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Identifying User-Input Privacy in Mobile
Applications at a Large Scale
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Abstract— Identifying sensitive user inputs is a prerequisite
for privacy protection in mobile applications. When it comes to
today’s program analysis systems, however, only those data that
go through well-defined system Application Program Interface
(system controlled resources) can be automatically labeled. In
this paper, we show that this conventional approach is far from
adequate, as most sensitive inputs are actually entered by the
user at an app’s runtime. In this paper, we inspect 13,072 top
apps from Google Play, and find that 38.69% of them involve
sensitive user inputs. Just like system controlled resources, these
data are also exposed to a series of privacy leakage threats. For
these sensitive user inputs, manually marking them involves a
lot of efforts, impeding a large-scale, automated analysis of apps
to defend against potential privacy leakage. To address this
important issue, we present UIPicker, an adaptable framework
for automatic identification of sensitive user inputs as the first
step. UIPicker is designed to detect the semantic information
within the application layout resources and the program code,
and further analyze it for the locations where security-critical
information may show up. This approach can support a variety
of existing security analysis on mobile apps. We evaluate our
approach over randomly selected popular apps on Google Play.
UIPicker is able to accurately label sensitive user inputs most
of the time, with 94.0% precision and 96.0% recall.

Index Terms— Android security, privacy protection, user input
privacy, privacy leakage.

I. INTRODUCTION

PROTECTING user’s sensitive data within mobile applica-
tions (apps for short) has always been at the spotlight of

mobile security research. Lots of program analysis techniques
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Fig. 1. Examples of User-Input Privacy (UIP) Data. (a) requires user to input
his/her detailed address for delivering products. (b) requires user to input the
credit card credential to accomplish the payment process.

have been developed, or applied to evaluate potential infor-
mation leakage for mobile apps, either dynamically [1]–[3]
or statically [4], [5], or in a hybrid way [6]. Besides, access
control mechanisms [7]–[10] have also been proposed to
enforce fine-grained security policies on the way that private
user data can be handled on a mobile system.

The complete labelling of sensitive user data is critical to
those privacy protection mechanisms. Some of the privacy
data are provided by the operating system (OS), e.g., the
GPS locations that can be acquired through system calls like
getLastKnownLocation(). Protection of such informa-
tion, which we call System Centric Privacy data, can leverage
relevant data-access APIs to set the security tags for the data.
More complicated user privacy is the content the user enters to
a mobile app through its user interface (UI), such as credit-card
information, username, password, etc. Figure 1 shows two
UI screens that contain sensitive user inputs in the Amazon
Online Store [11] app. Safeguarding this type of information,
called User-Input Privacy (UIP) data in this paper, requires
understanding its semantics within the app, before its locations
can be determined, which cannot be done automatically using
existing techniques.

Just like the system-controlled user data (e.g., GPS), the
private content entered through the UI is equally vulnera-
ble to a variety of information leakage threats. It has been
reported [12]–[15] that adversaries can steal sensitive user
inputs through exploiting the weaknesses inside existing pro-
tection mechanisms. For example, fraud banking apps to
steal user’s financial credentials with very similarity UIs.
Besides, less security-savvy developers often inadvertently
disclose sensitive user data, for example, transmitting plaintext
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content across public networks, which subjects the apps to
eavesdropping attacks. Recent work further shows that side
channels [16] and content-pollution vulnerabilities [17] can be
leveraged to steal sensitive user inputs as well. In our research,
we found that among 13,072 top Google-Play apps, 38.69%
require users to enter their confidential information.

Although the UIP data urgently needs protection, the big
difference with system-controlled user data makes its technical
solution by no means trivial. Unlike system-controlled user
data, which can be easily identified from a few API func-
tions, the UIP data cannot be found without interpreting the
context and semantics of UIs. A straightforward approach is
to mark all the inputs as sensitive [4], which is clearly an
overkill and will cause a large number of false positives. Prior
approaches [4], [6], [18] typically rely on users, developers or
app analysts to manually specify the contents within apps that
need to be protected. This requires intensive human interven-
tion and does not work when it comes to a large-scale analysis
of apps’ privacy risks. To protect sensitive user inputs against
both deliberate and inadvertent exposures, it is important to
automatically recognize the private content the user enters
into mobile apps. This is challenging due to the lack of fixed
structures for such content, which cannot be easily recovered
without analyzing its semantics.

To address this issue, we therefore propose a novel frame-
work called UIPicker for the automatic, large-scale User-Input
Privacy identification within Android apps. Our approach
leverages the observation that most privacy-related UI ele-
ments are well-described in layout resource files or annotated
by relevant keywords on UI screens. These UI elements
are automatically recovered in our research with a novel
combination of several natural language processing, machine
learning and program analysis techniques. More specifically,
UIPicker first collects a training corpus of privacy-related
contents, according to a set of keywords and auto-labelled
data. Then, it utilizes the content to train a classifier that
identifies sensitive user inputs from an app’s layout resources.
It also performs a static analysis on the app’s code to locate
the elements that indeed accept user inputs, thus filtering out
those irrelevant elements that actually do not contain private
user data, even though apparently they are also associated with
certain sensitive keywords, e.g., a dialog box explaining how
a strong password should be constructed.

We implemented UIPicker based on python NLTK mod-
ule [19] with DroidSafe [20], and built our identification model
using 13,072 popular Google Play apps. Our evaluation of
UIPicker over 500 randomly selected popular apps shows that
it achieves a high precision (94.0%) and recall (96.0%).

The identification results based on classified top free apps
show that in some app categories, more than half of apps
contain UIP data. With the help of UIPicker, we also conduct
a quantitative measurement about the UIP data distribution
in different datasets collected in different times, which helps
us understand how the existence of UIP data changes with
apps’ quick evolvement. The comparative results between
different datasets ranging from 2012 to 2014 shows that the
amount of UIP data increases quickly among app-markets.
Further protection of these UIP data is in urgent need.

UIPicker can be used by the OS vendors or users to protect
sensitive user data in the presence of untrusted or vulnerable
apps. It can also be easily deployed to support any existing
static and dynamic taint analysis tools as well as access
control frameworks for automatic labelling of private user
information. Although the prototype of UIPicker is imple-
mented for Android, the idea can be applied to other platforms
as well.

A. Contributions
We outline the paper’s contributions below:
• New Understanding: We raise the issue that compared

with system-controlled data, UIP data are equally impor-
tant and urgently needs protection. We show the numer-
ous existences of UIP data in real-world app markets
across all categories. We also measure the distribution
of UIP data with multiple datasets collected in different
periods, which fully validates its importance in practice
and helps us gain insights.

