
in Table 1 and summarize the 24-hour result in the Venn diagram
of Figure 7. In particular, SyzDIRECT and Syzkaller,,, reproduced
42 and 10 known bugs, respectively. SYZDIRECT covered all bugs

CCS *23, November 26-30, 2023, Copenhagen, Denmark

29

SyzGo Syzkallery,

SyzDirect

Figure 7: The Venn diagram of 24-hours bug reproducing
results.

reproduced by Syzkalleryyy. Even though we ran Syzkaller for 48
hours, Syzkaller,g;, only covered two more bugs that SyzDIRECT
could not. In addition, SyzDIRECT achieved a 154.3x speed up
compared to Syzkaller on the 10 bugs covered by both of them.
This result demonstrates that SyZDIRECT significantly outperforms
the existing generic kernel fuzzer.

Comparison with SyzGo. The performance of SyzGo is also
presented in Table 1 and Figure 7. In particular, SyzGo reproduced
11 known bugs, all of which could be reproduced by SyzDIRECT.
In addition, on the 10 bugs, SyzDIRECT achieved a 81.9x speed up
compared to SyzGo. Surprisingly, though SyzGo is a directed fuzzer,
it does not fare much better than Syzkaller. This demonstrates that
distance guiding alone is not effective enough in narrowing down
the exploration space of kernel fuzzing. In contrast, SYZDIRECT

Xin Tan, Yuan Zhang, Jiadong Lu, Xin Xiong, Zhuang Liu, and Min Yang.

introduces new approaches and techniques and significantly out-
performs SyzGo.

Comparison with GREBE. We present the comparison between
SyzDIrecT and GREBE in Table 2. In particular, GREBE reproduces
19 bugs, 9 of which can not be reproduced by SyzDIRECT in 24
hours. Interestingly, 5 of the 9 bugs are related to KASAN. We think
this is because the novel object-driven fuzzing proposed by GREBE
is well-suited to reproduce memory corruption bugs. Meanwhile,
SyzDIREcCT covered 32 bugs that GREBE couldn’t reproduce even
after fuzzing for 7 days. It shows that in more cases, SYZDIRECT’s
scheme can reduce the exploration space more effectively than
GREBE. In short, SyzDIRECT can cover a larger number of bugs
while GREBE is good at dealing with some KASAN bugs, which
is hard for SyzD1recT. GREBE and SyzDIRECT could complement
each other.

Table 2: Comparison between SyzDIREcT and GREBE on
reproducing bugs.

Reproduced by Reproduced by both Reproduced by
SyzDIrRecT Only SyzDirect and GREBE GREBE Only

32 10 9

5.3 RQ2: Patch Testing

In this experiment, we apply SYzDIRECT to test patches in the
patch dataset and compare our approach with SyzGo and Syzkaller.

Table 1: The performance of SyzDirect, SyzGo and Syzkaller in bug reproducing. We present the results of running Syzkaller
for 24 hours and 48 hours, respectively. For a fair comparison, we only calculate the time Speedup of SyzDirect compared to

Syzkaller,j,.
Bug ID Fuzzer Runs pTTE(h) Speedup || Bug ID Fuzzer Runs pTTE(h) Speedup || Bug ID Fuzzer Runs uTTE(h) Speedup || Bug ID Fuzzer Runs pTTE(h) Speedup
Syzdirect 1/10 22.82 / Syzdirect 10/10 0.14 / Syzdirect 0/10 24.00 / Syzdirect 1/10 22.25 /

1 SyzGo 0/10 24.00 1.05 15 SyzGo 1/10 23.37 162.08 3 SyzGo 0/10 24.00 1.00 70 SyzGo 0/10 24.00 1.08
Syzkal]er24h 0/10 24.00 1.05 Syzkal]er24h 0/10 24.00 166.47 5y7.kaller24h 0/10 24.00 1.00 Syzka]ler24h 0/10 24.00 1.08
Syzkaller48h 0/10 48.00 / Syzkaller48h 0/10 48.00 / Syzkaller48h 1/10 47.47 / Syzkaller48h 0/10 48.00 /

Syzdirect 10/10 2.37 / Syzdirect 10/10 1.85 / Syzdirect 6/10 14.37 / Syzdirect 2/10 20.45 /

2 SyzGo 0/10 24.00 10.14 17 SyzGo 2/10 22.95 12.41 48 SyzGo 5/10 19.23 1.34 7 SyzGo 0/10 24.00 117
Syzkallerggy, 0/10 24.00 10.14 Syzkallerygy, — 2/10 22388 1237 Syzkallerygy, — 5/10 20.33 142 Syzkalleryg, — 0/10 24.00 117
Syzkallerqsh 0/10 48.00 / Syzka].ler48h 2/10 42.08 / Syzkaller4 h 5/10 32.33 / Syzkaller48h 0/10 48.00 /

Syzdirect 10/10 1.25 / Syzdirect 9/10 3.70 / Syzdirect 1/10 23.70 ! Syzdirect 2/10 21.62 /

3 SyzGo 0/10 24.00 19.20 18 SyzGo 9/10 9.23 2.50 49 SyzGo 0/10 24.00 1.01 74 SyzGo 0/10 24.00 11

’ Syzkallerygz, — 0/10 24.00 19.20 Syzkallerygy, — 3/10 2097 5.67 Syzkallerygy, — 0/10 24.00 101 Syzkalleryg, 0/10 24.00 111
Syzkaller48h 0/10 48.00 / Syzkaller48h 5/10 35.35 / Syzkaller4 h 0/10 48.00 / Syzkaller48h 0/10 48.00 /

Syzdirect 10/10 0.02 / Syzdirect 10/10 2.77 / Syzdirect 1/10 21.83 / Syzdirect 5/10 12.08 /

4 SyzGo 0/10 24.00 1270.59 19 SyzGo 0/10 24.00 8.67 50 SyzGo 0/10 24.00 110 75 SyzGo 0/10 24.00 1.99
Syzkallerz4h 1/10 23.15 1225.59 Syzk;\].ler24h 0/10 24.00 8.67 Syzkaller24h 0/10 24.00 110 Syzkallerzqh 0/10 24.00 1.99
Syzkaller43h 1/10 42.80 / Syzkal]er4 4 0/10 48.00 / Syzkaller48h 0/10 48.00 / Syzka]ler48h 0/10 48.00 /

Syzdirect 5/10 15.28 / Syzdirect 10/10 7.63 / Syzdirect 8/10 8.87 / Syzdirect 10/10 3.37 /

