
Facilitating Vulnerability Assessment through PoC Migration
Jiarun Dai∗

Fudan University
jrdai14@fudan.edu.cn

Yuan Zhang∗
Fudan University

yuanxzhang@fudan.edu.cn

Hailong Xu
Fudan University

18212010076@fudan.edu.cn

Haiming Lyu
Fudan University

20210240108@fudan.edu.cn

Zicheng Wu
Fudan University

20210240111@fudan.edu.cn

Xinyu Xing
Pennsylvania State University

xxing@ist.psu.edu

Min Yang
Fudan University

m_yang@fudan.edu.cn

ABSTRACT

Recent research shows that, even for vulnerability reports archived
byMITRE/NIST, they usually contain incomplete information about
the software’s vulnerable versions, making users of under-reported
vulnerable versions at risk. In this work, we address this problem
by introducing a fuzzing-based method. Technically, this approach
first collects the crashing trace on the reference version of the
software. Then, it utilizes the trace to guide the mutation of the
PoC input so that the target version could follow the trace similar
to the one observed on the reference version. Under the mutated
input, we argue that the target version’s execution could have
a higher chance of triggering the bug and demonstrating the
vulnerability’s existence. We implement this idea as an automated
tool, namedVulScope. Using 30 real-world CVEs on 470 versions of
software, VulScope is demonstrated to introduce no false positives
and only 7.9% false negatives while migrating PoC from one
version to another. Besides, we also compare our method with
two representative fuzzing tools AFL and AFLGO. We find VulScope
outperforms both of these existing techniques while taking the
task of PoC migration. Finally, by using VulScope, we identify 330
versions of software that MITRE/NIST fails to report as vulnerable.

CCS CONCEPTS

• Security and privacy→ Software and application security.

KEYWORDS

Vulnerability Assessment; Trace Alignment; PoC Adjustment
ACM Reference Format:

Jiarun Dai, Yuan Zhang, Hailong Xu, Haiming Lyu, ZichengWu, Xinyu Xing,
and Min Yang. 2021. Facilitating Vulnerability Assessment through PoC
Migration. In Proceedings of the 2021 ACM SIGSAC Conference on Computer

∗co-first authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484594

and Communications Security (CCS ’21), November 15–19, 2021, Virtual Event,
Republic of Korea. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1
145/3460120.3484594

1 INTRODUCTION

By leveraging the community efforts, MITRE [3] and NIST [4]
have indexed more than 150K software vulnerabilities and archived
them as the corresponding vulnerability reports. A vulnerability
report usually contains vulnerable software versions, the severity
of the vulnerability, and even the Proof-of-Concept (PoC) input
to reproduce the failure pertaining to the vulnerability. These
pieces of information greatly ease patch development, vulnerability
management, and security measurement.

However, recent research raises the concern for the quality of
vulnerability reports. The works [12, 18, 34, 48] show that incom-
plete and incorrect vulnerable software versions are prevalent in
vulnerability reports. They showcase that incomplete information
could leave specific versions of vulnerable software unpatched and
expose software end-users to a greater security risk.

To solve this problem, Dong et al. [18] replayed PoC inputs –
effective for one version – on other versions of the same software.
Unfortunately, they discover that, without a further adjustment, a
PoC working for one version can barely be migrated for triggering
the same bug on other versions. Besides, they also observe that
the effort needed for verifying a vulnerability on one version is
usually significant. To reduce the manual effort and improve the
capability of vulnerability verification, intuition suggests that both
code clone detection and patch presence testing could potentially be
applied. In particular, one could quickly determine a vulnerable
code’s existence with code clone detection [24, 28, 29, 46] and
pinpoint a security patch’s absence with patch presence testing [16,
25, 52, 55, 57]. Further, he or she could infer whether the version of
the software under his or her inspection is potentially vulnerable.
However, common static analysis tools could potentially generate
high false positives because they cannot confirm the existence
of a vulnerability through a PoC input that triggers the target
vulnerability and forces the program to accidentally terminate.
With a PoC in hand, it can ease patch development, regression
testing, and exploitability assessment of a target vulnerability.

In response to these limitations, another instinctive reaction for
addressing the problem is to utilize directed fuzzing (e.g., [9, 13]). To
be specific, one could first specify the buggy site in the target version

https://doi.org/10.1145/3460120.3484594
https://doi.org/10.1145/3460120.3484594
https://doi.org/10.1145/3460120.3484594

of the software. He or she could then use the reference PoC input as
an initial seed for consecutive input mutation. Unlike conventional
fuzzing techniques that aim to maximize code coverage (e.g., [1]),
directed fuzzing works by steering the fuzzing process towards the
designated vulnerable code locations and thus potentially explores
paths that can reach out to the specified buggy site. As such,
intuition suggests this practice should produce a good outcome in
terms of PoC migration. However, as we will show in §5, directed
fuzzing does not provide sufficient benefits in generating a new PoC
for vulnerability verification. The reason is that directed fuzzing is
designed to find a path to the target site quickly but the condition
for triggering a target bug is usually encoded only on a couple of
critical paths, which are usually ignored by directed fuzzing.

In this work, we propose a PoCmigration approach. It adjusts the
reference PoC to maximize the similarity between the execution
trace generated by the reference PoC on the reference version
(called reference trace, 𝑇𝑟𝑒 𝑓) and the one generated by the adjusted
PoC on the target version (called target trace, 𝑇𝑡𝑎𝑟𝑔𝑒𝑡). The key
rationale behind our idea is that the execution flows to trigger the
same vulnerability on different versions should be similar. Guided
by the reference trace, our approach could avoid blindly exploring
the huge amount of paths that all head to the buggy sites on the
target version, and focuses more on those paths that have already
shown to be effective on the reference version. Compared with
existing works, our approach has a higher chance and efficiency
in generating a new PoC against the vulnerability on the target
version.

To realize the idea above, as we will elaborate in §2.1, we tackle
two principal challenges. First, we introduce a cross-version trace
alignment method. Using this method, we correlate the execution
traces generated from two different versions of software. Second,
we propose a trace-guided PoC adjustment approach. With the
facilitation of this approach, we correct execution detours, making
the target trace approach the reference trace more efficiently. In §3
and §4, we present the details of each of these technical approaches.

To the best of our knowledge, this is the first work that considers
migrating PoC across different versions of the same software
to perform vulnerability assessment. In practice, confirming a
vulnerability is quite difficult, which requires locating buggy code,
checking the existence of root cause and verifying the vulnerable
conditions for multiple versions of a program. Therefore, it is
still challenging for developers (who are familiar with the source
code) to confirm a vulnerability. As an automated technique,
VulScope can ease the vulnerability assessment for not only
developers but also other users who are not familiar with the
source code, e.g., testers, security administrators. In comparison
with fuzzing techniques for PoCmigration, our proposed techniques
can complete the task not only effectively but also efficiently. Used
in the context of CVE management, our techniques demonstrate
significant potential for improving the quality of CVE reports.

In summary, the paper makes the following contributions:
• We propose a systematic approach, named VulScope, to assess
vulnerable versions for a target vulnerability by migrating PoC
inputs from a reference version to another.

• We design two key techniques to perform the vulnerability
assessment: cross-version trace alignment and trace-guided PoC
adjustment.

• We conduct extensive experiments using 30 real-world CVEs on
470 versions of software, and demonstrate VulScope introduces
no false positives and only 7.9% false negatives when performing
PoC migration. We show VulScope significantly outperforms
existing fuzzing techniques in PoC migration tasks.

2 DESIGN OVERVIEW

This section first illustrates our key idea in PoC migration and then
gives an overall workflow of our approach. Our detailed approach
is presented in §3 and §4.

2.1 Key Idea

The fundamental challenge in our approach is that we need to use
the reference trace to guide the migration, but at the same time, we
can hardly make the migrated trace (the execution trace generated
by the migrated PoC) identical to the reference one due to cross-
version code changes. Therefore, we should select an appropriate
granularity to leverage the reference trace as guidance, which
should balance the benefits brought by reference guidance and
the ability to tolerate code changes.
Granularity in Leveraging the Reference Trace. For the pur-
pose of code comparison, several granularities have been used, such
as instruction-level [17], basic-block-level [2, 42, 43, 60], function-
level [14, 26, 28] andmodule-level [7, 59]. The granularity to analyze
the cross-version traces is quite important to our design. If we guide
the migration at a very coarse-grained level, the migration process
would explore a lot of code paths that are useless for triggering the
target vulnerability. On the contrary, if the guidance is performed
at a very fine-grained level, it would limit the exploration ability
of the migration process, making it hard to adapt the necessary
cross-version code changes.

By examining the unique characteristics of our research problem,
we choose function-level as the granularity to leverage the reference
trace as guidance. Our design considerations are based on two
observations. First, we observe that, in our problem context,
the original PoC cannot trigger the same vulnerability on the
target version due to cross-version code changes. Compared with
instruction-level and basic-block-level, function-level gives better
tolerance on the changes across traces which could increase the
probability of generating a useful PoC to trigger the same bug
on the target version. Second, from the perspective of guidance,
we find that module-level is too coarse-grained to provide useful
guidance during PoC migration which may dramatically increase
the exploration space and reduce the success rate. Therefore, we
believe function-level is the most appropriate granularity to guide
the PoC migration process with a reference trace.
Challenges. Guided by the reference trace, the PoC migration
process can be summarized as two key steps: 1) locates the
difference between the reference trace (𝑇𝑟𝑒 𝑓) and the target trace
(𝑇𝑡𝑎𝑟𝑔𝑒𝑡); 2) adjusts the PoC accordingly to make the generated new
𝑇𝑡𝑎𝑟𝑔𝑒𝑡 more similar to the𝑇𝑟𝑒 𝑓 . However, it is non-trivial to follow
these steps, due to the various cross-version code changes and the
complexity of triggering the same vulnerability. In particular, there
are two major challenges in our approach.

Challenge-I: how to align the function calls between cross-version
execution traces? Different versions of a program contain various

code changes. Thus, even the same input may generate discrepant
execution traces on the reference version and the target version.
Actually, the trace discrepancies may be diverse, which include
both syntactic differences (i.e., behaviors caused by normal code
refactoring) and semantic differences (i.e., behaviors that are specific
to a version or caused by different inputs). To align traces with a
lot of differences, existing works mainly require either the same
software version [38, 58] (to perform code matching using semantic
equivalence) or the same input [27] (to leverage runtime values for
code alignment). However, with the aim to generate a useful PoC,
we need to modify the original input and then align its execution
trace on the target version with the reference trace. Therefore,
our approach needs to handle the alignment problem between
the execution traces generated with different inputs on different
software versions, making existing works hard to apply.

Challenge-II: how to guide the PoC adjustment to trigger the
same vulnerability? Based on the alignment between 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 and
𝑇𝑟𝑒 𝑓 , there may be a lot of trace discrepancies. Though we believe
the execution trace to trigger the same vulnerability on different
software versions may be quite similar, they inevitably have some
different function calls that are specific to a version of a program and
cannot be adjusted. Therefore, this kind of trace discrepancy should
be identified first and excluded from the scope of PoC adjustment.
Besides, for those trace discrepancies that can be adjusted, it is hard
to determine which discrepancies need to be adjusted first and how
these discrepancies can be efficiently mitigated. In addition, during
the PoC adjustment process, we need an accurate vulnerability
triage to test whether an input triggers the target vulnerability.
These issues together make the whole PoC migration process quite
challenging.
Key Techniques. Our basic idea to address the above challenges
is to appropriately leverage the reference trace as guidance but
also carefully consider the code changes between two versions.
Specifically, we propose two techniques to address these challenges.

Technique-I: Cross-version Trace Alignment. As mentioned above,
we need to align two traces generated by different inputs on
different versions of a program, which may include both syntactic
differences and semantic differences. For the syntactic differences,
we aim to align them as the same behaviors. For the semantic
differences, we should avoid them being aligned. In short, our
cross-version trace alignment consists of two steps. First, we
perform a function-level code mapping between the two versions
of software. Different from existing works, our code alignment
not only tolerates function renaming behaviors but also captures
function merging/splitting relationships. Second, we propose to
use a tree-based structure to represent execution traces and design
a tree alignment algorithm for trace alignment. The advantage of
tree-based alignment is that it can utilize the context information
(e.g., parents nodes) of a function call to guarantee the accuracy
of function-level trace alignment (e.g., to avoid aligning functions
with semantic differences).