• New techniques: We propose UIPicker, a series of tech-
niques for automatically identifying UIP data. We use
NLP techniques to automatically cluster privacy-related
texts from a corpus of android layout resources, and com-
bine machine-learning with program analysis techniques
to identify sensitive user inputs at a large scale. Lots of
existing tools can benefit from UIPicker for better privacy
recognition in mobile applications.

• Design, implementation, and evaluation: We conduct a
series of evaluations to show the effectiveness and pre-
cision of UIPicker. The prototype of UIPicker shows
that compared with other alternative approaches, the
techniques introduced in the paper achieve good results
in practice, and also are highly extensible.

This work is an extension of the conference version
appearing in the Proceedings of the 24th USENIX Security
Symposium [21]. Compared with the conference version of the
paper, this manuscript employs a new UI classification mech-
anism for privacy-related text analysis to avoid the required
human intervention for removing noisy texts, and performs a
new experiment to evaluate its effectiveness. This manuscript
also adopts other changes in different steps to reduce the
false negatives of the framework. This manuscript presents
a more clear description about the identification approach, as
well as a more detailed evaluation and experiments. Besides,
this manuscript introduces a new trend analysis about UIP
data distribution variations between different datasets ranging
from 2012 to 2014.

The rest of this paper is organized as follows. Section II
gives the motivation and challenges for identifying UIP data,
then introduces background knowledge about Android layout.
Section III gives an overview of UIPicker and illustrates
the key techniques. Section IV describes the identification
approach step by step. Section V gives some implementation
details and Section VI gives evaluation about the framework.
Section VII details its application scenarios and Section VIII
discusses the limitations. Section IX and X describes related
work and concludes our work.
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II. MOTIVATION

In this section, we first provide a motivating example of
users’ sensitive input in two UI screens and security impli-
cations about UIP data, then we investigate challenges in
identifying them. We also give some background knowledge
about Android layout resources for further usage.

A. Security Implications of UIP Data

Most of the UIP data are personal information that users
are unwilling to expose to public, or any 3rd parties. However,
various threats to the UIP data exist in the real world. Here
we summarize the security implications as follows.

1) Unintended Exposures: For benign apps, many of them
require users to input sensitive information for providing
customized functionalities, but failed to keep their security.
Existing report [14] showed that less security-savvy developers
transmit user data in plain text, which indeed include sensitive
user inputs. Furthermore, previous work [22] showed that
a large number of apps implement SSL with inadequate
validations (e.g., apps contain code that allows all hostnames
or accepts all certificates). Insecure SSL transmission could be
more dangerous because they may carry over critical sensitive
data in most cases like banking accounts, passwords, etc.

2) Deliberate Harvesting: Malware can steal sensitive user
inputs by exploiting the weakness inside existing protection
mechanisms. For example, fraud apps mimic the UIs of pop-
ular apps for seducing users to input their sensitive data [12],
resulting heavy financial losses. Besides, it is quite noticeable
that ad-plugins are also capable of reading user inputs [23]
because they share the same privilege with the apps it hosted.
Recent work [24], [25] showed that malicious ad libraries can
infer sensitive information such as users’ search history about
pharmacy. The significant correlation between ads and user
profiles reveals that 3rd-parties are very interested in sensitive
user inputs such as search history.

B. Challenges

Given the situation that UIP data can be highly security-
sensitive and once improperly exposed, could have serious
consequences, little has been done so far to identify them
at a large scale. The key issue here is how to automatically
differentiate sensitive user inputs from other inputs. In our
research, we check the top 350 free apps on Google Play, then
we find on average each of them contains 11 fields across 6
UI screens to accept user inputs; however many of these fields
do not accommodate any sensitive data. Static analysis tools
like FlowDroid [4] only provide options to taint all user inputs
as sensitive sources (e.g., Element.getText()). Analyzing in this
way would get fairly poor results because sensitive user inputs
we focus are mixed in lots of other sources we do not care.
Such problem also exists when it comes to runtime protection
about users’ sensitive inputs. For example, in order to prevent
sensitive user inputs insecurely leaking out, an ideal solution
would be warning users when such data leave the device.
Alerting all user inputs in this way would greatly annoy the
users and reduce the usability because many normal inputs do
not need to be treated as sensitive data.

UIP data can be easily recognized by human. However, it is
quite challenging for the machine to automatically identify
with existing approaches in large-scale. For runtime monitor-
ing, unlike the highly structured system-controlled data, sensi-
tive user inputs can not simply matched by regex expressions
when users fill them into the screen. Besides, like any normal
inputs, privacy-related inputs are sparsely distributed in various
layouts in a single app, touching such data may require login
or complex trigger conditions. It is very difficult for automatic
testing tools like [22] and [26] to traverse such UI screens
exhaustively without manual intervention. Identifying UIP data
by traditional static analysis approaches is also impractical.
In program code’s semantic, sensitive input does not have
explicit difference compared to normal input. Specifically, all
of such input data can be accepted by apps, then transmitted
out or saved in local storage in the same way, which makes it
difficult to distinguish them through static analysis approaches.

In this work, we identify UIP data from another perspec-
tive, it analyzes texts describing sensitive inputs other than
data themselves. This is because texts in UI screens usually
contain semantic information that describes the sensitive input.
Besides, layout description texts in layout files also contain
rich semantic information to reveal what the specific element
is intended to be in the UI screen by developers. UIPicker
is primarily designed to help identify UIP data in benign
apps. The identification results can be further used for security
analysis or protection of users’ sensitive data.

C. Android Layout Background

In Android, a Layout (User Interface) is made up of some
basic elements (e.g., TextView, EditText, Button) to display
information or receive input. Android mainly uses XML to
construct app layouts, thus developers can quickly design
UI layouts and screen elements they wish to contain, with
a series of elements such as buttons, labels, or input fields.
Each element has various attributes or parameters to provide
additional information about the element.

Figure 2 shows some layout resources used for constructing
the UI in Figure 1(b). The entry is a layout file named
add_credit_card.xml. It contains two EditText elements
to accept the credit card number and the card holder’s
name, three Dropdown list elements (named as Spinner
in Android) to let user select card type and expiration
date. In the EditText for requesting the card number, it
uses @id/opl_credit_card_number to uniquely identify this
element for the app. Syntax like android:inputType=number
suggests that this EditText only accepts digital input.
There is also a TextView before EditText with attribute
android:text=@string/opl_new_payment_credit_card_name,
which means the content showed in this label will
be the referenced string “Cardholderś Name” in
/res/values/stings.xml.

III. SYSTEM OVERVIEW

In this section, We first clarify our identification scope of
UIP data, then we give an overview of UIPicker as well as
the key techniques applied in our framework.
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Fig. 2. A sample of Android layout description resources.