5 SyzGo 0/10 24.00 1.57 21 SyzGo 1/10 22.95 3.01 55 SyzGo 6/10 14.17 1.60 77 SyzGo 0/10 24.00 713
Syzkaller24h 0/10 24.00 1.57 Syzkaller24h 0/10 24.00 3.14 Syzkaller24h 6/10 16.37 1.85 Syzkaller24h 0/10 24.00 7.13
Syzkallerygp, — 0/10 48.00 / Syzkallerggp 1/10 47.70 / Syzkallerggp 7/10 24.17 / Syzkallerggp 0/10 48.00 /

Syzdirect 10/10 7.70 / Syzdirect 3/10 18.87 / Syzdirect 9/10 6.32 / Syzdirect 1/10 22.55 /

6 SyzGo 3/10 22.00 2.86 23 SyzGo 0/10 24.00 127 56 SyzGo 0/10 24.00 3.80 80 SyzGo 0/10 24.00 1.06
Syzkaller24h 2/10 23.67 3.07 Syzkal]erzUl 0/10 24.00 1.27 Syzkaller24h 0/10 24.00 3.80 Syzka]ler24h 0/10 24.00 1.06
Syzl(aller48h 2/10 42.87 / Syzka].ler48h 0/10 48.00 / Syzkaller48h 0/10 48.00 / Syzkaller48h 0/10 48.00 /

Syzdirect 3/10 20.22 / Syzdirect 7/10 10.93 / Syzdirect 10/10 2.62 / Syzdirect 1/10 22.23 /

9 SyzGo 0/10 24.00 1.19 2 SyzGo 0/10 24.00 2.20 59 SyzGo 1/10 22.25 8.50 82 SyzGo 0/10 24.00 1.08
Syzkallerggz, 0/10 24.00 119 Syzkallerygy, 0710 24.00 2.20 Syzkallerygy, 1710 23.42 8.95 Syzkalleryg, — 0/10 24.00 1.08
Syzkallerqsh 0/10 48.00 / Syzka].ler48h 0/10 48.00 / Syzkaller4 h 2/10 44.80 / Syzkaller48h 0/10 48.00 /

Syzdirect 1/10 23.42 / Syzdirect 10/10 113 / Syzdirect 10/10 0.11 / Syzdirect 10/10 0.31 /

10 SyzGo 0/10 24.00 1.02 25 SyzGo 0/10 24.00 21.18 60 SyzGo 10/10 7.50 66.50 86 SyzGo 0/10 24.00 76.87
Syzkallerygz, — 0/10 24.00 1.02 Syzkallerygy, 0710 24.00 2118 Syzkallerygy, 10/10 632 56.01 Syzkalleryg, 0/10 24.00 76.87
Syzkallerggp, 0/10 48.00 / Syzkallerggy, 1/10 46.03 / Syzkallerggy, 10/10 632 / Syzkallergg, 0/10 48.00 /

Syzdirect 0/10 24.00 / Syzdirect 10/10 0.64 / Syzdirect 10/10 0.77 / Syzdirect 2/10 21.45 /

1 SyzGo 0/10 24.00 1.00 33 SyzGo 1/10 23.30 36.64 62 SyzGo 0/10 24.00 31.05 87 SyzGo 0/10 24.00 112
Syzkaller24h 0/10 24.00 1.00 Syzka].ler24h 0/10 24.00 37.75 Syzkaller24h 0/10 24.00 31.05 Syzkallerzqh 0/10 24.00 112
Syzkaller43h 1/10 47.47 / Syzkal]er48h 0/10 48.00 / Syzkaller48h 0/10 48.00 / Syzka]ler48h 0/10 48.00 /

Syzdirect 1/10 22.33 / Syzdirect 1/10 22.70 / Syzdirect 2/10 19.25 / Syzdirect 8/10 9.42 /

13 SyzGo 0/10 24.00 1.07 34 SyzGo 0/10 24.00 1.06 65 SyzGo 0/10 24.00 125 95 SyzGo 0/10 24.00 2.55
Syzkaller24h 0/10 24.00 1.07 Syzkaller24h 0/10 24.00 1.06 Syzkaller24h 0/10 24.00 1.25 Syzkaller24h 0/10 24.00 2.55
Syzkallerygp, — 0/10 48.00 / Syzkallerggy — 0/10 48.00 / Syzkallerggp 0/10 48.00 / Syzkallerggp 0/10 48.00 /

Syzdirect 10/10 0.01 / Syzdirect 2/10 21.60 / Syzdirect 1/10 21.63 / Syzdirect 7/10 10.62 /

14 SyzGo 10/10 7.55 604.00 37 SyzGo 0/10 24.00 111 68 SyzGo 0/10 24.00 111 99 SyzGo 0/10 24.00 2.26
Syzkaller24h 10/10 2.83 226.67 Syzkal]er24h 0/10 24.00 111 Syzkaller24h 0/10 24.00 111 Syzka]ler24h 2/10 22.32 2.10
Syzkaller48h 10/10 2.83 / Syzkul.ler48h 0/10 48.00 / Syzkaller48h 0/10 48.00 / Syzkaller48h 2/10 41.52 /

1639

SyzDIRecT: Directed Greybox Fuzzing for Linux Kernel

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 3: The performance of SyzDirect, SyzGo and Syzkaller in patch testing. We present the results of running Syzkaller
for 24 hours and 48 hours, respectively. For a fair comparison, we only calculate the time speedup of SyzDirect compared to

Syzkaller,yj,.
PAN T Fumer Runs WTTER) Speedup || Too’ | Fumer Runs pTTE() Speedup || T’ | Fumer Runs pTTEG) Speedup || Tas’ | Fumer Runs uTTE(R) Speedup
Syzdirect 10/10 0.46 / Syzdirect 6/10 9.65 / Syzdirect 10/10 0.0039 / Syzdirect 10/10 1.42 /

2 SyzGo 2/10 20.37 44.54 16 SyzGo 5/10 14.32 1.48 32 SyzGo 10/10 118 304.29 47 SyzGo 1/10 23.78 16.79
Syzkaller24h 1/10 22.88 50.05 Syzkaller24h 4/10 16.80 174 - Syzkallerzqh 9/10 4.17 1071.43 Syzkaller24h 1/10 23.33 16.47
Syzkaller48h 2/10 44.07 / Syzkaller48h 7/10 27.30 / Syzkaller48h 9/10 6.57 / Syzkaller48h 1/10 44.93 /

Syzdirect 10/10 178 / Syzdirect 2/10 20.10 / Syzdirect 1/10 23.92 / Syzdirect 10/10 0.0044 /