Technique-II: Trace-guided PoC Adjustment. As described in
Challenge-II, to leverage the reference trace to guide the PoC
migration, we need to solve three sub-problems: 1) how to reason
the execution detours according to the trace alignment; 2) how to
efficiently adjust the inputs to mitigate the execution detours; 3)
how to verify the adjusted PoC triggers the same vulnerability?

Reference
Trace

Reference
Trace

Target
Trace
Target
TraceSeed/PoC

Cross-version Trace Alignment

Tree-based
Trace Alignment

Function-level
Code Mapping

Cross-version Trace Alignment

Tree-based
Trace Alignment

Function-level
Code Mapping

Trace-guided PoC Adjustment

Execution Detours
Reasoning

Crash
Triage

Fuzzing-based Detours Correction

Affected?

Trace-guided PoC Adjustment

Execution Detours
Reasoning

Crash
Triage

Fuzzing-based Detours Correction

Affected?

Aligned

Detoured

Aligned Traces

Aligned

Detoured

Aligned Traces

Figure 1: System Overview for PoC Migration.

Accordingly, we address these problems with three new techniques
respectively. First, we recognize the execution detours that are
specific to a version of software (thus cannot be adjusted) and
exclude them from the correction scope. For the remaining detours
that could be adjusted, we try to locate the variables that cause these
detours in the target trace with program analysis. Second, since the
reasoning of which execution detours should be adjusted first and
how to accurately adjust them is quite hard, we adopt a fuzzing-
based approach here which iteratively mutates the input to keep the
𝑇𝑡𝑎𝑟𝑔𝑒𝑡 approaching the𝑇𝑟𝑒 𝑓 , hoping it ultimately trigger the target
vulnerability. Third, to verify whether we have triggered the same
vulnerability on the target version, we make a conservative design.
In particular, we consider crash types, execution trace similarity
and buggy function together in determining crashes triggered by
the same vulnerability. This design helps our tool to keep a low
false positive rate in reporting vulnerable versions.

2.2 Workflow

Following the above key ideas, we design VulScope to facilitate
the assessment of vulnerable versions. The overall architecture of
VulScope is presented in Figure 1, consisting of two main modules
that implement our key techniques respectively. Overall speaking,
VulScope takes a PoC that triggers a vulnerability on the reference
version as input, and tests whether another version of the same
software is also vulnerable to this vulnerability. To confirm the
vulnerability, VulScope should generate a new PoC that can indeed
trigger the same vulnerability on the specified version. Our core
idea is to adopt a trace-aware fuzzing method that continuously
adjusts the given PoC, and makes the target version of the software

follow a similar path to that observed on the reference version
under the new input. Following this way, intuition suggests that
we have a higher chance to generate a new PoC that triggers the
same vulnerability on the target version.

In particular, VulScope runs in the following steps:
• Step-1: VulScope collects 𝑇𝑟𝑒 𝑓 and 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 with the given PoC
on the reference version and the target version, respectively.

• Step-2: VulScope performs cross-version trace alignment on𝑇𝑟𝑒 𝑓
and 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 to get the aligned functions between the two traces.

• Step-3: If a crash is observed on the target version, VulScope
uses crash triage to verify whether this crash is triggered by the
target vulnerability.

• Step-4: Based on the aligned cross-version execution traces,
VulScope performs execution detours reasoning to locate the
critical variables that cause these execution detours.

• Step-5: VulScope uses fuzzing-based detours correction to mutate
the input bytes that are related to the critical variables.

• Step-6: All the mutated inputs are evaluated with the crash triage
and given scores based on the similarity between their traces
and 𝑇𝑟𝑒 𝑓 . If none of the seeds triggers the target vulnerability,
they are inserted into a prioritization queue according to their
scores. The seed with the highest score will be selected for the
next round of mutation (goto Step-4).

3 CROSS-VERSION TRACE ALIGNMENT

To correlate functions between two cross-version execution traces,
this section first identifies function-level code refactoring changes
(i.e., function renaming, function merging/splitting) between two
versions of a program (§3.1); then introduces a tree-based data
structure to represent the execution trace which naturally provides
the running context for every invoked function (§3.2); and finally
presents a context-sensitive tree alignment algorithm by incorpo-
rating the cross-version function map (§3.3).

3.1 Cross-version Function Mapping

As introduced in §2, we choose to leverage the guidance of the
reference trace at the function-level. Thus, a precondition step is
to construct a function map between two versions which should
be resilient to common code refactoring changes. As summarized
in [36], function-level code refactoring changesmainly include func-
tion merging/splitting and function renaming. Since functions that
share same names between two versions can be directly mapped, we
focus on the mapping for those renamed/merged/split functions. In
particular, since function-level code similarity [2, 42, 43, 60] is well-
studied, we resort to existing works to identify function renaming.
Thereafter, we further enhance existing similarity calculation
methods to identify function merging/splitting.
Function Renaming Identification. Function renaming is com-
mon during version updates to improve code readability. In
practice, renamed functions across versions are considered to share
similar code semantics with the original ones. To identify “similar”
functions with different function names as function renaming
pairs, we use existing works in function-level similarity calculation
(e.g., [2, 10, 42]). Based on these works, we can set up a “one-to-
one function mapping” between two sets of functions by seeking
an optimal global matching and identify the matched pairs in

the function map as function renaming. The detailed similarity
calculation method is presented in Appendix A.
FunctionMerging/Splitting Identification.As described in [36],
function merging/splitting are widely used to avoid code du-
plication, minimize the number of unnecessary methods, etc.
Different from the renamed functions, the relationship between
the merged/split functions and the original ones is a kind of
“one-to-many function mapping”, which is rather complicated.
Existing works [22, 49] in recognizing function merging/splitting
either require manual workload or complete commit history, thus
they are hard to apply in our scenario. To this end, we propose
to enhance existing function similarity calculation methods for
function merging/splitting identification.

For simplicity, we use how to identify functions that should
be merged in the target version to elaborate our approach. First,
based on the functions that share same names and those are
identified as renamed pairs, we construct a one-to-one function
mapping between the reference version and the target version.
Second, we construct a call graph for each version and label the
matched functions in the graph. Third, we identify the unmatched
functions in the target version whose callers/callees have already
been matched, named as 𝑆𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 . Specifically, for each function
𝑋 in 𝑆𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 , we collect its matched callers and callees, which
are named as 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 . We try to merge 𝑋 with every function
𝑌 in 𝑆𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 at the corresponding callsite 𝑐𝑠 , and compute the
similarity between the merged function 𝑋 + 𝑌 and the matched
pair of 𝑌 in the reference version (named 𝑌 ′). If the similarity score
between 𝑋 + 𝑌 and 𝑌 ′ is higher than the similarity score between
𝑌 and 𝑌 ′, we identify 𝑋 and 𝑌 should be merged at the callsite
𝑐𝑠 . At last, we iteratively look for all possible function merging
relations in this way. Similarly, the function merging relations in
the reference version (aka. function splitting relations in the target
version) are identified.

3.2 Tree-structured Execution Trace

Since we need to correlate the execution traces that are generated
under different inputs on different versions of software, it is
quite challenging to guarantee the accuracy of function alignment.
Therefore, we propose to use a tree-based structure to represent
the execution trace and perform the trace alignment between two
trees. The rationale here is that the context information of a tree
node can help to align functions. To be specific, we consider two
kinds of context information for a function call:
• Call Path: Since a function may have multiple callers, we should
keep track of its caller in the context information.

• Callsite: Furthermore, since two identical function calls may
share the same call path, we also use the callsites (i.e., return
address) of a function call in its context.

Definition of Tree-structured Trace. For a program version 𝛼 ,
we record all the function calls in an execution with a tree-based
data structure 𝑇𝛼 (𝑉𝛼 , 𝐸𝛼). In general, 𝑇𝛼 (𝑉𝛼 , 𝐸𝛼) is a connected
graph which consists of a set of vertices (𝑉𝛼={𝑣1, 𝑣2, 𝑣3 ...}) and edges
(𝐸𝛼={𝑒1, 𝑒2, 𝑒3 ...}), which can be defined as follows:
• Vertex: Each vertex 𝑣 (𝑓 , 𝐵𝐵𝑠) ∈ 𝑉𝛼 represents a two-tuple
function trace entry, consisting of the called function 𝑓 and the
basic-block trace within this function (𝐵𝐵𝑠 = [𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 ...]).

void main(){

 init(); //split from main()

 if(input)

 a();

}

void init(){

 if(input < 10)

 a();

}

void a(){

 ...

}

BB1:

BB2:

BB3:

BB4:

BB5:

(a) Tree-structured Trace

N0

N1 N4

N2

N0(main, [BB1,BB2])

N1(init, [BB3,BB4])

N2(a, [BB5])

N4(a, [BB5])

E0(N0,N1,BB1)

E1(N1,N2,BB4)

E3(N0,N4,BB2)

(b) Function Merging Transformation

N0

N4N2

N0(main, [BB1,BB3,BB4,BB2])

N2(a, [BB5]) N4(a, [BB5])

E5(N0,N2, BB4) E3(N0,N4,BB2)

Set input to 1 Merge init() into main()

Figure 2: An example to illustrate the tree-structured execution trace and the transformations of function merging/splitting.

A basic block might be executed multiple times (e.g., basic blocks
in loops) within a called function.

• Edge: Each edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 , 𝑐𝑠) ∈ 𝐸𝛼 is a three-tuple which refers
to a function call, consisting of a vertex 𝑣𝑖 ∈ 𝑉𝛼 for the caller
function, a vertex 𝑣 𝑗 ∈ 𝑉𝛼 for the callee function, and the callsite
𝑐𝑠 ∈ 𝑣𝑖 .𝐵𝐵𝑠 .

We use the example presented in Figure 2 (a) to illustrate the
constructed trace tree when 𝑖𝑛𝑝𝑢𝑡 is taken as 1.

Note that 𝑇𝛼 is a rooted tree, whose root vertex always calls
the main() function. Each vertex 𝑣 except for the root vertex has a
single incoming edge and single parent 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣). If two vertices
share the same parent vertex, they are called siblings. Besides, 𝑇𝛼
is also an ordered tree, whose siblings are ordered according to
the execution. For a given vertex 𝑣𝑖 , we can obtain both its caller
𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣𝑖) and its callsite, named as 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒 (𝑣𝑖), from such trace
tree. Therefore, we can perform a context-sensitive trace alignment
(see §3.3). Further, its intra-function execution trace 𝑣𝑖 .𝐵𝐵𝑠 helps to
reason fine-grained unaligned parts between two traces (see §4.1).

3.3 Tree-based Trace Alignment

Function Merging/Splitting Transformation. Based on the
constructed trace trees, we first try to eliminate the effects of
function merging/splitting on the execution traces, so as to ease
the cross-version trace alignment. To be specific, we transform the
trace tree by merging the functions that are identified as should-be-
merged (see §3.1) in both the reference trace and the target trace.
We illustrate the detailed procedure as follows:

Suppose that we identify function 𝑌 (which is called by 𝑋 at
the callsite 𝑐𝑠) should be merged with 𝑋 on the version 𝛼 , we first
traverse all the edges 𝐸𝛼 in the trace tree to locate every edge
𝑒 (𝑣𝑖 , 𝑣 𝑗 , 𝑐𝑠) ∈ 𝐸𝛼 that satisfies 𝑒.𝑣𝑖 .𝑓 = 𝑋, 𝑒.𝑣 𝑗 .𝑓 = 𝑌 and 𝑒.𝑐𝑠 = 𝑐𝑠 .
We take three steps to merge the vertex 𝑣 𝑗 (split function) into the
vertex 𝑣𝑖 (caller of split function):
• Merge intra-function execution trace.We record the offset 𝑜 of 𝑒.𝑐𝑠
in 𝑣𝑖 .𝐵𝐵𝑠 and then insert 𝑣 𝑗 .𝐵𝐵𝑠 into 𝑣𝑖 .𝐵𝐵𝑠 at the offset of 𝑜 + 1.