A. Identification Scope

UIP data could be any piece of data that users or app
analysts consider to be sensitive from inputs. In the current
version of UIPicker, we consider the following 3 categories:

• Account Credentials and User Profiles: Information
that reveals users’ personal characters when they login
or register, which includes but not limited to data such
as username, user’s true name, password, email address,
phone number, birth date.

• Location: Plain texts that represent address information
related to users. Different from system derived location
(latitude and longitude), what we focus here is location
data from users’ input, e.g., the delivering address in
shopping apps or the billing address for credit cards.

• Financial: Information related to users’ financial activ-
ities, e.g., credit card number, expire date and security
code.

There are other various sensitive inputs like search history,
vehicle identification number, or any personal data that closely
related to user’s privacy. In this work, we limit the identifi-
cation scope to those 3 categories because they cover most
existing UIP data in current apps, and are easy for statistical
illustration. As further discussed in Section IV-B, by assigning
the type of UIP data, UIPicker can be easily extended to
identify other types of sensitive user inputs. Also note that in
this work we do not deal with malicious apps that intentionally
evade our analysis, e.g., malware that constructs its layout
dynamically or uses pictures as labels to guide users to input
their sensitive data.

B. Overall Architecture

As Figure 3 shows, UIPicker is made up of four components
to identify layout elements which contain UIP data step

by step. The major components can be divided into two phases:
model-training and identification. In the model-training phase
(Stage 1,2,3), UIPicker takes a set of apps to train a classifier
for identifying elements contain UIP data from their textual
semantics. In the identification Phase (Stage 1,3,4), UIPicker
uses both the trained classifier (Stage 3) and program behavior
(Stage 4) to identify UIP data elements.

1) Pre-Processing: In the Pre-Processing module, UIPicker
extracts the selected layout resource texts and reorganizes them
through natural language processing (NLP) for further usage.
This step includes word splitting, redundant content removal
and stemming for texts. Pre-Processing can greatly reduce
the format variations of texts in layout resources caused by
developers’ different coding practice.

2) Privacy-Related Texts Analysis: For identifying UIP data
from layout resources, the first challenge is how to get
privacy-related texts. One can easily come up with a small
set of words about UIP data, but it is very difficult to get
a complete dictionary to cover all such semantics. Leverag-
ing an English dictionary like WordNet [27] for obtaining
semantically related words is limited in the domain of our
goals. Many words that are semantically related in privacy
may not be semantically related in English, and many words
that are semantically related in English may not appear in
layout resource texts as well. For example, both “signup” and
“register” represent to create a new account in an app’s login
screen, but they can not be correlated from a dictionary like
WordNet.

UIPicker expands UIP semantic texts with a few
privacy-related seeds based on a specific feature extraction
approach. It first automatically labels a subset of layouts
which could contain UIP data by heuristic rules, then extracts
privacy-related semantics from such layouts by applying
clustering algorithms. It helps us to automatically extract
privacy-related texts from a given set of layout resources.
As a result, these inferred texts can be used as features for
identifying whether an element is privacy-related or not in the
next step.

3) UIP Data Element Identification: Based on the given set
of privacy-related textual semantics from the previous step,
to what extent an element contains privacy-related texts can
be identified as sensitive? As previous work [28] showed,
purely relying on keyword-based search would result in a
large number of false positives. For example, sensitive item
“username” could always be split into “user” and “name” as
two words in apps, and none of the single word can represent
“username”. Besides, certain words like “address” have a
confounding meaning. For instance, the phrase “address such
problem” showed in a layout screen does not refer to location
information.

In this step, UIPicker uses a supervised machine learning
approach to train a classifier based on a set of semantic
features generated in the previous stage. Besides, it fully takes
the element’s context in the whole layout into consideration
for deciding whether the element is privacy-related or not.
With this trained model, for any given layout element with
description texts, UIPicker can tell whether it is related to
UIP from its textual semantics.
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Fig. 3. System overview of UIPicker.

Fig. 4. Examples of static elements which need to be filtered out.

4) Behaviour Based Result Filtering: Besides identifying
elements that contain UIP data from their textual semantics,
we also need to check whether a privacy-related element is
actually accepting user input.

In other words, we need to distinguish user inputs from
other static elements such as buttons or labels for information
illustration as showed in figure 4. Although Android defines
EditText for accepting user input, developers can design any
type of element by themselves (e.g., customized input field
named as com.abc.InputBox). Besides, apps also receive user
inputs in an implicit way through other system defined ele-
ments without typing the keyboard by users. For example,
in Figure 1(b), the expire date of credit card is acquired by
selecting digits from the Spinner element.

We observe that for each privacy-related element identified
by UIPicker in the previous stage, the data should be acquired
by the app with user’s consent if it is actually accepting
user input. For example, the user clicks a button “OK” to
submit data he/she inputs. When reflected in the program code,
the user input data should be acquired by the system under
certain event trigger functions. We use static code analysis to
check whether an arbitrary element can be matched with such
behaviour, thus filter out irrelevant elements we do not expect.

IV. IDENTIFICATION APPROACH

In this section, we explain the details of four stages in
UIPicker’s identification approach.

TABLE I

SELECTED LAYOUT RESOURCE SAMPLES

A. Stage 1: Pre-Processing

1) Resource Extraction: We first decode the Android APK
package with apktool [29] for extracting related resource files
we need. Our main interest is in UI-related content, thus for
each app, we extract UI Texts and Layout Descriptions from
its decompiled layout files.

• UI Texts. UI texts are texts showed to users in the
layout screen. In Android, most of such texts are
located in /res/values/strings.xml and referenced by syn-
tax @String/[UI text identifier]. Besides, we also extract
constant strings in app code which are displayed in the
UI dynamically. They are commonly assigned as the
parameters of method UIObject.setText.

• Layout Descriptions. Layout Descriptions are texts
only showed in layout files located in /res/layout/. For
these texts, we consider all strings starting with syntax
@id and @String to reflect what the element is intended
to be from their textual semantics.

We extract these groups of resources for further analysis
because these selected targets can mostly reflect the actual
content of the app’s layout. For example, the selected resources
about Amazon’s “Add Credit Card” screen in Figure 1(b) are
showed in Table I.

Given the UI-related content, we first split words connected
with delimiters or CamelCase like PhoneNumber. Then, we
remove Non-English strings, non-text characters like digits,
punctuation, and stop words, because these words do not
carry any sensitive information to users. After that, we use
Stemming described in [30], to transform inflected (or some-
times derived) words to their stems. For example, we change
the words like secured, security into the uniformed format
secure. All these steps can greatly improve the results of later
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Fig. 5. Text samples with Pre-Processing.

identification processes since they reduce the number of words
and their variants in the selected resources.