3 SyzGo 0/10 24.00 13.46 18 SyzGo 0/10 24.00 1.19 34 SyzGo 0/10 24.00 1.00 48 SyzGo 10/10 0.03
Syzkallerz4h 1/10 22.88 12.83 Syzkaller24h 0/10 24.00 119 Syzkaller24h 0/10 24.00 1.00 Syzkaller24h 10/10 0.03 .
Syzkallerggp 2/10 44.07 / Syzkallerggy — 0/10 48.00 / Syzkallerggp 0/10 48.00 / Syzkallerggy, — 10/10 0.03 /

Syzdirect 0/10 24.00 / Syzdirect 9/10 8.63 / Syzdirect 10/10 0.0064 / Syzdirect 10/10 1.87 /

4 SyzGo 0/10 24.00 1.00 2 SyzGo 2/10 22.92 2.65 35 SyzGo 10/10 2.10 328.70 50 SyzGo 1/10 23.18 12.42
Skaa]lErz4h 0/10 24.00 1.00 Syzkaller24h 2/10 21.88 2.53 Syzkaller24h 10/10 3.15 493.04 Syzkaller24h 4/10 17.32 9.28
Syzkuller48h 1/10 46.80 / Syzkaller48h 5/10 37.12 / Syzkaller48h 10/10 3.15 / Syzkaller48h 6/10 28.77 /

Syzdirect 10/10 1.60 / Syzdirect 2/10 22.72 / Syzdirect 10/10 6.43 / Syzdirect 10/10 0.0058 /

6 SyzGo 0/10 24.00 15.00 21 SyzGo 0/10 24.00 1.06 36 SyzGo 10/10 7.37 115 59 SyzGo 9/10 9.72 1665.71
Syzkallerg sz, 1/10 22.40 14.00 Syzkallerggy, 0/10 24.00 1.06 Syzkallerggy, 10/10 9.87 1.53 Syzkallergy, 10/10 8.73 1497.14
Syzkaller48h 3/10 42.40 / Syzka].ler48h 0/10 48.00 / Syzkaller48h 10/10 9.87 / Syzkallerqgh 10/10 8.73 /

Syzdirect 10/10 0.0058 / Syzdirect 10/10 0.0053 / Syzdirect 7/10 11.20 / Syzdirect 10/10 0.43 /

7 SyzGo 8/10 11.03 1891.43 2 SyzGo 10/10 0.03 5.32 38 SyzGo 8/10 1233 110 53 SyzGo 10/10 2.87 6.66
Syzkalleryg, ~ 9/10 1003 1720.00 Syzkalleryg, — 9/10 242 457.89 ’ Syzkalleryg, — 4/10 18.32 164 77| Syzkalleryyy, 10/10 325 7.55
Syzkaller48h 9/10 12.43 / Syzk;\ller48h 9/10 4.82 / Syzkaller48h 4/10 32.72 / Syzkaller48h 10/10 3.25 /

Syzdirect 10/10 0.0067 / Syzdirect 2/10 22.52 / Syzdirect 10/10 0.0042 / Syzdirect 8/10 9.93 /

8 SyzGo 10/10 10.38 1557.50 23 SyzGo 0/10 24.00 1.07 39 SyzGo 10/10 0.76 182.40 54 SyzGo 0/10 24.00 2.42
Syzkaller24h 9/10 11.63 1745.00 - Syzkaller24h 1/10 23.25 1.03 - Syzkallerzqh 10/10 1.88 452.00 Syzkallerz4h 0/10 24.00 2.42
Syzkaller48h 9/10 14.03 / Syzkaller48h 2/10 44.77 / Syzkaller48h 10/10 1.88 / Syzkaller48h 0/10 48.00 /

Syzdirect 10/10 0.0067 / Syzdirect 10/10 1.63 / Syzdirect 10/10 0.04 / Syzdirect 1/10 23.00 /

9 SyzGo 10/10 4.78 717.50 2 SyzGo 0/10 24.00 14.69 40 SyzGo 10/10 0.03 0.68 55 SyzGo 0/10 24.00 1.04
Syzkallerz4h 9/10 7.43 1115.00 Syzkaller24h 1/10 22.18 13.58 Syzkaller24h 10/10 0.02 0.59 Syzkaller24h 0/10 24.00 1.04
Syzkallerggp 9/10 9.83 / Syzkallerggp 1/10 43.78 / Syzkallerggy — 10/10 0.02 / Syzkallerggp 0/10 48.00 /

Syzdirect 9/10 9.80 / Syzdirect 10/10 0.0044 / Syzdirect 8/10 11.82 / Syzdirect 10/10 0.0036 /

10 SyzGo 7/10 13.12 134 25 SyzGo 10/10 0.03 5.81 4 SyzGo 8/10 10.47 0.89 58 SyzGo 7/10 15.48 4287.69
Syzkaller24h 8/10 12.80 131 Syzkaller24h 9/10 2.42 543.75 Syzkaller24h 10/10 7.07 0.60 Syzkaller24h 8/10 15.40 4264.62
Syzkuller48h 9/10 17.02 / Syzkaller48h 9/10 4.82 / Syzkaller48h 10/10 7.07 / Syzkaller48h 10/10 16.53 /

Syzdirect 10/10 0.07 / Syzdirect 10/10 0.02 / Syzdirect 0/10 24.00 / Syzdirect 10/10 3.88 /

1 SyzGo 5/10 17.05 256.82 2% SyzGo 2/10 22.88 1373.00 42 SyzGo 0/10 24.00 1.00 59 SyzGo 2/10 23.17 5.97
Syzkallerg sz, 5/10 16.73 252.05 Syzkallerggy, — 3/10 21.57 1294.00 Syzkallergyz, 0/10 24.00 1.00 Syzkallergyy, 4/10 19.60 5.05
Syzkaller48h 8/10 22.85 / Syzka].ler48h 3/10 38.37 / Syzkaller48h 3/10 40.82 / Syzkallerqgh 7/10 29.35 /

Syzdirect 10/10 0.02 / Syzdirect 10/10 0.0039 / Syzdirect 10/10 0.0047 / Syzdirect 8/10 6.98 /

12 SyzGo 10/10 0.0028 0.12 27 SyzGo 2/10 20.37 5237.14 43 SyzGo 10/10 0.83 176.76 60 SyzGo 0/10 24.00 3.44
Syzkalleryg, 0/10 2400 101647 Syzkallerygy, — 3/10 2157 554571 7| Syzkallergyy, 10/10 091 193.71 Syzkallerygp, — 0/10 24.00 344
Syzkaller48h 0/10 48.00 / Syzk;\ller48h 5/10 37.28 / Syzkaller48h 10/10 0.91 / Syzkaller48h 0/10 48.00 /