• Migrate child calls of split function. We record the index 𝑖 of 𝑣 𝑗
among all its siblings and delete 𝑣 𝑗 from the child vertices of 𝑣𝑖 .
Then, we migrate all vertices of 𝑣 𝑗 to be new child vertices of 𝑣𝑖
at index 𝑖 .

• Update new call relations. For each migrated vertex of 𝑣 𝑗 , we add
new edges to connect it with 𝑣𝑖 .

Taking Figure 2 as an example, function init() is identified as a split
function from function main() during version update. Figure 2 (b)
shows the transformed trace tree after merging init() into main().

After merging the related function entries in a trace tree, we
describe how to align 𝑇𝑟𝑒 𝑓 (𝑉𝑟𝑒 𝑓 , 𝐸𝑟𝑒 𝑓) to 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (𝑉𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐸𝑡𝑎𝑟𝑔𝑒𝑡).
First, we introduce the matching criterion for vertices, and then
present the alignment algorithm.
Matching Criterion for Vertices. To guarantee the accuracy
of aligning function calls across versions, we perform a context-
sensitive trace alignment. For the context-sensitiveness, it means
we not only check whether a pair of executed functions are identical
across versions, but also check whether they share identical running
context. Specifically, we set the matching criterion between vertex
𝑣𝑖 ∈ 𝑉𝑟𝑒 𝑓 and vertex 𝑣 𝑗 ∈ 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 as follows:

• Identical Function: 𝑣𝑖 .𝑓 is matched with 𝑣 𝑗 .𝑓 .
• Identical Call Path: 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣𝑖) is matched with 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣 𝑗).
• Identical Callsite: 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒 (𝑣𝑖) is matched with 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒 (𝑣 𝑗).

Cross-version Callsite Mapping. As described in the above
matching criterion, the trace alignment requires to not only match
cross-version functions (see §3.1), but also to match their basic
blocks to determine whether two callsites are identical across
versions. To be specific, we need to match the basic blocks between
𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣𝑖).𝑓 and 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣 𝑗).𝑓 to determine whether a 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒 (𝑣𝑖)
in 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣𝑖).𝑓 is identical to a 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒 (𝑣 𝑗) in 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣 𝑗) .𝑓 . To this
end, we leverage existing basic-block-level similarity calculation
methods (e.g., [42, 43, 60]) for basic blocks matching. The detailed
similarity calculation method is presented in Appendix A.
Layered TreeAlignmentAlgorithm. To perform tree alignment,
an intuitive approach is to use a tree edit distance algorithm.
However, the state-of-art algorithm [41] has a time complexity
of 𝑂 (𝑛3) that could hardly scale to trees with a large number
of vertices. Besides, it does not consider the context information
of a vertex during the comparison. Therefore, we design a new
tree alignment algorithm that aligns two trees layer by layer. Our
approach is feasible for the following two characteristics of our trace
tree: ❶ the precondition of two vertices to be matched is that they
share identical context (i.e., parent vertices should be matched first);
❷ there would be no cross-layer vertex matching pairs, since we
have transformed the tree to eliminate the merged/split functions.

We present the detailed tree alignment procedure as follows:
We first directly match the root vertex of 𝑇𝑟𝑒 𝑓 (𝑉𝑟𝑒 𝑓 , 𝐸𝑟𝑒 𝑓) and

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (𝑉𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐸𝑡𝑎𝑟𝑔𝑒𝑡), which both refer to the main() function.
Second, for each pair of matched vertices between two trees,
we iteratively leverage the longest common subsequence (LCS)
algorithm [37, 44] to identify new matched pairs from their child
vertices. After the whole alignment procedure, we get the set of
unmatched vertices 𝑈𝑟𝑒 𝑓 on the reference trace and the set of
unmatched vertices𝑈𝑡𝑎𝑟𝑔𝑒𝑡 on the target trace. Thus,𝑈𝑟𝑒 𝑓 ∪𝑈𝑡𝑎𝑟𝑔𝑒𝑡

is viewed as function-level execution detours to be reasoned and
corrected during PoC adjustment.

4 TRACE-GUIDED POC ADJUSTMENT

Based on the identified execution detours between the reference
trace and the target trace, this section iteratively adjusts the original
PoC so as to produce a more similar trace with the reference trace
than previous ones, hoping to trigger the same vulnerability in
this process. Overall speaking, we have three steps in this phase.
First, we pinpoint the critical variables accessed on the target
trace (§4.1), which are responsible for the identified execution
detours (i.e., changing whose runtime value may help to avoid the
detours). Second, intuition suggests that, by concentrating mutation
efforts on those input bytes that can influence the pinpointed
critical variables, we have a higher chance to correct the execution
detours as we desire. In light of this, we propose a fuzzing-based
method (§4.2) to iteratively adjust the original PoC input. Third, to
determine whether an observed crash during the fuzzing process
is triggered by the target vulnerability, we feature a cross-version
crash triage mechanism (§4.3).

4.1 Execution Detours Reasoning

As described in §3.3, the execution detours between the reference
trace and the target trace can be viewed as the unmatched vertices
𝑈𝑟𝑒 𝑓 on the reference trace and the unmatched vertices 𝑈𝑡𝑎𝑟𝑔𝑒𝑡

on the target trace. Before reasoning about the execution detours,
we remove all child vertices of every unmatched vertex from𝑈𝑟𝑒 𝑓

and 𝑈𝑡𝑎𝑟𝑔𝑒𝑡 . Since execution detours may be caused by different
reasons, we first classify these detours, and then introduce how to
track down the linkage from the execution detours in𝑈𝑟𝑒 𝑓 ∪𝑈𝑡𝑎𝑟𝑔𝑒𝑡

to the corresponding critical variables on the target trace that cause
these detours. During the reasoning of execution detours, we would
first identify those detours that cannot be corrected (i.e., function
calls that cannot happen/avoid in the target trace) and then focus
on those detours that can be corrected in the next.
Execution Detours Classification. In general, we find function-
level execution detours are caused by 3 reasons.
• Unexpected Crash occurs when the target trace triggers another
vulnerability and thus crashes before triggering the target
vulnerability. To identify an unexpected crash, we rely on cross-
version crash triage (§4.3) which determines whether a crash is
triggered by the target vulnerability.

• Missed Call refers to a function call which is only observed on
the reference version while not on the target version. A missed
call can be identified as an unmatched vertex 𝑣 in the reference
version (𝑣 ∈ 𝑈𝑟𝑒 𝑓) whose parent 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣) has a matched vertex
in the target version.

• Unintended Call refers to a function call which is only observed
on the target version while not on the reference version. Similarly,

Table 1: Unexpected crash types and the critical variables

that need to be mutated for avoiding such crashes.

Crash Type Critical Variables

Assertion Failure Checked Variables of Assertion
Floating Point Exception Denominator Variables
Out-of-bound Access Index Variables
SEGmentation Violation Invalid Pointers

an unintended call can be identified as an unmatched vertex 𝑣
in the target version (𝑣 ∈ 𝑈𝑡𝑎𝑟𝑔𝑒𝑡) whose parent 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣) has a
matched vertex in the reference version.

Identify Critical Variables. According to the categories of the
execution detours, we apply different reasoning strategies to
identify the critical variables that are responsible for a detour.

1) Unexpected Crash Reasoning. In this situation, the testcase
accidentally triggers another vulnerability which makes the exe-
cution crash before triggering the target vulnerability. We identify
the critical variables that are responsible for a crash according to
its crash type. As summarized in Table 1, we consider four crash
types: Assertion Failure, Floating Point Exception (FPE), Out-of-
bound Access, and SEGmentation Violation (SEGV). According to
this table, the critical variables for each crash type are determined.
In the following step, we can mutate the runtime value of the
responsible critical variable to avoid such an unexpected crash.
Taking FPE as an example, its denominator variable is determined
as the critical variable. By mutating the input bytes which may
influence the runtime value of it (i.e., making it not equal to 0), we
may avoid the testcase from triggering this unexpected crash and
thus make the execution proceeds towards the buggy point.

2) Missed Call Reasoning. For a missed call 𝑣𝑟 ∈ 𝑈𝑟𝑒 𝑓 , its parent
vertex 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣𝑟) in the reference trace has a matched vertex 𝑣𝑡
in the target trace. At first, we determine whether this execution
detour can be corrected, by checking the following two conditions:
1) whether 𝑣𝑟 .𝑓 has a matched function in the target version; 2)
whether the matched function of 𝑣𝑟 .𝑓 in the target version is called
by 𝑣𝑡 .𝑓 with an aligned callsite that has a call from 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣𝑟) to 𝑣𝑟
in the reference version. If either condition is false, it is impossible
to correct this missed call.

Otherwise, we analyze the intra-function execution flow (𝑣𝑡 .𝐵𝐵𝑠)
of 𝑣𝑡 to locate the basic block which detours the execution on the
target version. To be specific, we locate a basic block 𝑥 in 𝑣𝑡 .𝐵𝐵𝑠

which is the dominator for the basic block that has an aligned
callsite to the missed call in the reference version. We then extract
the condition variables within the basic block 𝑥 , which controls
the branch taking or not (e.g., the variables used by CMP or SWITCH
instructions), as the critical variables to be adjusted. Figure 3 gives
an example. In this example, the target version misses a function
call to _TIFFCheckMalloc() (line 9). We can determine that line 6
on the target version refers to the basic block which makes the
expected callsite (line 9) unreachable. Therefore, the condition
variables (𝑑𝑒𝑠𝑡𝑡𝑦𝑝𝑒𝑠𝑖𝑧𝑒 ,𝑑𝑖𝑟𝑒𝑛𝑡𝑟𝑦−>𝑡𝑑𝑖𝑟_𝑐𝑜𝑢𝑛𝑡) of line 6 are viewed
as critical variables that cause this detour.

3) Unintended Call Reasoning. Similarly, for an unintended call
𝑣𝑡 ∈ 𝑈𝑡𝑎𝑟𝑔𝑒𝑡 , we first determine whether 𝑣𝑡 can be avoided on the
target version, by checking whether 𝑣𝑡 .𝑓 is unconditionally called

enum TIFFReadDirEntryErr TIFFReadDirEntryArrayWithLimit(

tif, direntry, count, desttypesize, value, maxcount){

 if ((uint64)(2147483647/typesize)<target_count64)

 return(TIFFReadDirEntryErrSizesan);

 if ((uint64)(2147483647/desttypesize)<target_count64)

 return(TIFFReadDirEntryErrSizesan);

 data=_TIFFCheckMalloc(...)

}

01

02

03

04

05

06

07

08

09

10

(a) Intra-function trace of reference PoC

on libtiff v4.0.9 (reference version)

enum TIFFReadDirEntryErr TIFFReadDirEntryArray(

tif, direntry, count, desttypesize, value){

 if ((uint64)(2147483647/typesize)<direntry->tdir_count)

 return(TIFFReadDirEntryErrSizesan);

 if ((uint64)(2147483647/desttypesize)<direntry->tdir_count)

 return(TIFFReadDirEntryErrSizesan);

 data=_TIFFCheckMalloc(...)

}

01

02

03

04

05

06

07

08

09

10

(b) Intra-function trace of reference PoC

on libtiff v4.0.8 (target version)

Figure 3: An example of reasoning missed calls. Note that

the arrows indicate the control flows of the two traces.

by 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣𝑡) .𝑓 . If true, such an execution detour could not be
corrected.

Otherwise, we perform a backward dominator analysis from
the callsite of 𝑣𝑡 (aka. 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒 (𝑣𝑡)) in the target trace. Through the
dominator analysis, we determine the basic block in 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣𝑡).𝐵𝐵𝑠
whose branching condition controls the reachability of 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒 (𝑣𝑡).
We deem the condition variables of this basic block as the critical
variables for this unintended call. To illustrate this process, we
give an example in Figure 4. The unintended call is the function
call exit() (line 13) called by read_samples_pcm() in Figure 4 (a).
Through backward dominator analysis, we first locate line 10 on
the target version. While the branch taken at line 10 on the target
version cannot help to avoid calling exit(). We finally identify its
predecessor basic block at line 2 (Figure 4 (a)) which dominates the
call of exit(). We then determine the condition variable at line 2
(𝑔𝑙𝑜𝑏𝑎𝑙 .𝑝𝑐𝑚𝑏𝑖𝑡𝑤𝑖𝑑𝑡ℎ) as the critical variable that causes this detour.