Figure 5 shows part of texts before and after pre-processing
for Amazon’s “Add credit card” layout file. As we can see,
all texts concatenated by ‘_’ are split into separated words,
“edthomephonecontact” is split into “edt”, “home”, “phone”
and “contact” instead. We also transform words like “forgot”,
“forget” into a single uniformed format as “forget”.

B. Stage 2: Privacy-Related Texts Analysis

In this stage, we use Chi-Square test [31] to extract
privacy-related texts from a subset of specific UI layouts.
The intuition here is that privacy-related terms prefer to be
correlated in specific UI such as the login, registration or
settings page of the app. If some words appear together in
these UI, they are likely to have semantic relevance to users’
sensitive information. Thus, we use such layouts to extract
privacy-related texts in contrast to other normal layouts.

1) Chi-Square Based Clustering: Chi-Square test is a statis-
tical test that widely used to determine whether the expected
distributions of categorical variables significantly differ from
those observed. Specifically in our case, it is leveraged to
test whether a specific term on UI screens is privacy-related
or not according to its occurrences in two opposite datasets
(privacy-related UI or non privacy-related UI).

Here we choose UI texts rather than layout descriptions
to generate privacy-related texts due to the following reasons.
First, layout descriptions are not well structured as the naming
behaviours vary very differently between apps (or developers),
while UI texts are in a relatively uniformed format, thus
making it easy to extract privacy-related texts from them. For
example, a layout requesting a user’s password must contain
term “password” in the UI screen, while in layout descriptions
it could be text like “pwd”, “passwd”, “pass”. Second, as
layout descriptions aim for describing layout elements, it may
contain too much noisy texts like “button”, “text” which would
bring negative impact to the privacy-related text extraction.

Figure 6 shows how UIPicker generates privacy-related
texts. First, we give a few words that can explicitly represent
usersâŁ™ sensitive input we focus (e.g., email, location, credit
card), and we call them initial seeds. Each layout sample is
made up of a set of UI texts in its layout screen. Then, the
initial seeds will be used to identify whether a specific layout
sample is privacy related or not. Here we use heuristic rules
to automatically classify layout samples. Table II shows what

Fig. 6. Privacy-related text clustering.

TABLE II

INITIAL SEEDS USED FOR PRIVACY-RELATED TEXTS CLUSTERING

we used as initial seeds for inferring privacy-related texts for
privacy categories that defined in Section III-A. These seeds
are easy to come up with by human instinct regarding to
different privacy categories. As showed in the last row of the
table, one can also easily configure other topic like “Health”
to expand the identification scope of UIPicker.

2) Heuristic-Based Automatic UI Classification: Our
heuristic rules for UI classification come from the observation
that when a UI layout contains several user sensitive keywords,
it is likely that the other keywords on the same page are
also privacy-related. Given a UI layout, we first scan its text
resources with the text seeds. The more privacy-related texts
hit in a given UI, the more it is likely to be privacy-related.
Thus, for those layout samples whose scan hits are no less
than a pre-defined threshold, we label them as privacy-related
(positive samples). Because the number of seeds varies from
3 to 5, our current setting of the threshold does not exceed
4. Especially, since we only have 3 seeds for the category
“Health”, the threshold on type Health is also set to 3. On the
other hand, for layout samples that do not contain any of
texts appeared in the initial seeds, we label them as privacy-
irrelevant (negative samples). Note that we do not label those
layouts containing only a single or two initial seeds as positive
or negative because a single word is insufficient for us to
identify whether the layout is privacy-related or not.

Based on the two classified sample sets, for all distinct
words appearing in positive samples, we use Chi-Square test
and rank their results in a descending order. As a result,
texts with higher Chi-Square scores mean they are more
representative as privacy-related, which can easily be picked
up from the top-ranked words in the test results.

3) Alternative Approaches: Other alternatives like
Bag-of-Words and Skip-Gram architectures are often
used for word-clustering for a given topic as well. In our
research, we compared our Chi-Square based text clustering
approach with these two popular alternatives. However, both
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TABLE III

SENSITIVE ATTRIBUTE VALUES IN LAYOUT DESCRIPTIONS

of them are are found to be less effective due to our specific
scenarios, as we further discuss in Section VI-B.

C. Stage 3: UIP Data Element Identification

UIPicker uses supervised learning to train a classifier based
on a subset of element samples with privacy-related semantic
features. As a result, for a given unclassified UI element, this
step could identify whether it is semantically privacy-related
from its description texts.

1) Feature Selection: We use privacy-related texts inferred
from the previous stage as features for the identification
module. A single word alone usually does not provide
enough information to decide whether a given element is
privacy-related. However, all such features in combination
can be used to train a precise classifier. The main reason
why these features work is that both UI texts and Layout
Descriptions do in fact reveal textual semantic information,
which a machine learning approach such as ours can discover
and utilize. Besides, we also take semantic features of layout
structure into consideration: the texts of this element’s siblings.
We observe that many elements are described by texts in its
siblings. For example, In Figure 1(b), most of input fields are
described by static labels which contain privacy-related text
as instructions on top of them.

The classifier works on a matrix organized by one column
per feature (one word) and one row per instance. The dimen-
sion for each instance is the size of our feature set (the number
of texts from the previous step). The additional column indi-
cates whether or not this instance is a privacy-related element.

2) Training Data: The training data is automatically con-
structed as follows: First, we label all elements with sen-
sitive attributes,1 shown in table III as positive samples
since they are obviously a subset of UIP data elements
which Android defines. For other types of privacy-related
elements(e.g., Financial) that are not covered by any sensitive
attributes that Android provides, we leverage the two classi-
fied layout sample sets in Stage 2 to automatically generate
the training data. Specifically, for any input element from
privacy-related layout samples, if it contains any keywords
inside the initial seeds, we label it as a positive sample.
On the other hand, for any input element which comes from
privacy-irrelevant layout samples and does not contain any of
the initial seeds, it is selected as a negative sample.

1In some older apps, developers also use specific attributes like
“android:password=True” to achieve the same goal as inputType. We list them
in Table III and call them sensitive attribute values as well for simplicity.

Fig. 7. Sample codes for requesting a user’s credit card number.

3) Classifier Selection: We utilize the standard support
vector machine (SVM) as our classifier. SVM is widely used
for classification and regression analysis. In our case, for an
unclassified unknown layout element with corresponding fea-
tures (whether or not containing privacy-related texts extracted
in the previous step) the classifier can decide whether it
contains UIP data or not from its textual semantics.

D. Stage 4: Behaviour Based Result Filtering

As a non-trivial approach for identifying UIP data, for
each element identified as privacy-related from its layout
descriptions, UIPicker inspects the behaviors reflected in its
program code to check whether it is accepting user inputs,
thus filtering out irrelevant elements from the identification
results in the previous step.