Syzdirect 10/10 0.0119 / Syzdirect 10/10 175 / Syzdirect 1/10 22.08 / Syzdirect 10/10 0.0044 /

13 SyzGo 9/10 10.05 841.40 28 SyzGo 0/10 24.00 13.71 44 SyzGo 0/10 24.00 1.09 61 SyzGo 10/10 8.83 1987.50
Syzkaller24h 9/10 11.23 940.47 Syzka].ler24h 0/10 24.00 13.71 Syzkallerzqh 0/10 24.00 1.09 Syzkallerz4h 10/10 6.97 1567.50
Syzkaller48h 9/10 13.63 / Syzkaller48h 0/10 48.00 / Syzkaller48h 0/10 48.00 / Syzkaller48h 10/10 6.97 /

Syzdirect 10/10 0.0056 / Syzdirect 1/10 23.78 / Syzdirect 10/10 0.0142 / Syzdirect 10/10 0.0025 /

14 SyzGo 10/10 117 210.00 29 SyzGo 0/10 24.00 1.01 5 SyzGo 10/10 1.03 72.94 62 SyzGo 10/10 0.0028 111
Syzkallerz4h 9/10 3.97 714.00 Syzk;\ller24h 0/10 24.00 1.01 Syzkaller24h 10/10 0.81 56.92 Syzkaller24h 10/10 2.63 1053.33
Syzkd]ler48h 9/10 6.37 / Syzkaller48h 0/10 48.00 / Syzka]ler48h 10/10 0.81 / S)’Zkal]er48h 10/10 2.63 /

Syzdirect 10/10 0.0058 / Syzdirect 10/10 0.0133 / Syzdirect 2/10 20.23 /

15 SyzGo 10/10 0.0131 224 31 SyzGo 7/10 14.93 1120.00 46 SyzGo 1/10 22.45 111
Syzkaller24h 9/10 240 411.43 Syzkaller24h 6/10 13.58 1018.75 Syzkaller24h 1/10 23.85 118
Syzknller48h 9/10 4.80 / Syzkaller48h 7/10 22.50 / Syzkaller48h 3/10 42.27 /

The goal of patch testing is to test the patch code under different
contexts to discover potential patch-related bugs. Thus we take
patch coverage as the primary metric, i.e., whether the fuzzer
reaches the patched code. We set the code modified by the patch
commits as the target for DGF. For the patch commits which
modified several positions, we manually locate the code that is
the most relevant to the bug cause as the target position.

For the 62 patches, 49 can be reached by at least one fuzzer in 24
hours. As shown in Figure 8, SyzZDIRECT covers all patches touched
by other fuzzers. Specifically, SyzDIRECT, SyzGo, and Syzkallera,y,
cover 49, 36 and 39 patches, respectively. Compared to these fuzzers,
Syzkaller,gj, can only reach one more patch. Table 3 presents the
exact time when the fuzzer reaches each patch. On most patches,
SyzDIRECT reaches the patch location faster than all the baselines,
achieving an average of 680.9 speedup and 620.2 speedup compared
to Syzkaller,,;, and SyzGo.

In addition, during the patch testing, SyzDIRECT, SyzGo, and
Syzkaller discovered 15, 11, and 12 bugs, which are introduced by
the known faulty patches. In particular, SyzDIRECT discovered 4
more faulty-patch-introduced bugs that the other two baselines
could not detect. This result suggests that the enhanced directed

fuzzing capabilities brought by SyzDIRECT might help developers
find more patch-introduced bugs.

1 35 4 9

SyzGo Syzkallery,

SyzDirect

Figure 8: The Venn diagram of 24-hours patch testing results.

5.4 Failure Analysis of RQ1&RQ2

Among all the bugs and patches that SyzDIRECT fails to reproduce
or reach in §5.2 and §5.3, we manually analyzed their PoCs from
Syzbot, the static analysis results, and the fuzz logs to investigate
why SyzDIREcT failed. In total, we summarized three reasons for
these failures.

1640

CCS *23, November 26-30, 2023, Copenhagen, Denmark

e Incomplete dependent syscall inference (R1). SyzDIRECT
infers the syscalls that have an explicit dependency with the
entry syscall as related syscalls, which misses the syscalls with an
implicit dependency on the entry syscall. Due to the incomplete
dependent syscall inference, SyzDIRECT failed to generate the
required syscall sequence to reach the target site.

o Difficulties in generating proper arguments (R2). In some
cases, SYZDIRECT generates the proper syscall sequence but fails
to generate arguments that could trigger the bug or target code.
Though SyzDIRECT leverages the extracted argument conditions
to guide the argument mutation, there are still two challenges to
generating proper parameters. First, SyzZDIRECT’s static analysis
mainly focuses on the conditions of reaching the code instead
of triggering the bug. Thus SyzDIRECT is unable to generate
arguments that satisfy the strict constraints of triggering the bug
though the bug is reached. Second, generating object arguments
such as file system images remains very challenging for Syzkaller.
SyzDiIRrecT inherits the limitations of Syzkaller in this aspect.
Lack of deep analysis for related syscall (R3). Triggering
the target bug/site requires not only the correct arguments for
the entry syscall but also specific context and arguments for
the related syscall. SyZDIRECT’s static analysis does not perform
deep analysis for related syscall such as argument conditions
for related syscall to reach the target. As a result, SyzZDIRECT
may fail when the related syscall requires specific parameters or
complicated contexts to reach the target.

As the detailed case breakdown presented in Table 4, more than
half of the failures are caused by the lack of deep analysis of related
syscalls. In this paper, our main technical contributions are the
identification of the entry point and the argument refinement of
the entry syscalls. We leave the deep analysis of related syscalls as
future work. In §6, we will discuss how to improve SyzDIRECT.

Table 4: The cause breakdown of failure cases. R1 is
incomplete dependent syscall inference; R2 is difficulties in
generating proper parameters; and R3 is lack of deep analysis
for related syscall.

Reasons Bug Reproduction Patch Testing
R1 19 2
R2 19 6
R3 20 5
Total 59 13

5.5 RQ3: Contribution of Different Components

As introduced in §4, SyzDIRECT’s guidance on directed fuzzing
comes from three components: distance feedback, syscall identi-
fication, and syscall argument refinement. To evaluate the con-
tribution of each key component, we designed and implemented
two variants of SyzDIRecT. @ We designed SYZDIRECTNoArg, @
variant version of SYzDIRECT that disables the syscall argument
refinement component. In addition, the syscall parameter mu-
tation of SYZDIRECTNoArg preserves the default implementation
of Syzkaller. @ We designed SYZDIRECTN,Distances @ Variant
version of SyzDIRECT that disables the runtime distance feedback.