4.2 Fuzzing-based Detours Correction

After associating the identified execution detours with the respon-
sible critical variables in the target trace, we adopt a fuzzing-based
method to adjust the original input to mitigate these detours and
make the generated execution trace more similar to the reference
trace than before.
Fuzzing Loop. Similar to traditional fuzzers, we maintain an input
queue to store interesting testcases discovered during the fuzzing
process. Initially, we put the reference PoC input into the queue. For
each round of fuzzing, we retrieve a seed from the first position of
the input queue and collect the execution trace under this seed on
the target version. By identifying the execution detours between the
collected trace and the reference trace and associating these detours
with the critical variables on the target version, we first locate the
critical input bytes that affect the runtime values of these critical
variables; then mutate these input bytes of the seed to generate a
set of new testcases; and finally insert every testcase into the queue

int read_samples_pcm(musicin, sample_buffer,

samples_to_read){

 switch(global.pcmbitwidth){

 case 32:

 case 24:

 case 16:

 case 8:

 default:

 if (global_ui_config.silent < 10) {

 error_printf("...");

 }

 return -1;

 }

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

(a) Intra-function trace of reference PoC

on lame v3.99.5 (reference version)

(b) Intra-function trace of reference PoC

on lame v3.98.4 (target version)

int read_samples_pcm(musicin, sample_buffer,

samples_to_read){

 switch(global.pcmbitwidth){

 case 32:

 case 24:

 case 16:

 case 8:

 default:

 if (silent < 10) {

 error_printf("...");

 }

 exit(1);

 }

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

int read_samples_pcm(musicin, sample_buffer, samples_to_read){

 switch(global.pcmbitwidth){

 case 32:

 case 24:

 case 16:

 case 8:

 default:

 if (global_ui_config.silent < 10) {

 error_printf("...");

 }

 return -1;

 }

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

(a) Intra-function trace of reference PoC

on lame v3.99.5 (reference version)

int read_samples_pcm(musicin, sample_buffer, samples_to_read){

 switch(global.pcmbitwidth){

 case 32:

 case 24:

 case 16:

 case 8:

 default:

 if (silent < 10) {

 error_printf("...");

 }

 exit(1);

 }

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

(b) Intra-function trace of reference PoC

on lame v3.98.4 (target version)

Figure 4: An example of reasoning unintended calls. Note

that the arrows indicate the control flows of the two traces.

according to the similarity between the execution trace (generated
by it on the target version) and the reference trace.

During the fuzzing process, if a testcase triggers a crash, we
use the crash triage module (see §4.3) to test whether the crash is
triggered by the target vulnerability. If so, the fuzzing loop ends and
reports this testcase as the desired PoC input for the target version.
With a PoC, the target version is verified to be affected by the target
vulnerability. Otherwise, the fuzzing process continuously proceeds
until a time budget is reached.

The details about the fuzzing loop are described below.

• Critical Input Bytes Locating.We first label all critical variables
that are identified from execution detours as taint sources. Then,
we use dynamic taint analysis to locate the critical input bytes of
the seed that affect the runtime values of these critical variables.
Technically, we use IR-level instrumentation to implement the
variable-level taint tracking (detailed in Appendix A). Although
we can pinpoint the input bytes that directly affect the runtime
values of the critical variables, we may miss the input bytes
that indirectly affect these critical variables, e.g., through control
flows. When no input bytes are located via data flows, we also
consider the condition variables (i.e., variables that determine
which branch to take on conditional jumps) on the execution
flow as taint sources, and locate the input bytes that affect these
condition variables. All the located input bytes are considered
in the mutation stage. We note that this design may introduce
undertaint/overtaint issues and we will discuss these issues in §6.

• Seed Mutation. For the located critical input bytes of a seed,
we apply existing mutation strategies of AFL to mutate their
values. In every round of fuzzing, we only mutate a seed, and the
time budget for mutating this seed is positively correlated to the
number of identified input bytes on this seed.

• Seed Prioritization. Within each round of fuzzing, many new
seeds are generated after seed mutation. These new seeds are
prioritized to insert into the input queue, and the seed with
the highest priority will be selected for mutation in the next
round of fuzzing. To label a priority for each seed, we use the
similarity score between the execution trace collected under
this seed on the target version 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (𝑉𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐸𝑡𝑎𝑟𝑔𝑒𝑡) and the
reference trace 𝑇𝑟𝑒 𝑓 (𝑉𝑟𝑒 𝑓 , 𝐸𝑟𝑒 𝑓). Specifically, according to the
cross-version trace alignment, we first obtain the set of vertices
𝑀𝐴𝑇𝐶𝐻𝐸𝐷𝑟𝑒 𝑓 in the 𝑉𝑟𝑒 𝑓 that has matched vertices in the
𝑉𝑡𝑎𝑟𝑔𝑒𝑡 , then collect the set of vertices 𝑁𝑂𝑇_𝐶𝑂𝑅𝑅𝐸𝐶𝑇𝐴𝐵𝐿𝐸𝑟𝑒 𝑓
in the 𝑉𝑟𝑒 𝑓 who are identified as not-correctable missed calls in
execution detours reasoning (see §4.1). We iteratively expand
𝑁𝑂𝑇_𝐶𝑂𝑅𝑅𝐸𝐶𝑇𝐴𝐵𝐿𝐸𝑟𝑒 𝑓 to include all its child vertices. Based
on the alignment result, the similarity score between the 𝑇𝑡𝑎𝑟𝑔𝑒𝑡
and the 𝑇𝑟𝑒 𝑓 is calculated as follows:

𝑠𝑖𝑚(𝑇𝑟𝑒 𝑓 ,𝑇𝑡𝑎𝑟𝑔𝑒𝑡) =
��𝑀𝐴𝑇𝐶𝐻𝐸𝐷𝑟𝑒 𝑓

����𝑉𝑟𝑒 𝑓 �� − ��𝑁𝑂𝑇_𝐶𝑂𝑅𝑅𝐸𝐶𝑇𝐴𝐵𝐿𝐸𝑟𝑒 𝑓
�� (1)

4.3 Crash Triage

When a crash occurs, we need to determine whether the crash
is caused by the target vulnerability or not. Though the crash
triage mechanism is widely used by fuzzers, it is mainly used for
unique crash identification. Existing fuzzers commonly use two
heuristics to identify unique crashes: unique stack traces (e.g., used
by SYMFUZZ [11]) and unique coverage profile (e.g., used by AFL [1]).
However, these heuristics cannot be applied to comparing two
crashes that are collected on two different software versions, due
to cross-version code changes.

As such, we introduce a tailored triage mechanism for our
problem. In our problem, crash triage is used to verify whether a
target version is affected by a specified vulnerability. To gain a low
false positive rate, we adopt a conservative design in performing
such affection assessment. In particular, we set 3 conditions to
meet in determining whether two crashes (which are collected
on two software versions) are caused by the same vulnerability:
❶ the similarity score between their execution traces (Equation 1)
exceeds a pre-defined threshold;❷ their buggy functions are aligned
across versions; and ❸ the bugs they triggered belong to the same
category. As we will show in our evaluation (see §5), the above
triaging criteria help to keep a low false positive rate in performing
vulnerability affection assessment.

5 EVALUATION

This section evaluates the effectiveness and the efficiency of
VulScope in migrating a reference PoC to target vulnerable
versions of the same software. In particular, it first introduces the

experiment setup as well as the data set used for evaluation; then
discusses the experiment design; and finally reports the results.
Prototype. We implement a prototype of VulScope, which con-
tains about 4.5K lines of C++ code and 2K lines of Python code
(counted by cloc). In our prototype, the static code analysis
is implemented on LLVM 7.0.0 and the fuzzing loop is built
upon AFL 2.56b [1]. More implementation details are presented
in Appendix A.

5.1 Data Set

Methodology. In recent studies [34], researchers have discovered
that the vulnerability reports’ quality could vary significantly.
In order to evaluate our proposed technique, we select real-
world vulnerabilities and their reports by following the suggestion
provided by one of the studies [34]. To be specific, when selecting
our data set, we ensure a report could provide us with the following
four information.

• Availability of Proof-of-Concept input. We choose only those
vulnerability reports containing an external reference link to
an available public reference PoC input.

• Description of vulnerable software versions. We consider those
vulnerability reports that specify the versions of the software
vulnerability to that reported security loophole. In this way, we
can further assess how well the reports align with the ground
truth and the reports of our tool.

• Guidance of vulnerable software configuration. For some vul-
nerabilities, they can be triggered only when the target soft-
ware is appropriately configured. For example, the target soft-
ware libtiff is vulnerable to the vulnerability associated
with CVE-2018-18557 only if we compile it with the option
“–enable-jbig”. As such, if a report fails to specify the config-
uration detail of the vulnerable software, we discard the report
accordingly.

• Guidance of triggering method. For some vulnerabilities, they
can be triggered only when a specific running parameter is
appropriately specified. For example, the vulnerability associated
with CVE-2015-9101 could be triggered only when “-f -V 9” is
specified. As a result, we select the report with such details are
present.

Data Summary. Following the selection criteria, we randomly
selected 30 real-world CVE reports from the National Vulnerability
Database (NVD) [4]. These 30 CVE reports cover 6 broadly adopted
software in the userspace, covering 6 types of vulnerabilities:
heap OOB, stack OOB, divide-by-zero, segmentation fault, integer
overflow, and null pointer dereference. To choose the versions of
the software for evaluating our tool, we took those versions that
never apply the corresponding patches1 and treated the PoC input
associated with the CVE report as our reference PoC input. Table 2
and Appendix-Table 6 summarize the CVEs of our selection, the
reference version of the software, the number of target versions we
choose for our evaluation, and the security severity of each CVE.

1Note that after a vulnerability is identified on a particular version of the software,
a software developer usually develops a patch and applies it to a couple of active
vulnerable versions. For non-vulnerable versions and inactive-maintained versions,
the patches are not applied.

Table 2: Summary of selected vulnerabilities and their corresponding CVE IDs.

Software CVE

Reference

Version

Target

Versions
1

Replay Reference PoC on Target Versions Affected Versions

Crash

Target

Crash

Not Target

Crash

Not

Crash
All Need PoC Migration

2

zziplib

CVE-2018-6381 0.13.62 11 11 6 5 0 11 5
CVE-2017-5976 0.13.62 6 6 6 0 0 6 0
CVE-2017-5975 0.13.62 6 6 6 0 0 6 0
CVE-2017-5974 0.13.62 6 6 6 0 0 6 0

audiofile

CVE-2018-17095 0.3.6 7 7 7 0 0 7 0
CVE-2017-6836 0.3.6 7 6 6 0 1 7 1
CVE-2017-6834 0.3.6 7 7 7 0 0 7 0
CVE-2017-6832 0.3.6 7 7 7 0 0 7 0
CVE-2017-6831 0.3.6 7 7 1 6 0 7 6
CVE-2017-6835 0.3.6 7 7 7 0 0 7 0

tcpdump

CVE-2017-5485 4.8.1 19 19 19 0 0 19 0
CVE-2017-13690 4.9.1 21 15 15 0 6 15 0
CVE-2017-5486 4.8.1 19 19 19 0 0 19 0
CVE-2017-16808 4.9.2 22 9 9 0 13 9 0

lame

CVE-2017-15046 3.99.5 5 5 5 0 0 5 0
CVE-2017-15045 3.99.5 9 6 5 1 3 9 4
CVE-2017-15018 3.99.5 9 9 8 1 0 9 1
CVE-2015-9101 3.99.5 9 6 5 1 3 9 4

libtiff

CVE-2016-10095 4.0.7 18 13 13 0 5 18 5
CVE-2016-10269 4.0.7 17 2 0 2 15 12 12
CVE-2016-10092 4.0.7 17 12 9 3 5 16 7
CVE-2016-10093 4.0.7 17 11 9 2 6 17 8
CVE-2018-7456 4.0.9 19 19 19 0 0 19 0
CVE-2018-12900 4.0.9 19 18 16 2 1 19 3
CVE-2018-17795 4.0.9 19 0 0 0 19 18 18
CVE-2018-18557 4.0.9 19 3 3 0 16 19 16

jasper

CVE-2016-9560 1.900.25 21 17 17 0 4 21 4
CVE-2017-14132 2.0.13 40 40 40 0 0 40 0
CVE-2018-19540 2.0.14 40 40 40 0 0 40 0
CVE-2018-19541 2.0.14 40 40 40 0 0 40 0

SUM 30 CVEs 30 470 373 350 23 97 444 94
1 “Target Versions”: Target versions refer to those versions that need vulnerability affection assessment, which are detailed in Appendix-Table 6.
2 “Need PoC Migration”: These versions are vulnerable while the reference PoC inputs fail to trigger the target bugs, thus requiring PoC
migration.