User input data is generated based on a user’s inter-
actions with the app during runtime. In other words, the
data will be acquired by the app under the user’s consent.
In Android, to get any data from a UI screen is achieved by
calling specific APIs. Getting such data under user consent
means these APIs are called under user-triggered system
callbacks. For example, code fragments in Figure 7 shows
the behavior reflected in the program when the app gets the
user’s credit card number in Figure 1(b). Here, the input
field IB is defined by IB=findViewById(21...1) in activity
addCreditCard. When the user clicks the “Add your card”
button, in the program code, the OnClick() function in class
AddCardListener() will be triggered by pre-registered sys-
tem callback submitBtn.setOnClickListener(). Then, it invokes
sendText(IB), which sends the inputBox’s object by parameter,
and finally gets the user’s card number by IB.getText(). One
might consider why don’t catch UIP data simply by checking
whether the element is invoked by getText() API. The reason is
that sometimes developers may also get values from UI screens
like static text labels as well as user inputs, resulting in false
negatives for our identification approach.

V. IMPLEMENTATION

A. Dataset

Two datasets are used as the training set and evaluation set
respectively. For the training set, we crawled top 500 apps
from Google Play Store based on its pre-classified 35 cat-
egories in Oct. 2014, that is, 17,425 apps in total. For the
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TABLE IV

PART OF INFERRED PRIVACY-RELATED TEXTS FROM CHI-SQUARE TEST

evaluation dataset, we crawled another 13,072 apps collected
from Google Play in Dec. 2015, which are top 540 apps among
25 app categories. Since 11 app categories are merged into
a single category (Game) during our second crawling, our
second dataset is smaller than the first one.

We implement the prototype of UIPicker as a mix of Python
Scripts and Java code. The first three steps of UIPicker are
developed using Python with 3,624 lines of code (LOC) based
on the NLTK [19] module. The last step, static analysis
for result filtering, is implemented in Java, which extends
DroidSafe [20] and introduces additional 1020 LOCs. All
experiments are performed on a 32 core CentOS server with
Linux 3.10 kernel and 192GB memory.

For privacy-related text analysis, the initial seeds for each
privacy category are assigned as texts in Table IV. For
each privacy category, we conduct the privacy-related UI
classification, and Chi-Square test using apps in the training
dataset. Since Android allows developers to use nested layout
structures for flexibility, we also group sub-layout UI texts
into their root layouts. For each privacy category, we collect
the top 100 words from its Chi-Square test results. Over
all, UIPicker extracts 245 privacy-related terms from 13,308
distinct words (some texts may overlapped in different privacy
categories). We list part of them in Table IV corresponding
to the privacy category they belong to. Such data are used
as features for privacy-related element identification in the
follow-up step.

The SVM classifier is implemented with scikit-learn [32]
in poly kernel. We optimize the classifier parameters
(gamma=50 and degree=3) for performing the best results.

For each element identified as privacy-related by the
SVM classifier, UIPicker conducts static taint analysis
to check whether it satisfies specific behavior described
in Section IV-D. Since DroidSafe successfully handles
android life cycle (system event based callbacks) and UI
widgets, the call graph and invocation context for each
method should be both precise and complete. We get each
element’s def-use propagation chain that starts with function
findViewById([elementId]) and ends in getText(). As a result,
for any element’s info-flow path which contains system event
function like OnClick(), the element can be identified as
accepting user input.

VI. EVALUATION

In this section, we present our evaluation results. We first
show the performance of UIPicker in Section VI-A, and

TABLE V

ALTERNATIVE APPROACHES FOR PRIVACY-RELATED TEXTS CLUSTERING

evaluate the key technique applied in UIPicker, the
privacy-related text clustering approach, in Section VI-B.
Then, we discuss the effectiveness and precision of UIPicker
in Section VI-C and Section VI-D. We compare our approach
with a relevant work, SUPOR, in Section VI-E. Then a trend
analysis about UIP data distribution is given in Section VI-F,
which shows that the number of apps containing UIP data
increases quickly, thus the protection of such data is in urgent
need.

A. Performance

During our experiment, the training phase of the clas-
sifier takes 2.5 hours, and the identification phase takes
23.5 hours (6.47 seconds per app). Pre-processing time for
apps is included in both phases. Among the overhead of our
approach, behaviour based result filtering (Stage 4) is the
most time-consuming one, while other parts of our analysis
(including pre-processing, privacy-related texts analysis and
UIP data element identification) take only 24% of the total
time. Since UIPicker mainly targets for customized system
vendors or security analysts, we consider such overhead quite
acceptable.

B. Privacy-Related Texts Clustering

To reveal which method is more suitable for privacy-related
text clustering, we compare the Chi-Square test algorithm with
two other possible alternatives: Bag-of-Words and Skip-Gram.
The results show that the Chi-square performs best in our
purpose.

The Bag-of-Words and Skip-Gram architectures are often
used for word-clustering for a given topic as well. Both
of them construct a set of vocabularies from the given set
of training text data and then learn vector representations of
words. The results can be used as features in many natural
language processing and machine learning applications.

To compare these two alternatives with our text clustering
approach, we implement them using word2vec [33], and
evaluate their abilities to extract privacy-related texts. During
our evaluation, all privacy-related UIs, which are the same
input set as our Chi-Square based approach, are used as corpus
of the training set. As revealed in Table V, both Bag-of-Words
and Skip-Gram approaches report lots of irrelevant keywords
as the privacy-related texts, which dramatically decreases the
precision for using them as UIP data identification vectors.
By observing the analysis results, we find that these two
alternatives perform badly with a sparse training set. Actually,
instead of sentences or paragraphs which are commonly used
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TABLE VI

UIP DATA DISTRIBUTION AMONG 25 CATEGORIES

in Bag-of-Words or Skip-Gram approaches, only a few words
are presented in each user interface. Thus, the information is
too sparse to be an effective training set for these approaches.
Besides, using Chi-Square test, we can filter out irrelevant
keywords using negative samples (privacy-irrelevant UI), while
both Bag-of-Words and Skip-Gram only consider positive
samples, thus their precision cannot be improved by utilizing
the negative samples.

C. Effectiveness

1) UIP Data Distribution: We show the general identifica-
tion results of UIPicker in Table VI. In 13.072 apps, UIPicker
finds that 5,307 (38.69%) contain UIP data. We list our results
in a descending order of the identified total app amounts.
As we can see, in some categories ranked in top of the list,
nearly half of apps contain UIP data.