1641

Xin Tan, Yuan Zhang, Jiadong Lu, Xin Xiong, Zhuang Liu, and Min Yang.

That is, SYZDIRECT NoDistance Schedules the seed queues follow-
ing the Syzkaller’s default first-in-first-out order. We then reran
the bug reproduction experiments using SYZDIRECTNoArg and
SYZDIRECTNoDistance With a 24-hour limit and compared them
with SyzDIRECT. In addition, we repeated the experiments 10 times
for each case. Note that since syscall argument refinement is based
on the syscall identification, we could not only turn off the syscall
identification component. Fortunately, we can evaluate the effect
of syscall identification by comparing SYZDIRECTN,Arg and Syzgo.
The main difference between them lies in that SYZDIRECTNoArg
leverages the syscall identification.

The experimental results are shown in Figure 9. SyzDIRECT,
SYZDIRECTNoArg and SYZDIRECTNopDistance Successfully repro-
duced 42, 22 and 23 bugs in 24 hours, respectively. On the one
hand, the full version of SyzDIRECT covers nearly 100% more
bugs than SYzZDIRECTNoArg and SYZDIRECTNoDistance, Proving
that the syscall argument refinement and distance guidance are
very effective. On the other hand, SYZDIRECTNoArg cOVers nearly
100% more bugs than SyzGo. The result demonstrates that distance
guidance alone has little effect on DGF but can be significantly
improved by utilizing the entry syscalls and dependent syscalls
identified via the static analysis techniques proposed in the paper.
In a word, all three key design components contribute a lot to
SYZDIRECT.

44

40 Syzdirect g
e Syzdirect, piciance
361 | — Syzdirectyquy T
= Syzkaller 1
— Syzgo
28 - R

32 4

Cumulative sum of bugs

uTTE(hour)

Figure 9: Comparison of bug-reproduction for SyzDIRrRECT,
SYZDIRECTNoArgs and SYZDIRECTpNoDistance- SyzGo only
utilizes distance feedback. SyzDIRECTno4ry disables
the syscall argument refinement of the static analysis.
SYZDIRECT N Distance disables the runtime distance feedback.
SYzDIRECT 1, is the full version.

5.6 RQ4: Static Analysis Effectiveness

To provide a better understanding of the performance of SyzZDIRECT’s
static analysis, we evaluate the the effectiveness of entry point iden-
tification, dependent syscall inference, and argument refinement in

the bug reproduction dataset.

Effectiveness of entry point identification. The results of entry

point identification in the 100 bugs are presented in Figure 10.

The results demonstrate that SyzDIrecT identified an average of

3.61 entry syscalls from more than 4,000 syscalls for each bug. In

SyzDIRecT: Directed Greybox Fuzzing for Linux Kernel

particular, SyzDIRECT identified no more than 3 entry syscalls for
61% bugs.

It is difficult to prove that a syscall is impossible to reach
the target site. We have therefore adopted an estimation method
to measure the effectiveness of entry syscall identification. In
particular, we extracted the entry syscall used by the PoC as the
correct entry syscall and compare it with the syscalls identified by
SyzDIRecT, which shows the lower bound of our approach. The
result turns out that SyzDIRECT correctly located the entry syscall
used by the PoCs for all 100 bugs and identified an average of 2.61
more other syscalls.. These results demonstrate that SyZDIRECT’s
static analysis is able to locate the correct entry syscall and greatly
reduce the syscall entry exploration space for DGF.

Number of cases

o 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15

Number of identified target syscalls
Figure 10: Distribution of the numbers of identified entry

syscalls on each target bug.

Effectiveness of dependent syscall inference. SyzDIRECT infers
the dependent syscalls for each identified entry syscall and takes

the syscalls which the entry syscall depends on as related syscalls.

we count the number of pairs of entry syscall and related syscall
for each bug. As presented in Figure 11, 60% of the bugs have
no more than 10 pairs of entry syscall and related syscall. There
are six bugs that have more than 40 pairs. This is because their
entry syscalls require a generic resource object (such as a TTY
object) as the argument, causing Syzdirect to locate a large number
of producers as related syscalls. We also compared the syscalls
from the PoC with the SyzDIRECT’s results. It turns out that
SyzDIRECT correctly located the related syscall for 87 bugs. For
the remaining 13 cases, SYzDIRECT fails to infer the correct related
syscall because SYzDIRECT only considers the explicit dependencies
between syscalls. More interestingly, among the 13 failed cases,
SyzDiRecT still reproduces 6 bugs because the fuzzer generated the
correct related syscall via the seed mutation.

Effectiveness of argument refinement. To evaluate the syscall
argument refinement, We investigate whether SyZDIRECT extracts
valid argument conditions for the correct entry syscall used in
the PoC. In all, SyzDIRECT extracts argument conditions for the
correct entry syscall in 59 of the 100 target bugs. After manually
analyzing the bugs’ triggering process, we found that the extracted
conditions are necessary to reach the bug site in 54 bugs. In the other
5 bugs, the static analysis locates conditions that are not related to
triggering the bug because the extracted condition is on other kernel

1642

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

25

Number of cases

NN
NG

RN

Y N o A 3 O >\ N N
R A IR SR P
<

S S &
@ @3@‘@
Number of syscall pairs
Figure 11: Distribution of the numbers of extracted pairs of
entry syscall and related syscall on each target bug.

variables instead of the syscall arguments. For the 41 (100-59) bugs,
SYzDIRECT extracts no argument conditions due to two reasons.
First, some argument-related checking is very complicated and the
SyzDIRECT’s static analysis does not model such checks, thus failing
to collect the conditions. Second, SyzDIRECT s argument refinement
heavily depends on the Syzlang descriptions. For several syscalls,
Syzlang description does not provide detailed argument definitions,
thus the extracted conditions could not match any argument and
are dropped by our analysis.

6 LIMITATIONS AND FUTURE WORK

6.1 Inaccuracy of Static Analysis

SyzDIRecCT performs static analysis to identify various information
to reach the target site. Though SyzDIRECT exploits the design of
kernel and Syzlang descriptions to mitigate false positives of entry
point identification and false negatives of argument refinement, the
static analysis still has false positives and false negatives. Since we
have given dynamic fuzzing flexibility to explore syscalls other than
static analysis results, fuzzing can help correct part of the errors as
discussed in §5.6. Completely eliminating the inaccuracies of static
analysis is very challenging. On the one hand, it requires more
effective building block tools to perform perfect control and data
flow analysis for the kernel. On the other hand, it requires a full
understanding of the kernel’s semantics to match kernel functions
to Syzlang descriptions.