As we can observe, the total number of target software versions is
470.

Based on the CVE reports gathered from NVD, among the 470
versions, 103 versions are listed as vulnerable. However, as a recent
work [18] has studied, the reported vulnerable versions could be
either overestimated or underestimated. As a result, in order to
establish the ground truth for our data set (i.e., the ground truth
about whether a vulnerability truly exists), we manually examine
the vulnerabilities in each version of the software used in our
evaluation and listed the number of truly vulnerable versions
in Table 2. In total, we manually confirmed 444 versions of
software vulnerable to the corresponding vulnerabilities. These
vulnerable versions contain 76.8% non-overlapping versions, as
specified in the NVD reports. This confirms the overestimating and
underestimating discovery by previous research [18].

5.2 Experiment Setup

We run all experiments on an individual virtual machine with 8G
memory and 2 CPU cores for each binary. The host of our virtual
machine has 24 GB memory and 12 CPU cores (Intel i7-9750H, 2.60
GHz per core). In our experiment, we run our tool (VulScope) for
8 hours while exploring the possibility of PoC migration.

Threshold for Crash Triage (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑟𝑎𝑠ℎ). As we mentioned
before, our migration techniques use a predefined threshold to
perform crash triage. The value selection of 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑟𝑎𝑠ℎ is a
trade-off between false positives (FP) and false negatives (FN). For
example, a low-value choice could cause our tool to mistakenly
treat an undesired crash on the target version as a success of PoC
migration (i.e., false positives). On the contrary, a higher value could
potentially cause our tool to consider a successful migration as an
unexpected termination (i.e., false negatives). To ensure VulScope
could correctly report the success of the migration, we favor a low
FP over a low FN. As such, we choose a relatively high value of 0.7.

5.3 Experiment Design

To evaluate the effectiveness and efficiency of our tool, we design
five experiments. Here, we summarize our experiment design below.
Experiment I.We first experiment with the reference PoC input’s
effectiveness across various target versions (as listed in Appendix-
Table 6). Through this experiment, we aim to answer the following
questions. For how many vulnerable versions, the reference PoC
input could directly generate a crash on the target versions? Among
these crashes, how many are the crashes we truly desire, and how

many are unexpected? For those non-crash versions, how many of
them require our tool VulScope for PoC migration?
Experiment II. The second experiment evaluates that, for those
cases where merely running a PoC input does not generate the
desired crash or falsely reports an unexpected termination as a
practice of successfully triggering the desired vulnerability, how
well our tool VulScope could successfully mutate a reference
PoC input and migrate it to vulnerable versions. Besides, we
also evaluate whether our proposed technique produces any
false positives (i.e., deeming an unsuccessful migration and the
corresponding crash as a successful practice). For those versions
that VulScope fails to migrate a PoC input, we finally study
whether those versions are truly non-vulnerable. If not, we aim to
understand the factors that fail VulScope.
Experiment III.We further evaluate the performance of the cross-
version trace alignment. For vulnerable target versions identified
by VulScope in Experiment II, we collect all trace alignment results
during PoC migration and crash triage for these versions. With
these results, we seek to answer the following questions. What
are the sizes of these traces? How common is code refactoring
(i.e., function merging/splitting, function renaming) in these traces?
How common is the source code change observed in these traces?
How effective and efficient is our trace alignment?
Experiment IV. As a fuzzing-based approach optimized to guide
a program to a target buggy site, we also design an experiment
to compare VulScope with the existing directed fuzzing approach.
To the best of our knowledge, the most representative directed
fuzzing tools are AFLGo [9] and Hawkeye [13]. Since Hawkeye
has not yet been publicly available, we choose AFLGo2 as the
baseline for our comparison. In addition to directed fuzzing, we also
compare VulScope with the most broadly used fuzzing tool – AFL3.
In this experiment, we select those versions of the software – listed
in Table 2 – the reference PoC of which cannot trigger the target
bug successfully or triage crashes correctly. As we will discuss later,
the total number of versions satisfying this requirement is 94.

It should be noted that both AFLGO and AFL do not have a
clue about whether a crash indicates the success of triggering the
desired vulnerability when used for PoC migration. For the directed
fuzzing tool AFLGO, it even requires manually specifying the buggy
site. As such, when performing the comparison mentioned above,
we manually mark the target buggy site in the corresponding
version of the software. When observing the crash on target
versions, we manually examine the crash’s root cause, determining
whether the crash indicates the success of the desired vulnerability
identification and that of PoC migration. According to the time
allocated to VulScope, we also set 8 hours for evaluating these
tools in migrating PoC inputs. Within the 8 hours, we also record
the time that each tool spends on generating the first target crash.
Experiment V. Last but not least, we also design an experiment
to assess how well VulScope could be used as a tool to verify a
vulnerable version of the software. To achieve this goal, we compare
our tool confirmed vulnerable versions with those listed in the
reports gathered from NVD. Through this comparison, we aim to

2https://github.com/aflgo/aflgo/tree/c2888eb4e6e236549be88d3850831e71d1f0ffa2
3https://github.com/mirrorer/afl/tree/2fb5a3482ec27b593c57258baae7089ebdc89043

Table 3: Effectiveness of VulScope in migrating PoC input

and performing crash triage.

Ground Truth VulScope

P1 N2 TP FP TN FN FNR
444 26 409 0 26 35 7.9%

1 “P” specifies the versions that require our PoC migration and crash triage.
2 “N” indicates the non-vulnerable versions.

understand whether VulScope can be used to facilitate bug report
verification, finding those inaccurate vulnerable version claims.

5.4 Experiment Results

Experiment I. Table 2 shows the effect of merely replaying the
reference PoC input on various target versions of the same software.
As we can observe, 373 out of 470 target versions exhibit crashes and
the rest 97 versions do not while taking the corresponding reference
PoC input. For each group, we take a closer look and manually
analyze the source code of the crashed and non-crashed versions.
We discover that, among all the 373 crashing versions, 350 versions
successfully trigger the desired bug, and the remaining 23 versions
accidentally touch an unexpected bug. For those 97 non-crashed
versions, only 26 are no longer vulnerable to the corresponding
vulnerabilities. Recall that the goals of our tool are in two-folds. One
is to migrate a reference PoC input from one version to another if
the vulnerability still exists. The other is to triage the corresponding
crash on the target version and correctly distinguish the desired
crash from unexpected termination. As such, the number of versions
that require our tool’s facilitation is 444, including 71 non-crashed
vulnerable versions needed for PoC migration and 373 crashes
triggered by reference PoC inputs needed for accurate crash triage.
In total, this accounts for 94% of our test cases (444/470).
Experiment II. Table 3 summarizes the experiment result, quanti-
fying the effectiveness of our tool in migrating PoC inputs and per-
forming crash triage. As we can observe from the table, VulScope
generates 409 crashes and deems them as the consequence of
triggering the desired vulnerability. Among these 409 reported
successes of PoCmigration and crash triage, we note thatVulScope
introduces no false positives. We further check all the 409 versions
that are reported as vulnerable by VulScope. For each CVE, the
average amount of time/version between the earliest identified
version and the reference version is 48.1 months/13.1 versions.

Besides, Table 3 also shows that VulScope fails to generate
a crash indicating the trigger of the target vulnerability for
61 versions. Among these 61 versions, 26 versions are truly
unaffected to the corresponding vulnerabilities. It means that the
false negatives of VulScope are 35 (FNR: 7.9%=35/444).

To understand the 35 false negatives, we take a closer look,
manually analyzing the root cause hidden behind our tool’s failure.
We discover that failures can be categorized into three practices. ❶
The program is updated to take a new format of user input. Our
PoC migration technique cannot correctly mutate an input and
thus allow it to pass the newly added format sanity check. We note
9 out of 35 failure cases can be attributed to this practice. ❷ The
version change unintentionally adds a sanity check which restricts
the trigger of the desired vulnerability through the path observed
from the reference version. In order to trigger the vulnerability, one

Table 4: Performance of cross-version trace alignment.

Software

Version Pair

Trace Size TP TN FP FN FPR FNR

(ref, target)

zziplib (0.13.62, 0.13.67) (40, 36) 70 4 0 2 0% 2.78%

jasper (1.900.25, 1.900.26) (9424, 9427)1 18116 15 0 720 0% 3.82%

libtiff (v4.0.7, v3.9.6) (653, 2676) 612 2595 64 58 2.41% 8.66%

lame (3.99.5, 3.98.4) (9738, 9619)1 16952 973 0 1432 0% 7.79%

tcpdump (4.8.1, 4.9.0) (832, 836) 1664 4 0 0 0% 0%

audiofile (0.3.5, 0.3.4) (186, 151) 280 49 0 8 0% 2.78%
1 We can manually verify such a long trace because over 90% of function calls are in loops.

needs to find an alternative path to reach the buggy site. VulScope
is designed to force the target version’s execution as similar as that
observed on the reference version. As such, it cannot migrate PoC
successfully. There are 14 out of 35 failure cases falling into this
practice. ❸ The triage module of VulScope also contributes to the
failure cases (12 out of 35). We note these failure cases all come from
the same software audiofile, which result from the significant
implementation variation. From version 0.2.7 to version 0.3.6, its
developers start to change their implementation from C to C++
gradually. This drastic code change fails our trace-similarity-based
comparison in the process of PoC migration.
Experiment III. As presented in Table 3, VulScope identifies 409
vulnerable versions. During PoC migration and crash triage for
these 409 vulnerable versions, we perform cross-version trace
alignment for 2,919 unique trace pairs. The sizes (number of
function calls) of these trace pairs (𝑇𝑟𝑒 𝑓 , 𝑇𝑡𝑎𝑟𝑔𝑒𝑡) vary significantly,
ranging from (40, 19) to (20,046, 8,569). In general, there are over
1,634 trace pairs longer than (1000, 1000). From the 2,919 unique
trace pairs, VulScope identifies that 85.61% (2,499/2,919) of trace
pairs have merged/split functions, while 55.5% (1,619/2,919) of
trace pairs involve renamed functions, indicating that function
merging/splitting identification is quite important in trace align-
ment. Besides, for each of the 2,919 unique trace pairs, there are on
average 14.6% executed functions which only exist on one version
(by comparing function names). For the remaining 85.4% functions
which are observed on both versions, 23.8% of them have different
codes between two versions. In all, VulScope costs 0.48s to align
two traces, and another 13.7s for execution detours reasoning on
average.

To evaluate the effectiveness of cross-version trace alignment, we
manually investigate 6 trace pairs at different degrees of sizes from
different software. Results are shown in Table 4. We find that for
most cases, VulScope has no false positives, and the false negative
rate is relatively low. We break down these false positives/negatives
below.

• False Positives Breakdown. We only observe false positives on
a trace pair from libtiff. During a version update, there are
significant code changes in the function TIFFFetchNormalTag(),
which cause two function calls to TIFFSetField() in this function
are wrongly aligned. This mistake further makes the child calls
of TIFFSetField() wrongly aligned.

• False Negatives Breakdown. There are two main reasons for
the observed false negatives: 1) some renamed functions fail
to be mapped due to significant code modifications; 2) code

Table 5: Comparison results of AFL, AFLGo, and VulScope.