We make the following observations from this table. First,
application categories such as Shopping, Business, Finance,
Social and Communication are more likely to request Account
Credentials and User Profile information, which shows that
these apps are closely related to users’ personal activities.
It is also reasonable that apps in categories like Shopping,
Business, Travel & Local require many financial-related sen-
sitive inputs, because many of these apps provide payment
functionality.

2) Comparative Results: We illustrate the effectiveness of
UIPicker from two aspects. First, UIPicker identifies privacy
data that system defined APIs do not touch but still be sensitive
to users. Second, UIPicker achieves far better coverage than
simply identifying UIP data by specific sensitive attribute
values from the Android design specification.

3) Comparison With System Defined Sensitive APIs: As pre-
viously mentioned, specific sensitive resources which we list in

TABLE VII

SYSTEM DEFINED SENSITIVE APIS RELATED TO UIPICKER’S

IDENTIFICATION SCOPE

Table VII can be regulated by fixed system APIs. We compare
the amount of UIPicker’s identification results with Android
system derived sensitive data, which can help us understand
to what extent, system defined sensitive APIs are insufficient
to cover users’ privacy.

As Table VIII shows, in our dataset, 4,206 apps use system
defined APIs for requesting Account Credentials and Profile
Information while UIPicker identifies 3,613 (27.64%) apps
containing UIP data. 1,644 (12.57%) apps request financial
privacy data from users, and none of system defined APIs
can regulate such data. In general, UIPicker identifies 5,307
(38.69%) apps containing at least one category of UIP data,
which have been largely neglected by previous work in privacy
security analysis and protection.

Note that, there is some overlap between system defined
APIs and UIP data. For each app, we check whether it contains
both the system defined APIs and the UIP data in the same
privacy category, e.g., invoking the getLastKnownLocation()
API and requesting address information from the user input
of the same app. In some cases, the same piece data may come
from either UI input or API call. For example, using a phone
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TABLE VIII

WE COMPARE UIPICKER’S IDENTIFICATION RESULTS WITH APPS CONTAINING SYSTEM DEFINED SENSITIVE APIS (COLUMN 2-4) AND ELEMENTS
CONTAINING SENSITIVE ATTRIBUTE VALUES (COLUMN 5-7)

TABLE IX

TYPES OF UIP ELEMENTS OTHER THAN EDITTEXT

number as the login account of the app. However in most
cases, the overlapped data in the same privacy category may
come from different sources without overlapping in code paths.
For example, the invocation of get-location APIs is used for
realtime geographic locating, while some location input could
be a shopping address for delivering goods.

4) Comparing to Sensitive Attribute Values: In
Section IV-C, we use elements containing sensitive attribute
values as part of training data for our identification module.
However, they can only cover a portion of UIP data because
they are not intended for this purpose. Here we compare
the amount of UIPicker’s identification results with elements
containing sensitive attribute values to show the effectiveness
of UIPicker.

As Table VIII shows, in general, UIPicker identifies 66,382
more UIP data elements than simply identifying them by
sensitive attribute values (e.g., textPassword). Especially for
the Location category, UIPicker identifies 11,675 elements,
which is nearly 14 times more than simply identifying them
based on attribute “textPostalAddress”.

5) Types of UIP Elements: We list the identification results
of UIP data elements other than EditText in Table IX.
In general, UIPicker finds 17,088 (25.74%) elements other
than EditText to accept users’ sensitive inputs. Our approach
successfully identifies more UIP data, compared with similar
work SUPOR [34] which can only identify UIP data with
some fixed type of input fileds like EditText. More details will
be discussed in Section VI-E. It is interesting to note that
UIPicker also finds a large portion of TextView as UIP data
elements. In most cases, although data in TextViews are not
editable, they could be generated by users from other layouts
and dynamically filled in TextView later. For example, the data
from previous steps of a registration form, or fetched from
the server after users’ login. Type “Others” in table contains
elements such as RadioButton, CheckBox.

D. Precision

For evaluating the precision of UIPicker, we perform the
evaluation of classifier based on the machine-leaning dataset
mentioned in Section IV. We also conduct a manual validation
for two reasons. First, since the training data of classifier is
not absolutely randomly selected (part of them are labelled
by sensitive attributes automatically), a manual validation
is required to confirm that the identification results of the
classifier carries over the entire dataset. Second, the classifier
is only capable of distinguishing UIP data elements from their
textual semantics, the manual validation can be used to check
whether static text labels are effectively excluded by UIPicker
after behaviour based result filtering.

1) Evaluation of Classifier: The training set contains 53,094
elements in total, which includes 24,962 labelled by sensitive
attribute values and financial-related elements, with 25,331
negative samples.

In order to evaluate the classifiers, we perform a nested
10-fold cross validation (CV for short) [35]. The nested CV
is conducted with 2 phases: an inner CV loop which is used
to perform the tuning of the parameters and an outer CV to
compute an estimate of the error. Thus, we first randomly
partition the entire dataset into 10 subsets, use 1 subset as
the outer CV test set, and use the remaining 9 subsets in
the inner CV. When tuning parameters during inner CV, we
re-partition the dataset (which is 9/10th of the original dataset)
into 10 subsets, and conduct 10-fold cross validation. Both the
inner and outer CV process is repeated 10 times over different
test set respectively. As a result, the average precision and
recall rate is 92.89% and 86.92% respectively.

As shown in Table X, we also compare the average pre-
cision and recall with other two classifiers, i.e., One-Class
Support Vector Machine learning (OC-SVM) [36] and Naive
Bayes [37]. The results show that the standard SVM performs
the best. We tried OC-SVM with only elements with sensitive
attributes to train the classifier. OC-SVM generated more
false positives and false negatives than the standard SVM due
to the lack of negative samples. Naive Bayes, a traditional
probabilistic learning algorithm, also produced very imprecise
results. This happens especially when it deals with elements
that contain low-frequency privacy-related texts.

2) Manual Validation: We envision UIPicker to be used
as an automated approach for labelling elements that con-
tain UIP data. UIPicker achieves this by using some easily
available UIP data (elements containing sensitive attributes or



NAN et al.: IDENTIFYING USER-INPUT PRIVACY IN MOBILE APPLICATIONS AT A LARGE SCALE 657

TABLE X

CLASSIFIER COMPARISON

auto-labelled by heuristic rules) and then using the classifier
to automatically explore larger parts of UIP data. Measuring
precision is hard in this setting as there is no entire pre-
annotated elements (labelling sensitive or insensitive for all
of them) for a set of apps that could compare with UIPicker’s
identification results.