6.2 Further Analysis of Dependent Syscalls

Dependent syscalls and their arguments also affect whether the
target site can be triggered indirectly. As the first DGF for Linux
kernel, we focus on addressing the main challenges of the existing
works, i.e., entry point identification and argument refinement
for entry syscalls. We plan to explore how to identify dependent
syscalls more accurately and how to perform argument refinement
for dependent syscalls in the future.

6.3 Reliance on Syzlang

As introduced in §3 and §4, the static analysis of SyzZDIRECT does
rely on manually-defined Syzlang. Fortunately, some techniques

CCS *23, November 26-30, 2023, Copenhagen, Denmark

(e.g., SyzDescribe[20]) have been proposed to automatically gener-
ate syscall descriptions. With these techniques, SyzDIRECT could
still work when Syzlang goes out of sync.

7 RELATED WORK
7.1 Directed Greybox Fuzzing

There has been lots of work on directed greybox fuzzing. We
summarize the general DGF solutions in §2.1 and present their
limitations in dealing with OS kernels in §2.2. We propose SyzDirect
as a general DGF solution for the Linux kernel, which can serve a
variety of tasks, including crash reproduction, patch testing, etc.

In addition, there is some work [28, 44] that presents some
customized DGF techniques for specific tasks. KLAUS [44] aims
to assess the correctness of kernel patches via directed fuzzing.
In order to trigger the vulnerabilities related to incorrect patches,
KLAUS’s directed fuzzing mechanism not only focuses on reaching
specific program sites but also considers the order and type of patch-
altered read and write operations. GREBE [28] proposes a fancy
method to explore more error behaviors of a kernel bug. GREBE
presents a static analysis framework to identify critical kernel
objects for a bug and then introduces a directed fuzzing mechanism
that takes the hits of critical objects as feedback. Compared to
these works, SyzDIRECT is a general DGF and takes the code
reachability as the primary goal. Thus SyzDIRECT proposes several
new techniques to identify syscalls and argument constraints
required to reach specific program sites.

7.2 Kernel Fuzzing

Linux kernels are an important target in fuzzing. Unlike user-space
applications which take the main function as the entry point, the
Linux kernel has several different entry points, including system
calls, I/O control handler functions, and interrupt request handlers
functions. Since the syscall interface is the most widely used,
many efforts are devoted to testing the kernel through the syscall
interface [4, 18, 24, 34, 38, 40, 42]. Besides taking the code coverage
as the feedback, many works utilize different techniques such as
static analysis [34], symbolic execution [24], dynamic analysis [40]
and reinforcement learning [42] to improve testing efficiency. In
addition to testing the system call interface, researchers propose
some novel techniques to test other channels such as direct memory
access (DMA) [39], USB interface [35], and driver interruptions [21].
These works aim to cover more kernel code and bugs, while
SyzDiIRrecT focuses on testing a specific code location.

7.3 Syscall Identification for Fuzzing

In addition to generic kernel fuzzing which explores all syscalls,
there are also efforts that explore how to identify critical syscalls
based on different fuzzing scenarios. SemFuzz [45] aims to generate
proof-of-concept based on well-written bug reports. It applies
natural-language processing to extract the required syscalls from
bug reports and Linux git logs to guide fuzzing. GREBE [28]
proposes an automated approach to identify valuable syscalls for
exploring more error behaviors from the seed corpus during fuzzing.
However, it requires the PoC program as its initial corpus to
determine the initial range of syscalls. In a word, existing work
relies on auxiliary materials such as well-written bug reports and

1643

Xin Tan, Yuan Zhang, Jiadong Lu, Xin Xiong, Zhuang Liu, and Min Yang.

PoC programs to facilitate the syscall identification. In contrast, as
a general DGF tool, SyzDIRECT locates syscall the valuable syscalls
for a given target site in the absence of such material.

8 CONCLUSION

In this paper, we present SyzDIRECT, a DGF solution for the Linux
kernel. To address the unique challenges posed by the nature of
Linux kernel, SyzDIRECT employs novel static analysis to identify
the entry syscalls as well as the conditions on its arguments, which
greatly narrows down the exploration space for DGF. Combining
the distance-based feedback and statically extracted information,
SyzDIRecT adjusts its seed scheduling and seed mutation to guide
the fuzzer stress-test the target site. Our extensive evaluation on
upstream Linux kernels shows that SyzZDIRECT is more effective and
efficient than generic kernel fuzzers and existing DGF techniques
in crash reproduction and patch testing.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their insightful
comments that helped improve the quality of the paper. This
work was supported in part by the National Key Research and
Development Program (2021YFB3101200), National Natural Science
Foundation of China (62172105, 62172104, 62102091, 62102093),
and the Funding of Ministry of Industry and Information Technol-
ogy of the People’s Republic of China under Grant TC220H079.
Yuan Zhang was supported in part by the Shanghai Rising-Star
Program 21QA1400700 and the Shanghai Pilot Program for Basic
Research-Fudan University 21TQ1400100 (21TQ012). Min Yang is
the corresponding author, and a faculty of Shanghai Institute of
Intelligent Electronics & Systems and Engineering Research Center
of Cyber Security Auditing and Monitoring.

REFERENCES

[1] 2017. Patch of Dirty COW Vulnerability Incomplete, Researchers
Claim. https://www.securityweek.com/patch-dirty-cow-vulnerability-inco
mplete-researchers-claim/.

2022. K01311152: Linux kernel vulnerabilities CVE-2020-36322 and CVE-2021-
28950. https://my.f5.com/manage/s/article/K01311152.

2022. net/rds: fix warn in rds_message_alloc_sgs. https://git.kernel.org/pub/scm
/linux/kernel/git/torvalds/linux.git/commit/?id=ea010070d0a7497253d5a6f919
f6dd107450b31a.

2022. Trinity: Linux system call fuzzer. https://github.com/kernelslacker/trinity..
2023. Kernel.org Bugzilla. https://bugzilla.kernel.org.

2023. Syzkaller System Call Description. https://github.com/google/syzkaller/tr
ee/master/sys/linux.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.
In 26th Annual Network and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24-27, 2019. The Internet Society.

Jia-Ju Bai, Tuo Li, Kangjie Lu, and Shi-Min Hu. 2021. Static Detection of Unsafe
DMA Accesses in Device Drivers. In 30th USENIX Security Symposium, USENIX
Security 2021, August 11-13, 2021, Michael Bailey and Rachel Greenstadt (Eds.).
USENIX Association, 1629-1645.

Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. 2013. Thresher:
Precise Refutations for Heap Reachability. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery,
New York, NY, USA, 275-286. https://doi.org/10.1145/2491956.2462186

Marcel Béhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 2329-2344.
https://doi.org/10.1145/3133956.3134020

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.

(8]

[

[10

[11

https://www.securityweek.com/patch-dirty-cow-vulnerability-incomplete-researchers-claim/
https://www.securityweek.com/patch-dirty-cow-vulnerability-incomplete-researchers-claim/
https://my.f5.com/manage/s/article/K01311152
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ea010070d0a7497253d5a6f919f6dd107450b31a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ea010070d0a7497253d5a6f919f6dd107450b31a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ea010070d0a7497253d5a6f919f6dd107450b31a
 https://github.com/kernelslacker/trinity.
https://bugzilla.kernel.org
https://github.com/google/syzkaller/tree/master/sys/linux
https://github.com/google/syzkaller/tree/master/sys/linux
https://doi.org/10.1145/2491956.2462186
https://doi.org/10.1145/3133956.3134020

SyzDIRecT: Directed Greybox Fuzzing for Linux Kernel

[12

[13

[14

[15

[16]

[17]

[18]
[19]

[20]

[21

oo
ok

[23]

[24

[25

[26

[27]

[28]

[29]

[30]

In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (San Diego, California) (OSDI'08). USENIX Association, USA,
209-224.

Satish Chandra, Stephen J. Fink, and Manu Sridharan. 2009. Snugglebug: A
Powerful Approach to Weakest Preconditions. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(Dublin, Ireland) (PLDI ’09). Association for Computing Machinery, New York,
NY, USA, 363-374. https://doi.org/10.1145/1542476.1542517

Bo Chen, Zhenkun Yang, Li Lei, Kai Cong, and Fei Xie. 2020. Automated Bug
Detection and Replay for COTS Linux Kernel Modules with Concolic Execution.
In 2020 IEEE 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 172-183. https://doi.org/10.1109/SANER48275.2020.90
54797

Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a Desired Directed Grey-Box Fuzzer. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). Association for Computing Machinery, New
York, NY, USA, 2095-2108. https://doi.org/10.1145/3243734.3243849

Zhengjie Du, Yuekang Li, Yang Liu, and Bing Mao. 2022. WindRanger: a directed
greybox fuzzer driven by deviation basic blocks. In Proceedings of the 44th
International Conference on Software Engineering. 2440-2451.

Navid Emamdoost, Qiushi Wu, Kangjie Lu, and Stephen McCamant. 2021.
Detecting Kernel Memory Leaks in Specialized Modules with Ownership
Reasoning. In 28th Annual Network and Distributed System Security Symposium,
NDSS 2021, virtually, February 21-25, 2021. The Internet Society.

Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu, and
Zuoning Chen. 2020. GREYONE: Data Flow Sensitive Fuzzing. In Proceedings of
the 29th USENIX Conference on Security Symposium (SEC’20). USENIX Association,
USA, Article 145, 18 pages.

Google. 2022. Syzkaller. https://github.com/google/syzkaller.

Google. 2022. syzlang. https://github.com/google/syzkaller/blob/master/docs/s
yscall_descriptions_syntax.md.

Yu Hao, Guoren Li, Xiaochen Zou, Weiteng Chen, Shitong Zhu, Zhiyun Qian, and
Ardalan Amiri Sani. 2023. SyzDescribe: Principled, Automated, Static Generation
of Syscall Descriptions for Kernel Drivers. In 44rd IEEE Symposium on Security
and Privacy, SP 2023, San Francisco, CA, USA, May 22-25, 2023. IEEE.

Felicitas Hetzelt, Martin Radev, Robert Buhren, Mathias Morbitzer, and Jean-
Pierre Seifert. 2021. VIA: Analyzing Device Interfaces of Protected Virtual
Machines. In Annual Computer Security Applications Conference (Virtual Event,
USA) (ACSAC ’21). Association for Computing Machinery, New York, NY, USA,
273-284. https://doi.org/10.1145/3485832.3488011

Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles
Zhang. 2022. BEACON: Directed Grey-Box Fuzzing with Provable Path Pruning.
In 2022 IEEE Symposium on Security and Privacy (SP). 36-50. https://doi.org/10.1
109/SP46214.2022.9833751

kernel.org. 2022. kcov: code coverage for fuzzing. https://www.kernel.org/doc/h
tml/v5.9/dev-tools/kcov.html.

Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In 27th
Annual Network and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet Society. https://www.ndss-
symposium.org/ndss-paper/hfl-hybrid- fuzzing- on- the-linux-kernel/

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of the
International Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization (Palo Alto, California) (CGO ’04). IEEE Computer
Society, USA, 75.

Gwangmu Lee, Woochul Shim, and Byoungyoung Lee. 2021. Constraint-guided
Directed Greybox Fuzzing.. In USENIX Security Symposium. 3559-3576.

Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. 2022. Path-sensitive and alias-aware
typestate analysis for detecting OS bugs. In ASPLOS °22: 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, 28 February 2022 - 4 March 2022, Babak Falsafi,
Michael Ferdman, Shan Lu, and Thomas F. Wenisch (Eds.). ACM, 859-872.
Zhenpeng Lin, Yueqi Chen, Yuhang Wu, Dongliang Mu, Chensheng Yu, Xinyu
Xing, and Kang Li. 2022. GREBE: Unveiling Exploitation Potential for Linux
Kernel Bugs. In 2022 IEEE Symposium on Security and Privacy (SP). 2078-2095.
https://doi.org/10.1109/SP46214.2022.9833683

Dinghao Liu, Qiushi Wu, Shouling Ji, Kangjie Lu, Zhenguang Liu, Jianhai
Chen, and Qinming He. 2021. Detecting Missed Security Operations Through
Differential Checking of Object-Based Similar Paths. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (Virtual
Event, Republic of Korea) (CCS 21). Association for Computing Machinery, New
York, NY, USA, 1627-1644. https://doi.org/10.1145/3460120.3485373

Jian Liu, Lin Yi, Weiteng Chen, Chengyu Song, Zhiyun Qian, and Qiuping Yi.
2022. LinKRID: Vetting Imbalance Reference Counting in Linux kernel with
Symbolic Execution. In 31st USENIX Security Symposium, USENIX Security 2022,
Boston, MA, USA, August 10-12, 2022, Kevin R. B. Butler and Kurt Thomas (Eds.).