Time Spent AFL AFLGo VulScope

1h 37 41 71
2h 37 44 71
8h 46 46 71

The detailed migration results of the 3 tools are listed in Appendix-Table 7

modifications that change the order of two function calls cause
the LCS-based tree alignment algorithm hard to align.
In general, though our trace alignment may give some wrong

results, it does not significantly affect our PoC adjustment whose
fuzzing-based design could to some extent tolerate some inac-
curacies in the trace alignment. Besides, we find a large part of
FPs/FNs can be further mitigated by introducing more advanced
code similarity comparison techniques.
Experiment IV. Table 5 presents the performance comparison
of AFL, AFLGo, and VulScope (the detailed migration results of
the 3 tools are listed in Appendix-Table 7). As we can observe,
among all 94 target versions (on which the reference PoC fails
to trigger the target bug) used in this experiment, both AFL and
AFLGO demonstrate the success of the migration on 46 versions (i.e.,
49%). VulScope successfully migrates PoC inputs for 71 versions,
which is roughly a 30% increase (i.e., 76% vs 49%). For those
versions of software that AFL and AFLGO successfully migrate PoC
inputs, we perform further manual analysis and discover that these
versions are a subset of those versions that VulScope demonstrates
migration success. It means that AFL and AFLGO do not provide
additional benefits in terms of PoC migration.

Table 5 also breaks down the success of PoC migration across
time. As we can observe, VulScope demonstrates its superiority. In
one hour,VulScope could successfullymigrate PoC inputs to 71 ver-
sions. It is because, in comparison with AFL and AFLGO, VulScope
could converge to the expected path (i.e., the path similar to the one
observed on the reference version) and thus the buggy site faster.

To further understand the performance of the 3 tools in the task
of PoC migration, we investigate how AFL, AFLGO and VulScope
behave in approaching the buggy site. Appendix-Table 8 presents
the number of seeds that reach the buggy site during the evaluation.
Results show 2 situations that AFL and AFLGO fail on the 25 target
versions which are only successfully migrated by VulScope.
• Reach the buggy site but do not trigger the target vulnerability.
In 6 cases, AFL and AFLGO have reached the buggy site for a
lot of times, but still fail to trigger the target vulnerability (e.g.,
CVE-2018-17795). This result clearly demonstrates that (directed)
fuzzing is effective in exploring paths (to a buggy site); however,
the conditions for triggering a target vulnerability are only
encoded on a couple of critical paths among all paths heading
to the buggy site. As a comparison, though VulScope does not
reach the buggy site for many times, it efficiently triggers the
target vulnerability by following the reference trace.

• Do not reach the buggy site. In 19 cases, AFL and AFLGO fail to
reach the target site (e.g., CVE-2018-18557, CVE-2016-9560, CVE-
2017-6831). It is a little surprising that AFLGO has not reached
these buggy sites, since it is designed to reach a target site quickly.
We find the reason is that AFLGO does not know which bytes to
mutate that can help it efficiently approach the target site. For

int tiffcp(TIFF *in, TIFF *out){

 uint16 bitspersample, samplesperpixel;

 uint16 input_compression, input_photometric;

 if(samplesperpixel <= 4)

 CopyTag(TIFFTAG_TRANSFERFUNCTION, 4, TIFF_SHORT);

}

01

02

03

04

05

06

07

08

(a) Intra-function trace of reference PoC

on libtiff v4.0.6 (target version)

int tiffcp(TIFF *in, TIFF *out){

 uint16 bitspersample, samplesperpixel = 1;

 uint16 input_compression, input_photometric

= PHOTOMETRIC_MINISBLACK;

 if(samplesperpixel <= 4)

 CopyTag(TIFFTAG_TRANSFERFUNCTION, 4, TIFF_SHORT);

}

01

02

03

04

05

06

07

08

09

(b) Intra-function trace of reference PoC

on libtiff v4.0.7 (reference version)

Figure 5: Case study on CVE-2016-10269. The variable

𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑝𝑒𝑟𝑝𝑖𝑥𝑒𝑙 is not initialized on the target version and

happens to get a runtime value of 32767 during execution.

example, the original PoC input of CVE-2018-18557 has 6,389
bytes. It is quite inefficient to blindly explore all mutations on all
these bytes. By taking the reference trace as guidance, VulScope
can efficiently locate the critical input bytes that hinder it from
following the reference trace. Therefore, it can not only efficiently
reach the buggy site but also trigger the target vulnerability.
Besides, from Appendix-Table 7, we find that VulScope needs

more time (about 30 minutes) than AFL and AFLGo to finish PoC
migration on several target versions of CVE-2016-10269. We use
libtiff-v4.0.6 (as shown in Figure 5) as a case to investigate
the reasons. In this version, a condition variable 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑝𝑒𝑟𝑝𝑖𝑥𝑒𝑙

is not properly initialized and gets a runtime value of 32767.
While in the reference version, this variable is initialized to 1.
Consequently, it causes a missed call 𝐶𝑜𝑝𝑦𝑇𝑎𝑔() on the target
version, which prevents the triggering of the target vulnerability.
In our experiment, AFL and AFLGo coincidentally modify an input
field in the TIFF file which ultimately set 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑝𝑒𝑟𝑝𝑖𝑥𝑒𝑙 to the
desired value. As a comparison, VulScope finishes the migration
in a similar way but uses more time, because the trace generated by
the migrated PoC has a lower similarity with the reference trace.
Experiment V. Appendix-Table 6 summarizes the versions of the
software that NVD deems as vulnerable. Besides, the table also lists
the number of versions that our tool reports as vulnerable, whereas
NVD does not. As we can observe, VulScope could successfully
identify 330 vulnerable versions that NVD fails to report. To some
extent, this indicates that VulScope can be used as a tool to verify
vulnerable versions of software automatically and thus be treated
as a potential tool for improving the quality of the NVD reports.
It is worth noting that after we reported these missed vulnerable
versions to MITRE, they have added all these affected versions to
the vulnerability reports.

Besides, we also have a look at the trace similarity between
the reference trace and the crashing trace on a newly-identified
vulnerable version. We find that although a reference trace differs
from a newly-identified crashing trace, the average trace similarity
(Equation 1) between them reaches a high value of 96.5%. As

evidence, this result demonstrates that the idea of leveraging the
reference trace to guide PoC migration is quite practical.

6 DISCUSSION

Using Symbolic Execution to Correct Execution Detours.

Correcting execution detours to trigger the target vulnerability
is quite difficult, due to the following three facts: 1) some execution
detours are not critical in triggering the target vulnerability; 2)
our evaluation of cross-version alignment shows that it may report
incorrect execution detours; 3) some execution detours may conflict
with each other, which means we can only choose part of them
to correct. In summary, it is hard to determine an accurate set
of detours that should be corrected. Therefore, we cannot apply
symbolic execution here because it requires to know exactly which
detours to correct, not to mention that its constraint solving is
heavy-weight and may get stuck on complicated constraints. In
contrast, our fuzzing-based approach iteratively corrects these
detours without knowing which part of detours should be corrected,
only if the correction process keeps the global similarity with the
reference trace improving.
Applications to Closed-source Binaries. The high-level idea in
PoC migration (i.e., collecting a reference trace as guidance to
adjust the input on the target version) is applicable to closed-source
binaries. However, our current implementation relies on some
techniques that require source code: trace collection, taint analysis
and code similarity comparison. For trace collection and taint
analysis on binaries, we can use binary-level instrumentation tools
(e.g., Pin tools [5]). For binary-level code similarity comparison,
there are also plenty of techniques [19, 32] that can be used which
support cross-version, cross-optimization, and obfuscation-resilient
code matching on both function-level and basic-block-level.
Limitations and Future Work. Though VulScope has outper-
formed both AFL and AFLGo in terms of completing the task of PoC
migration, it still has several limitations.

• VulScope adopts backward taint analysis to locate the critical
inputs that may influence the runtime values of the critical
variables. Therefore, it may meet overtaint and undertaint issues.
In particular, the overtainting may hurt its efficiency by wasting
mutation efforts on the input bytes that are not useful for
execution detours correction; the undertainting may affect its
effectiveness by missing some critical input bytes. Nevertheless,
these issues do not introduce false positives/negatives in our
evaluation. A potential mitigation strategy here is to use input
probing techniques [21, 56].

• Our tree alignment algorithm adopts a layer-by-layer design,
which may still wrongly align function calls in the face of large
code changes. Besides, this design may lead to propagating the
wrong mappings from a layer to its following layers. In our
evaluation, the trace alignment module reports some incorrect
results, which are caused by the imprecise matching between
functions or basic blocks. Although our fuzzing-based PoC
adjustment can to some extent tolerate such alignment errors, we
can improve the trace alignment by incorporating more advanced
techniques in code similarity comparison [19, 32].

• VulScope needs to tolerate some common code refactoring
across different program versions, such as function renaming

and functionmerging/splitting. However, the proposed technique
might fail to match functions with complicated refactoring occurs
(e.g., a function is merged and split at the same time). We plan to
investigate these problems in the future.

• We consider four common types of unexpected crashes when
reasoning execution detours. When other types of unexpected
crashes occur, we cannot associate them with some critical vari-
ables. Instead, we resort to reasoning the control-flow execution
detours (i.e., missed calls and unintended calls) observed on the
crashing paths to the reference trace. We plan to support more
crash types by leveraging more heavy-weight crash analysis [8,
53, 54].

• We need to traverse a call graph when identifying function
merging/splitting pairs. An implementation issue here is that
we do not consider indirect calls in the call graph construction,
so it may introduce false negatives. We plan to improve our
prototype by leveraging an indirect call target analysis [33].

• Our key idea for PoC migration is that following a similar path
to the reference trace may help to trigger the same vulnerability
on another version. This observation helps VulScope to achieve
quite good performance in migrating a PoC input to another ver-
sion of real-world programs. However, there might be situations
where the vulnerability-triggering conditions encoded on the
reference trace are no longer satisfied on the target version. An
extreme case that we observe in the evaluation is that the target
version even does not support the parsing of reference PoC (aka
unsupported file format), though it is still vulnerable to the same
vulnerability. To handle these cases, VulScope can be enhanced
to increase its vulnerability exploration capability, perhaps with
the guidance of root cause analysis [8, 35].

7 RELATEDWORK

Trace Alignment is used to correlate two execution traces. Zhang
et al. [58] and Nagarajan et al. [38] aim to align traces collected
from semantic-identical targets for the purpose of software piracy
detection, debugging, etc. Unfortunately, these methods are not
suitable in our problem context, since PoC migration requires
aligning traces generated from different versions of a program. To
take a step further, Kargen et al. [27] study the problem of aligning
traces between semantic similar (not identical) targets. However,
their approach is built upon runtime-value-based analysis, which
requires both traces to be collected under the same input. Therefore,
this method is also inapplicable in our work, because our traces
are generated under different inputs. Hoffman et al. [23] present a
trace alignment technique on traces collected from two versions
of a program. Similar to our work, they also try to identify code
refactoring changes to help the trace alignment. Different from our
work, their method requires collecting a lot of traces under the
same legal inputs on two versions of a program and then identifies
those commonly-observed trace differences as code refactoring.
Apparently, such a method is limited in its coverage. Different
from all existing works, our work handles the alignment problem
between cross-version execution traces generated with different
inputs.
Code Similarity is widely-used to identify the cloned code
snippets in a target software. Code similarity calculation can be

applied at different granularities, including instruction-level [17],
basic-block-level [2, 42, 43, 60], function-level [14, 26, 28], module-
level [7, 59], etc. In our work, we resort to existing function-level
and basic-block-level similarity calculation methods to correlate
cross-version functions and corresponding callsites. To compare
similarity, these works commonly extract internal and structural
features of code elements: internal features capture the characteris-
tic of the code element itself (e.g., opcodes, constant data access),
while structural features represent relations between code elements
(e.g., caller-callee relations, predecessor-successor relations).
Directed Fuzzing is a specific kind of fuzzing approach. Different
from conventional fuzzing that aims to explore maximum code
coverage, directed fuzzing is designed to generate a series of
concrete inputs that could direct the target program to reach out
to the desired code fragment (e.g., AFLGo [9] and Hawkeye [13]).
To fulfill the goal, prior research works have introduced various
methods to guide input mutation (e.g., adjusting input with the
guidance of target sequence [30, 31, 39], sanitizer checks [15, 40],
memory usage [51], and even typestate [50]). As is mentioned
and compared in the previous sections, directed fuzzing can also
potentially be used for solving our problem. However, directed
fuzzing suffers from finding the critical path to trigger the desired
bug even though it could find paths to reach the desired code snippet.
As such, it cannot be treated as an effective solution for our problem.