As a best-effort solution, we randomly select 500 apps
from all categories (20 in each) in Table VI as the manual
validation dataset. Since the subset of apps is randomly picked,
we believe that the evaluation results can provide a reasonable
accuracy estimation on the entire dataset. For each element that
UIPicker identifies as UIP data, we check their corresponding
descriptions in XML layout files with some automated python
scripts for efficiency (quickly locating the element in layout
files and trying to understand it from descriptions). If this is
still insufficient for us to identify whether it is a UIP data
element, we confirm them by launching the app and find
the element in the layout screen. The manual validation over
500 apps shows that UIPicker identifies 769 UIP data elements
among 1,603 input fields, with 49 false positives and 32 false
negatives.

3) False Positives: The false positive rate is 6.0% (49/818
elements UIPicker identifies). In most cases, this is caused by
the element’s neighbours. That is, the element’s neighbours
contain privacy-related texts while the element itself is not
privacy-related. Consider the following example, an EditText
with only one description “message” while its previous ele-
ment requires the user to input username with many sensitive
textual phrases. We consider such false alarm as acceptable
because once such false alarm happens, their neighbour ele-
ments (the actual UIP data elements) are very possible to be
identified by UIPicker as well.

4) False Negatives: We manually inspect each app in the
evaluation dataset by traversing their UI screens as much as
possible to see whether there exists UIP data elements that
missed by UIPicker. In 500 apps, we find 32 elements not iden-
tified by UIPicker as privacy-related, resulting a false negative
rate of 4.0% (32/801) and we conclude the reasons as follows:
(1) Some very low-frequency texts representing UIP were not
inferred from UIPicker by the privacy-related text analysis
module. For example, “CVV” represents the credit card’s secu-
rity code, however we find this only happened in 4 Chinese
apps. The low occurrence frequency of texts like “CVV” in
our corpus makes UIPicker fail to add them as features for
the identification process. (2) In static analysis for behaviour-
based element filtering, due to DroidSafe’s limitations, the call
trace of some element was broken in inter-procedural analysis
in some very complicated apps, which makes UIPicker miss
such elements in the final output. However, all such false

TABLE XI

COMPARE WITH SUPOR. THE SIMPLIFIED UIPICKER USED ONLY
SENSITIVE KEYWORDS IN SUPOR FOR COMPARISON

negatives can be easily reduced by employing new techniques
such as privacy-related text clustering and static analysis for
application codes.

Based on the total number of TPs, FPs and FNs
(769, 49, 32), we compute the precision and recall of UIPicker
as follows:

Precision = T P

T P + F P
Recall = T P

T P + F N

Overall, UIPicker achieves 94.0% precision rate and 96.0%
recall rate, showing that it successfully identified most of
UIP data.

E. Comparison With SUPOR

In this section, we evaluate our method by comparing its
results to SUPOR [34], which has a similar goal as UIPicker.
Similar to UIPicker, SUPOR first selects a set of sensitive
keywords. Then, leveraging the selected keywords, it launches
a static analysis to identify which input fields are sensitive.

Compared to our methodology, SUPOR manually selects
only 23 sensitive keywords for our selected 3 categories,
which is much fewer than UIPicker (245 keywords). Due to
the limited keywords, many sensitive user inputs described
by other terms cannot be recognized by SUPOR. UIPicker
employs a fully automatic approach to infer a detailed privacy
related keywords, including the commonly used keywords and
those which are rarely used but present the similar meanings.
For example, for account registration, SUPOR uses log in, sign
in, register as the keyword list. However, UIPicker infers that
other texts, such as sign up, create, and finish, have the similar
user intention. As a result, UIPicker identifies more UIP data
compared with SUPOR.

Since SUPOR is a private property of NEC Labs, neither
the source code nor the executable binary is publicly available.
Thus we cannot compare it with UIPicker directly. As a best
effort comparison, we implement a simplified UIPicker which
only considers the sensitive keywords used in SUPOR, and
evaluate its effectiveness on identifying sensitive UI elements.
As showed in Table XI, using the keyword list provided by
SUPOR, about 34.66% UIP data will be missed.

Besides, SUPOR relies on the UI layout descriptions
(XML files) to understand the purpose of user inputs. Since
many customized input fields are not explicitly labelled in
layout resources, it is difficult to identify such inputs solely
upon layout files. As showed in column 5-6 of Table XI,
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Fig. 8. Trend analysis about UIP data distribution.

SUPOR only covers UI elements whose type (or super-type)
is EditText. However, revealed by our evaluation results
in Table IX, over 25.74% of sensitive inputs are not standard
Android input fields (EditText). UIPicker detects whether a
UI element is input field by analyzing its behavior reflected
by the app’s code, thus it can cover more input fields in apps.

F. Trend Analysis About UIP Data Distribution

In order to learn how the distribution of UIP data evolved
with apps in different time periods, we conduct a measurement
study with additional datasets. These apps are selected as
follows against those in top-free apps:

• Random Datasets. The random datasets consist of 3 sets
of apps crawled from GooglePlay in different time rang-
ing from 2012 to 2014, as we label them as random-12,
random-13 and random-14 separately. Each of the dataset
contains 10,000 randomly selected apps. we consider such
datasets can represent the overall app status in different
years.

• Common Datasets. We also extract 14,923 apps that
exist in both our datasets crawled in 2012 and 2014 based
on their package names. Then, we remove the apps which
have identical MD5 values because they may no longer
be updated by the developers since 2012. Thus, these
datasets contain the apps that exist in GooglePlay for two
years and at least have been updated once. We label them
as common-12 and common-14 separately.

As Figure 8(a),(c) showed, compared with permission-
related privacy usage, the number of apps containing UIP data
increases quickly, which reveals that the usage of UIP data
will be more promising in the foreseeable future. Since more
apps require UIP data, causing the risk of privacy leakage rises
rapidly, the further protection of such data is in urgent need.

The Common Datasets reveal how the UIP data distribution
changes in the same apps at different times. As shown in
Figure 8(b), The amount of UIP data surprisingly drops for
the apps with same package names. Our manual analysis
demonstrates that this happens because many of these apps
utilize third-party SDKs to handle user information, instead
of processing it themselves. For example, the Single-Sign-On
SDKs like Facebook Connect provides APIs to help developers
import user profiles directly from their SSO accounts. Besides,
the payment SDKs such as Alipay and Paypal can redirect
the payment process into their corresponding payment apps

instead of asking users to type their banking credentials in
all apps. Overall, in the Common-14 dataset compared with
Common-12, 1,773 out of 14,923 (12%) apps introduce at
least one kind of third-party SDKs which contain sensitive
user data after their upgrade. However, this observation does
not necessarily mean that the user’s sensitive data will be
secure, because they just come from different source other
than direct user input and they still need security protection
as their sensitive nature does not change.