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

USENIX Association, 125-142.

Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-Call
Targets with Multi-Layer Type Analysis. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United Kingdom)
(CCS ’19). Association for Computing Machinery, New York, NY, USA, 1867-1881.
https://doi.org/10.1145/3319535.3354244

Dongliang Mu, Yuhang Wu, Yueqi Chen, Zhenpeng Lin, Chensheng Yu, Xinyu
Xing, and Gang Wang. 2022. An In-depth Analysis of Duplicated Linux Kernel
Bug Reports. In Network and Distributed Systems Security (NDSS) Symposium
2022.

Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-Driven Precondition
Inference with Learned Features. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Santa Barbara,
CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA,
42-56. https://doi.org/10.1145/2908080.2908099

Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. Moonshine: Optimizing
OS Fuzzer Seed Selection with Trace Distillation. In Proceedings of the 27th USENIX
Conference on Security Symposium (Baltimore, MD, USA). USENIX Association,
USA, 729-743.

Hui Peng and Mathias Payer. 2020. USBFuzz: A Framework for Fuzzing USB
Drivers by Device Emulation. In Proceedings of the 29th USENIX Conference on
Security Symposium (SEC’20). USENIX Association, USA, Article 144, 17 pages.
David A. Ramos and Dawson Engler. 2015. Under-Constrained Symbolic
Execution: Correctness Checking for Real Code. In 24th USENIX Security
Symposium (USENIX Security 15). USENIX Association, Washington, D.C., 49—
64. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/p
resentation/ramos

Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In Proceedings of the 23rd USENIX Conference on Security Symposium
(San Diego, CA). USENIX Association, USA, 861-875.

Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. KAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.
In Proceedings of the 26th USENLX Conference on Security Symposium (Vancouver,
BC, Canada) (SEC’17). USENIX Association, USA, 167-182.

Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. 2019. PeriScope: An Effective Probing and Fuzzing Framework for the
Hardware-OS Boundary. In Network and Distributed System Security Symposium
(NDSS).

Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting Chen,
and Aiguo Cui. 2021. HEALER: Relation Learning Guided Kernel Fuzzing. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(Virtual Event, Germany) (SOSP °21). Association for Computing Machinery, New
York, NY, USA, 344-358. https://doi.org/10.1145/3477132.3483547

Xin Tan, Yuan Zhang, Xiyu Yang, Kangjie Lu, and Min Yang. 2021. Detecting
kernel refcount bugs with two-dimensional consistency checking. In the 30th
USENIX Security Symposium (Security’21).

Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V.
Krishnamurthy, and Nael B. Abu-Ghazaleh. 2021. SyzVegas: Beating Kernel
Fuzzing Odds with Reinforcement Learning. In 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021, Michael Bailey and Rachel Greenstadt
(Eds.). USENIX Association, 2741-2758. https://www.usenix.org/conference/us
enixsecurity21/presentation/wang-daimeng

Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. 2020. Precisely
Characterizing Security Impact in a Flood of Patches via Symbolic Rule
Comparison. In 27th Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet Society.
Yuhang Wu, Zhenpeng Lin, Yueqi Chen, Dang K Le, Dongliang Mu, and Xinyu
Xing. 2023. Mitigating Security Risks in Linux with KLAUS: A Method for
Evaluating Patch Correctness. In 32st USENIX Security Symposium, USENIX
Security 2023. USENIX Association.

Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian, and
Bin Liang. 2017. SemFuzz: Semantics-Based Automatic Generation of Proof-of-
Concept Exploits. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (Dallas, Texas, USA) (CCS ’17). Association for
Computing Machinery, New York, NY, USA, 2139-2154. https://doi.org/10.1145/
3133956.3134085

Yizhuo Zhai, Yu Hao, Zheng Zhang, Weiteng Chen, Guoren Li, Zhiyun Qian,
Chengyu Song, Manu Sridharan, Srikanth V. Krishnamurthy, Trent Jaeger, and
Paul L. Yu. 2022. Progressive Scrutiny: Incremental Detection of UBI bugs in the
Linux Kernel. In 29th Annual Network and Distributed System Security Symposium,
NDSS 2022, San Diego, California, USA, April 24-28, 2022. The Internet Society.
Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai
Chen. 2020. FuzzGuard: Filtering out Unreachable Inputs in Directed Grey-box
Fuzzing through Deep Learning. In 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, 2255-2269. https://www.usenix.org/confere
nce/usenixsecurity20/presentation/zong

https://doi.org/10.1145/1542476.1542517
https://doi.org/10.1109/SANER48275.2020.9054797
https://doi.org/10.1109/SANER48275.2020.9054797
https://doi.org/10.1145/3243734.3243849
https://github.com/google/syzkaller
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://doi.org/10.1145/3485832.3488011
https://doi.org/10.1109/SP46214.2022.9833751
https://doi.org/10.1109/SP46214.2022.9833751
https://www.kernel.org/doc/html/v5.9/dev-tools/kcov.html
https://www.kernel.org/doc/html/v5.9/dev-tools/kcov.html
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://doi.org/10.1109/SP46214.2022.9833683
https://doi.org/10.1145/3460120.3485373
https://doi.org/10.1145/3319535.3354244
https://doi.org/10.1145/2908080.2908099
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://doi.org/10.1145/3477132.3483547
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://doi.org/10.1145/3133956.3134085
https://doi.org/10.1145/3133956.3134085
https://www.usenix.org/conference/usenixsecurity20/presentation/zong
https://www.usenix.org/conference/usenixsecurity20/presentation/zong

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Directed Greybox Fuzzing
	2.2 DGF for OS Kernels

	3 Approach Overview
	4 Design
	4.1 Entry Point Identification
	4.2 Syscall Dependency Inference
	4.3 Syscall Argument Refinement
	4.4 Distance Calculation and Instrumentation
	4.5 Directed Kernel Fuzzing with Template Guidance

	5 Evaluation
	5.1 Evaluation Setup
	5.2 RQ1: Bug Reproduction
	5.3 RQ2: Patch Testing
	5.4 Failure Analysis of RQ1&RQ2
	5.5 RQ3: Contribution of Different Components
	5.6 RQ4: Static Analysis Effectiveness

	6 Limitations and Future work
	6.1 Inaccuracy of Static Analysis
	6.2 Further Analysis of Dependent Syscalls
	6.3 Reliance on Syzlang

	7 Related work
	7.1 Directed Greybox Fuzzing
	7.2 Kernel Fuzzing
	7.3 Syscall Identification for Fuzzing

	8 Conclusion
	References