8 CONCLUSION

Crowd-sourced software vulnerabilities are usually reported as
CVE reports and later achieved by the National Vulnerability
Database (NVD). A recent study has already unveiled these reports’
low-quality issues (e.g., over-claimed or under-claimed vulnerable
versions). In this work, we introduce a systematic, automated
approach to assessing the under-claimed vulnerable versions for a
reported vulnerability. Technically, our proposed approach utilizes
a fuzzing-based method to migrate a Proof-of-Concept input to a
target version. We show that the fuzzing-based approach could be
an effective, efficient approach to migrating a PoC input from one
vulnerable version to another through a series of carefully designed
experiments. We conclude that our proposed technique can serve as
a tool to facilitate the improvement of NVD’s report quality. As part
of our future work, we will conduct a larger scale of experiments
further exploring the utility of our tool.

ACKNOWLEDGMENT

Wewould like to thank our shepherd Yajin Zhou and the anonymous
reviewers for their insightful comments that helped improve the
paper. This work was supported in part by National Natural
Science Foundation of China (U1836210, U1836213, U1736208,
61972099, 62172105), and Natural Science Foundation of Shanghai
(19ZR1404800). Yuan Zhang was supported in part by the Shanghai
Rising-Star Program under Grant 21QA1400700. Min Yang is
the corresponding author, and a faculty of Shanghai Institute of
Intelligent Electronics & Systems, Shanghai Institute for Advanced
Communication and Data Science, and Engineering Research
Center of Cyber Security Auditing and Monitoring, Ministry of
Education, China.

REFERENCES

[1] 2021. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.
[2] 2021. BinDiff. https://www.zynamics.com/bindiff.html.
[3] 2021. Common Vulnerabilities and Exposures. https://cve.mitre.org/.
[4] 2021. National Vulnerability Database. https://nvd.nist.gov/.
[5] 2021. PIN Tools. https://software.intel.com/content/www/us/en/develop/article

s/pin-a-dynamic-binary-instrumentation-tool.html.
[6] 2021. PolyTracker. https://github.com/trailofbits/polytracker.
[7] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable Third-party Library

Detection in Android and its Security Applications. In Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications Security (CCS), Vienna,
Austria. 356–367.

[8] Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi, Joel Frank,
SimonWörner, and Thorsten Holz. 2020. AURORA: Statistical Crash Analysis for
Automated Root Cause Explanation. In Proceedings of the 29th USENIX Security
Symposium (USENIX Security), Virtual Event, USA. 235–252.

[9] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed Greybox Fuzzing. In Proceedings of the 24th ACM SIGSAC
Conference on Computer and Communications Security (CCS), Dallas, TX, USA.
2329–2344.

[10] Martial Bourquin, Andy King, and Edward Robbins. 2013. Binslayer: Accurate
Comparison of Binary Executables. In Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop (PPREW), Rome, Italy. 4:1–
4:10.

[11] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-adaptive
Mutational Fuzzing. In Proceedings of the 36th IEEE Symposium on Security and
Privacy (S&P), San Jose, CA, USA. 725–741.

[12] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,
Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting Missing
Information in Bug Descriptions. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering (FSE), Paderborn, Germany. 396–407.

[13] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a Desired Directed Grey-box Fuzzer. In
Proceedings of the 25th ACM SIGSAC Conference on Computer and Communications
Security (CCS), Toronto, ON, Canada. 2095–2108.

[14] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving Accuracy and
Scalability Simultaneously in Detecting Application Clones on Android Markets.
In Proceedings of the 36th International Conference on Software Engineering (ICSE),
Hyderabad, India. 175–186.

[15] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Tao Wei, and Long Lu. 2020. SAVIOR: Towards Bug-Driven Hybrid Testing.
In Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), San
Francisco, CA, USA. 1580–1596.

[16] Jiarun Dai, Yuan Zhang, Zheyue Jiang, Yingtian Zhou, Junyan Chen, Xinyu Xing,
Xiaohan Zhang, Xin Tan, Min Yang, and Zhemin Yang. 2020. BScout: Direct
Whole Patch Presence Test for Java Executables. In Proceedings of the 29th USENIX
Security Symposium (USENIX Security), Virtual Event, USA. 1147–1164.

[17] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical Similarity of
Binaries. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Santa Barbara, CA, USA. 266–280.

[18] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and GangWang.
2019. Towards the Detection of Inconsistencies in Public Security Vulnerability
Reports. In Proceedings of the 28th USENIX Security Symposium (USENIX Security),
Santa Clara, CA, USA. 869–885.

[19] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. 2020. DeepBinDiff:
Learning Program-Wide Code Representations for Binary Diffing. In Proceedings
of the 27th Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, USA.

[20] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE:
Efficient Cross-architecture Identification of Bugs in Binary Code. In Proceedings
of the 23rd Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, USA.

[21] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,
and Zuoning Chen. 2020. GREYONE: Data Flow Sensitive Fuzzing. In Proceedings
of the 29th USENIX Security Symposium (USENIX Security), Virtual Event, USA.
2577–2594.

[22] Michael W. Godfrey and Lijie Zou. 2015. Using Origin Analysis to Detect Merging
and Splitting of Source Code Entities. In Proceedings of the IEEE Trans. Software
Eng. (TSE). 166–181.

[23] Kevin J. Hoffman, Patrick Eugster, and Suresh Jagannathan. 2009. Semantics-
aware Trace Analysis. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Dublin, Ireland. 453–
464.

[24] Jiyong Jang, Abeer Agrawal, and David Brumley. 2012. ReDeBug: Finding
Unpatched Code Clones in Entire OS Distributions. In Proceedings of the 23rd
IEEE Symposium on Security and Privacy (S&P), San Francisco, CA, USA. 48–62.

[25] Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe Wang, Xiaohan Zhang,
Xinyu Xing, Min Yang, and Zhemin Yang. 2020. PDiff: Semantic-based Patch

Presence Testing for Downstream Kernels. In Proceedings of the 27th ACM SIGSAC
Conference on Computer and Communications Security (CCS), Virtual Event, USA.
1149–1163.

[26] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for Large Scale Source
Code. In Proceedings of the IEEE Trans. Software Eng. (TSE). 654–670.

[27] Ulf Kargén and Nahid Shahmehri. 2017. Towards Robust Instruction-level Trace
Alignment of Binary Code. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), Urbana, IL, USA. 342–352.

[28] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A
Scalable Approach for Vulnerable Code Clone Discovery. In Proceedings of the
38th IEEE Symposium on Security and Privacy (S&P), San Jose, CA, USA. 595–614.

[29] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-based System for
Vulnerability Detection. In Proceedings of the 25th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, USA,.

[30] Hongliang Liang, Lin Jiang, Lu Ai, and Jinyi Wei. 2020. Sequence Directed Hybrid
Fuzzing. In Proceedings of the 27th IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), London, ON, Canada. 127–137.

[31] Hongliang Liang, Yini Zhang, Yue Yu, Zhuosi Xie, and Lin Jiang. 2019. Sequence
Coverage Directed Greybox Fuzzing. In Proceedings of the 27th International
Conference on Program Comprehension (ICPC), Montreal, QC, Canada. 249–259.

[32] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei
Zou. 2018. 𝛼diff: Cross-version Binary Code Similarity Detection with DNN. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE), Montpellier, France. 667–678.

[33] Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-call Targets
withMulti-layer Type Analysis. In Proceedings of the 2019 ACM SIGSACConference
on Computer and Communications Security (CCS), London, UK. 1867–1881.

[34] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao,
and Gang Wang. 2018. Understanding the Reproducibility of Crowd-reported
Security Vulnerabilities. In Proceedings of the 27th USENIX Security Symposium
(USENIX Security), Baltimore, MD, USA. 919–936.

[35] Dongliang Mu, Wenbo Guo, Alejandro Cuevas, Yueqi Chen, Jinxuan Gai, Xinyu
Xing, Bing Mao, and Chengyu Song. 2019. RENN: Efficient Reverse Execution
with Neural-network-assisted Alias Analysis. In Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), San Diego,
CA, USA. 924–935.

[36] Emerson R. Murphy-Hill, Chris Parnin, and Andrew P. Black. 2012. How We
Refactor, and How We Know It. In Proceedings of the IEEE Trans. Software Eng.
(TSE). 5–18.

[37] Eugene W. Myers. 1986. An O(ND) Difference Algorithm and its Variations. In
Algorithmica. 251–266.

[38] Vijayanand Nagarajan, Rajiv Gupta, Matias Madou, Xiangyu Zhang, and Bjorn
De Sutter. 2007. Matching Control Flow of Program Versions. In Proceedings
of the 23rd IEEE International Conference on Software Maintenance (ICSM), Paris,
France. 84–93.

[39] Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre. 2020. Binary-level Directed Fuzzing for Use-After-Free
Vulnerabilities. In Proceedings of the 23rd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), Virtual Event, USA. 47–62.

[40] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Giuffrida Cristiano. 2020.
ParmeSan: Sanitizer-guided Greybox Fuzzing. In Proceedings of the 29th USENIX
Security Symposium (USENIX Security), Virtual Event, USA. 2289–2306.

[41] Mateusz Pawlik and Nikolaus Augsten. 2016. Tree Edit Distance: Robust and
Memory-efficient. In Proceedings of the Information Systems (Inf. Syst.). 157–173.

[42] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-architecture Bug Search in Binary Executables. In Proceedings
of the 36th IEEE Symposium on Security and Privacy (S&P), San Jose, CA, USA.
709–724.

[43] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and Christian
Rossow. 2014. Leveraging Semantic Signatures for Bug Search in Binary Programs.
In Proceedings of the 30th Annual Computer Security Applications Conference
(ACSAC), New Orleans, LA, USA. 406–415.

[44] John W. Ratcliff and David E. Metzener. 1998. Ratcliff-obershelp Pattern
Recognition. In Dictionary of Algorithms and Data Structures (DADS).

[45] Eric Sven Ristad and Peter N Yianilos. 1998. Learning String-edit Distance. In
Proceedings of the IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI). 522–532.

[46] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-code. In
Proceedings of the 38th International Conference on Software Engineering (ICSE),
Austin, TX, USA. 1157–1168.

[47] Pang-Ning Tan et al. 2006. Introduction to Data Mining.
[48] Xin Tan, Yuan Zhang, Chenyuan Mi, Jiajun Cao, Kun Sun, Yifan Lin, and Min

Yang. 2021. Locating the Security Patches for Disclosed OSS Vulnerabilities
with Vulnerability-Commit Correlation Ranking. In Proceedings of the 28th ACM
SIGSAC Conference on Computer and Communications Security (CCS), Virtual
Event, Republic of Korea.

http://lcamtuf.coredump. cx/afl/
https://www.zynamics.com/bindiff.html
https://cve.mitre.org/
https://nvd.nist.gov/
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://github.com/trailofbits/polytracker

[49] Nikolaos Tsantalis, Matin Mansouri, Laleh Eshkevari, Davood Mazinanian, and
DannyDig. 2018. Accurate and Efficient RefactoringDetection in Commit History.
In Proceedings of the 40th International Conference on Software Engineering (ICSE),
Gothenburg, Sweden. 483–494.

[50] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao
Qin, Hongxu Chen, and Yulei Sui. 2020. Typestate-Guided Fuzzer for Discovering
Use-after-Free Vulnerabilities. In Proceedings of the 42nd International Conference
on Software Engineering (ICSE), Seoul, South Korea. 999–1010.

[51] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu,
Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. 2020. MemLock: Memory
Usage Guided Fuzzing. In Proceedings of the 42nd International Conference on
Software Engineering (ICSE), Seoul, South Korea. 765–777.

[52] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li,
Binghong Liu, Yang Liu, Wei Huo, Wei Zou, and Wenchang Shi. 2020. MVP:
Detecting Vulnerabilities using Patch-enhanced Vulnerability Signatures. In
Proceedings of the 29th USENIX Security Symposium (USENIX Security), Virtual
Event, USA. 1165–1182.