VII. UIPICKER APPLICATION

Effective and efficient recognition of sensitive data sources
is the key to various privacy leakage detection/prevention tech-
niques. Since existing approaches cannot recognize user-input
privacy, they are unable to detect/prevent the corresponding
privacy leakage. Besides, since there are huge amounts of
Android apps, it is impractical to label privacy sensitive data
manually by users or security analysts. UIPicker proposes
an automatic approach to identify those user-input sensitive
data, which can enhance the state-of-the-art security analy-
sis/enhancement tools in the following ways:

A. Privacy Leakage Detection

Privacy leakage detectors can integrate UIPicker to precisely
detect disclosure of sensitive user inputs. By recognizing pri-
vacy related user inputs, and labeling these inputs as sensitive
sources, we can analyze their possible propagation destinations
with static data propagation analysis. Utilizing the analysis
report, app developers can check whether the sensitive user
inputs are transmitted out without proper verification, and app
markets can report possible privacy leakages to users.

B. Runtime Security Enhancement

The security implications about UIP data are rooted from
the fact that users have to blindly trust apps when they
input sensitive data. With the help of UIPicker differentiating
UIP data from other normal inputs, we can use taint tracking
techniques to trace usersâŁ™ sensitive inputs and enable users
to make informed decisions with a popup window when such
data insecurely leave the device, thus effectively mitigating the
potential threats posed by apps.

As a detailed illustration of this scenario, we developed a
prototype that integrates UIPicker with TaintDroid, and reports
the following insecure app behavior:
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Fig. 9. Runtime protection of UIP data.

• Plain Text Transmission. We consider any piece of
UIP data should not be transmitted in plain text. Such
situation can be easily identified by checking if the tainted
sink is HTTP connection in runtime.

• Insecure SSL Transmission. Previous works [22]
showed that a large number of apps implement SSL with
inadequate validations (e.g., app contains code that allows
all hostnames or accepts all certificates). Insecure SSL
transmission could be more dangerous because they may
carry over critical sensitive data in most cases. UIP data
should not be transmitted in this way as well.

As shown in Figure 9, a popular travel app “Qunar”, which
has 37 million downloads in China [38], sends users’ credit
card information with vulnerable SSL implementation during
the payment process. The insecure transmission is reported
to the user with a pop-up window when such data leave the
device, thus the user can decide whether to proceed or use an
alternative payment method to avoid the security risk.

VIII. DISCUSSION AND LIMITATION

UIPicker is able to efficiently handle UIP data which previ-
ous work does not concentrate on, nor be able to cover. Com-
pared with existing approaches that focus on System-Centric
Privacy data, UIPicker rethinks privacy from a new perspec-
tive: sensitive data generated from user inputs, which is largely
neglected for a long period.

UIPicker uses not only texts in UI screens but also texts in
layout descriptions for UIP data identification. This framework
is generic to all kinds of apps without locality limitation. The
way UIPicker correlates UIP data from layout descriptions
could also be leveraged by existing work [28], [39] that
attempts to map the permission usage with app descriptions.

UIPicker has the following limitations. (1) UIPicker does
not consider dynamically generated UI elements, although
we have not found any UIP data element being generated at
runtime in our experiments. Dynamic UI elements could be
analyzed through more sophisticated static/dynamic analysis
with the app’s program code, which is our future work. (2)
Currently, UIPicker can not handle sensitive user inputs in
Webview because they are not included in app layout resources.

In the future, we plan to download such webpages by extract-
ing their URLs from the app, then analyze their text contents
as well.

IX. RELATED WORK

A. Privacy Source Identification

Existing work [40], [41] focuses on mapping Android
system permissions with API calls. PScout [40] proposes a
version-independent analysis tool for complete permission-
to-API mapping through static analysis. SUSI [41] uses a
machine learning approach to classify and categorize more
Android sources and sinks which are missed by previous
info-flow taint tracking systems. The most similar work with
UIPicker is SUPOR [34], which also aims to automatically
identify sensitive user inputs using UI rendering, geometrical
layout analysis and NLP techniques. SUPOR mainly focuses
on specific type of UI elements (EditText) while UIPicker is
not limited to this.

B. Sensitive User Inputs Protection

Cashtags [42] protects users’ sensitive inputs by intercepting
and replacing them with non-sensitive data when they are
showed in layout screens, thus preventing data leakage based
on visual observations. Chen et al. [43] propose I-BOX, a
sandbox-based mechanism for preventing sensitive input leak-
age by confining untrusted IME apps to predefined security
policies. However, both of them require manual labeling of
which pieces of data are sensitive inputs that need to be
protected first.

C. Android UI/Text Analysis

Several studies utilize UI and text analysis for different
security proposes. Chen et al. [44] achieve massive scale
malware detection with apps’ UI structure analysis. A similar
UI structure indicates a possible repackaging relation, which
can be used for malware detection instead of widely used
heavy-weight program analysis. AsDroid [45] detects stealthy
behaviors in Android app by UI textual semantics and pro-
gram behavior contradiction. However, it only uses a few
keywords to cover sensitive operations such as “send sms”,
“call phone”. CHABADA [46] checks application behaviors
against application descriptions. It groups apps that are similar
with each other according to their text descriptions. The
machine learning classifier OC-SVM is used in CHABADA
to identify apps whose used APIs differ from the common use
of the APIs within the same group. Whyper [28] uses natural
language processing (NLP) techniques to identify sentences
that describe the need for a given permission in the app
description. It uses Stanford Parser to extract short phrases
and dependency relation characters from app descriptions
and API documents related to permissions. AutoCog [39]
improves Whyper’s precision and coverage through a learning-
based algorithm to relate descriptions with permissions.
UIPicker could potentially leverage their techniques to gen-
erate more complete privacy-related texts for UIP data
identification.
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D. Static Analysis

There are lots of work [4], [5], [22], [45] on using static
analysis to detect privacy leakage, malware or vulnerabil-
ities in Android apps. AsDroid takes control flow graphs
and call graphs to search intent from API call sites to top
level functions (Activities). UIPicker’s behavior-based result
filtering is similar to AsDroid while they have different
goals. SMV-HUNTER [22] uses static analysis to detect pos-
sible MITM vulnerabilities in large scale. The static analysis
extracts input information from layout files and identifies
vulnerable entry points from the application program code,
which can be used to guide dynamic testing for triggering the
vulnerable code.

X. CONCLUSION

In this paper, we propose UIPicker, a novel framework for
identifying UIP data in large scale based on a novel combi-
nation of natural language processing, machine learning and
program analysis techniques. UIPicker takes layout resources
and program code to train a precise model for UIP data identi-
fication, which overcomes existing challenges with both good
precision and coverage. Our evaluation shows that UIPicker
achieves 94.0% precision and 96.0% recall with manual val-
idation on 500 popular apps. Our measurement results in
different datasets shows that UIP data largely distributed in
market apps and urgently need protection.
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