[53] Jun Xu, Dongliang Mu, Ping Chen, Xinyu Xing, Pei Wang, and Peng Liu. 2016.
Credal: Towards Locating A Memory Corruption Vulnerability with Your Core
Dump. In Proceedings of the 23rd ACM SIGSAC Conference on Computer and
Communications Security (CCS), Vienna, Austria. 529–540.

[54] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping Chen, and Bing Mao. 2017.
Postmortem Program Analysis with Hardware-enhanced Post-crash Artifacts. In
Proceedings of the 26th USENIX Security Symposium (USENIX Security), Vancouver,
BC, Canada. 17–32.

[55] Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu. 2020. Patch
Based Vulnerability Matching for Binary Programs. In Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA),
Virtual Event, USA. 376–387.

[56] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang, Xiangyu Zhang, XiaoFeng
Wang, and Bin Liang. 2019. ProFuzzer: On-the-fly Input Type Probing for Better
Zero-Day Vulnerability Discovery. In Proceedings of the 40th IEEE Symposium on
Security and Privacy (S&P), San Francisco, CA, USA. 769–786.

[57] Hang Zhang and Zhiyun Qian. 2018. Precise and Accurate Patch Presence Test
for Binaries. In Proceedings of the 27th USENIX Security Symposium (USENIX
Security), Baltimore, MD, USA. 887–902.

[58] Xiangyu Zhang and Rajiv Gupta. 2005. Matching Execution Histories of Program
Versions. In Proceedings of the 10th European Software Engineering Conference
(ESEC), Lisbon, Portugal. 197–206.

[59] Yuan Zhang, Jiarun Dai, Xiaohan Zhang, Sirong Huang, Zhemin Yang, Min Yang,
and Hao Chen. 2018. Detecting Third-party Libraries in Android Applications
with High Precision and Recall. In IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), Campobasso, Italy. 141–152.

[60] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang.
2019. Neural Machine Translation Inspired Binary Code Similarity Comparison
beyond Function Pairs. In Proceedings of the 26th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, USA.

A IMPLEMENTATION DETAILS

Trace Collection. We implement a lightweight trace collector
using an LLVM instrumentation pass. For every function call, we log
the callee function, caller function, and the corresponding callsite.
These logs are used to construct tree-structured execution trace.
We also log the intra-function execution flow by instrumenting
each basic block. Each basic block has a unique intra-function ID.
Code Similarity Calculation.We leverage code features that are
widely used in existing works to calculate similarity scores between
cross-version functions and basic blocks.

For function-level similarity calculation, we first normalize the
source code of a function, and then extract various features from
the function, including its callers, callees and constant values. We
define 𝑆𝑖𝑚(𝑋,𝑌) as the similarity score between function X and
function Y. When performing cross-version functionmatching, only
those function pairs whose similarity score exceeds a predefined
threshold are considered as matched pairs. As suggested by [46],
this threshold is set to 0.7 in our prototype. Specifically, 𝑆𝑖𝑚(𝑋,𝑌)
is calculated as follows.

𝑆𝑖𝑚 (𝑋,𝑌) =
𝑆𝑖𝑚𝑐 (𝑋,𝑌) + 𝑆𝑖𝑚 𝑗 (𝑋,𝑌)

2
(2)

𝑆𝑖𝑚𝑐 (𝑋,𝑌) = 1 − 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑋,𝑌)
𝑚𝑎𝑥 (𝑙𝑒𝑛 (𝑋), 𝑙𝑒𝑛 (𝑌)) (3)

𝑆𝑖𝑚 𝑗 (𝑋,𝑌) = 𝑆𝑖𝑚𝑐𝑎𝑙𝑙𝑒𝑟 (𝑋,𝑌) + 𝑆𝑖𝑚𝑐𝑎𝑙𝑙𝑒𝑒 (𝑋,𝑌) + 𝑆𝑖𝑚𝑐𝑜𝑛𝑠𝑡 (𝑋,𝑌)
3

(4)

𝑆𝑖𝑚𝑐𝑎𝑙𝑙𝑒𝑟 (𝑋,𝑌) = 𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 (𝐹𝑐𝑎𝑙𝑙𝑒𝑟 (𝑋), 𝐹𝑐𝑎𝑙𝑙𝑒𝑟 (𝑌)) (5)

𝑆𝑖𝑚𝑐𝑎𝑙𝑙𝑒𝑒 (𝑋,𝑌) = 𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 (𝐹𝑐𝑎𝑙𝑙𝑒𝑒 (𝑋), 𝐹𝑐𝑎𝑙𝑙𝑒𝑒 (𝑌)) (6)

𝑆𝑖𝑚𝑐𝑜𝑛𝑠𝑡 (𝑋,𝑌) = 𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 (𝐹𝑐𝑜𝑛𝑠𝑡 (𝑋), 𝐹𝑐𝑜𝑛𝑠𝑡 (𝑌)) (7)

In the above equations, 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 () calculates the edit
distance [45] between the normalized source code of the functions;
𝑙𝑒𝑛() indicates the length of the normalized function code. The
𝐹𝑐𝑎𝑙𝑙𝑒𝑟 (), 𝐹𝑐𝑎𝑙𝑙𝑒𝑒 () and 𝐹𝑐𝑜𝑛𝑠𝑡 () extract the callers of the function,
the callees of the function, and the constant values used in the
function respectively. 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 () takes two feature sets as input and
returns the Jaccard similarity [47] between them.

For basic-block-level similarity calculation, we consider the
internal features and structural features of a basic block. Given
a pair of basic blocks (𝑏𝑟 , 𝑏𝑡), we use 𝑆𝑖𝑚𝑏 to represent their
similarity score on internal features and 𝑆𝑖𝑚𝑠 to represent their
similarity score on structural features. To compute 𝑆𝑖𝑚𝑏 , we collect
all the internal features in the basic block, including the opcodes,
the data, and the called functions, and use Jaccard similarity to
measure how many features are shared between two basic blocks,
i.e., 𝑆𝑖𝑚𝑏 (𝑏𝑟 , 𝑏𝑡) = 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝑏𝑟 , 𝑏𝑡). To compute 𝑆𝑖𝑚𝑠 , we first
collect the predecessor basic blocks of 𝑏𝑟 and 𝑏𝑡 as {𝑃𝑟 } and {𝑃𝑡 }
and their successor basic blocks as {𝑄𝑟 } and {𝑄𝑡 }. Then, we define
𝑆𝑖𝑚𝑠 to measure the similarity of their predecessors as well as that
of their successor with the equation below.

𝑆𝑖𝑚𝑠 ({𝑋𝑟 }, {𝑋𝑡 }) =
𝑚𝑎𝑥 (∑𝑥𝑟 ∈{𝑋𝑟 }

𝑥𝑡 ∈{𝑋𝑡 } 𝑆𝑖𝑚𝑏 (𝑥𝑟 , 𝑥𝑡))
𝑚𝑖𝑛 (| {𝑋𝑟 } | , | {𝑋𝑡 } |)

(8)

Finally, we combine the similarity score of the internal features and
the similarity score of the context features to calculate the similarity
score between 𝑏𝑟 and 𝑏𝑡 .

𝑆𝑖𝑚 (𝑏𝑟 , 𝑏𝑡) =
𝑆𝑖𝑚𝑏 (𝑏𝑟 , 𝑏𝑡) + 𝑆𝑖𝑚𝑠 ({𝑃𝑟 }, {𝑃𝑡 }) + 𝑠𝑖𝑚𝑠 ({𝑄𝑟 }, {𝑄𝑡 })

3
(9)

By measuring the similarity score, a pair of basic blocks (𝑏𝑟 , 𝑏𝑡)
can be viewed as a candidate pair for alignment only when their
similarity score exceeds a pre-defined threshold. In this work, we
set the threshold to 0.5 which is the same with the threshold in [20].
Taint Tracking. We correlate the input bytes with the critical
variables using variable-level taint tracking. In our implementation,
this component is built on the top of PolyTracker [6]. Since
the official version of PolyTracker provides only a function-to-
input-bytes mapping, we enhance its tainting logic on load and
store instructions to make it support fine-grained variable-to-
input-bytes mapping. Besides, our implementation also optimizes
Polytracker to support some language features that are used
in real-world programs. For example, variable-length argument
is not well-supported in the original version of PolyTracker. This
could result in under-tainted variables at the runtime. To solve
this problem, we first use static analysis to determine the concrete
length of encountered variable-length argument at the function
callsite; then store the taint labels of all these arguments. Further,
we instrument the va_arg macro for propagating the taint labels of
arguments when they are used.

Table 6: The details about the 30 CVEs to evaluate VulScope.

Software CVE Vulnerability Type
Range of Range of CVSS 3.x Vulnerable Newly Detected Versions

Unpatched Versions Release Time Score Version (NVD) by VulScope

zziplib

CVE-2018-6381 Heap Overflow [0.13.56, 0.13.67] (12) [2009.6, 2017.6] 6.5 MEDIUM 0.13.67 11
CVE-2017-5976 Heap Overflow [0.13.56, 0.13.62] (7) [2009.6, 2012.3] 5.5 MEDIUM 0.13.62 6
CVE-2017-5975 Heap Overflow [0.13.56, 0.13.62] (7) [2009.6, 2012.3] 5.5 MEDIUM 0.13.62 6
CVE-2017-5974 Segmentation Fault [0.13.56, 0.13.62] (7) [2009.6, 2012.3] 5.5 MEDIUM 0.13.62 6

audiofile

CVE-2018-17095 Heap Overflow [0.2.7, 0.3.6] (8) [2010.3, 2013.3] 8.8 HIGH 0.3.6 6
CVE-2017-6836 Integer Overflow to OOB [0.2.7, 0.3.6] (8) [2010.3, 2013.3] 5.5 MEDIUM 0.3.6 6
CVE-2017-6834 Integer Overflow to OOB [0.2.7, 0.3.6] (8) [2010.3, 2013.3] 5.5 MEDIUM 0.3.6 7
CVE-2017-6832 Heap Overflow [0.2.7, 0.3.6] (8) [2010.3, 2013.3] 5.5 MEDIUM 0.3.6 7
CVE-2017-6831 Heap Overflow [0.2.7, 0.3.6] (8) [2010.3, 2013.3] 5.5 MEDIUM 0.3.6 7
CVE-2017-6835 Divided By Zero [0.2.7, 0.3.6] (8) [2010.3, 2013.3] 5.5 MEDIUM 0.3.6 0

tcpdump

CVE-2017-5485 Heap Overflow [3.9.1, 4.8.1] (20) [2005.10, 2016.10] 9.8 CRITICAL < 4.9.0 0
CVE-2017-13690 Heap Overflow [3.9.1, 4.9.1] (22) [2005.10, 2017.7] 9.8 CRITICAL < 4.9.2 0
CVE-2017-5486 Heap Overflow [3.9.1, 4.8.1] (20) [2005.10, 2016.10] 9.8 CRITICAL < 4.9.0 0
CVE-2017-16808 Heap Overflow [3.9.1, 4.9.2] (23) [2005.10, 2017.9] 5.5 MEDIUM < 4.9.3 0

lame

CVE-2017-15046 Stack Overflow [3.97, 3.98.4], [2006.9, 2010.3], 5.5 MEDIUM 3.99.5 5[3.99.4, 3.99.5] (6)1 [2012.1, 2012.2]
CVE-2017-15045 Heap Overflow [3.97, 3.99.5] (10) [2006.9, 2012.2] 5.5 MEDIUM 3.99.5 8
CVE-2017-15018 Heap Overflow [3.97, 3.99.5] (10) [2006.9, 2012.2] 5.5 MEDIUM 3.99.5 8
CVE-2015-9101 Heap Overflow [3.97, 3.99.5] (10) [2006.9, 2012.2] 5.5 MEDIUM 3.99.5 8

libtiff

CVE-2016-10095 Stack Overflow [3.9.3, 4.0.8] (19) [2010.6, 2017.5] 5.5 MEDIUM 4.0.7 13
CVE-2016-10269 Heap Overflow [3.9.3, 4.0.7] (18) [2010.6, 2016.11] 7.8 HIGH 4.0.7 12
CVE-2016-10092 Heap Overflow [3.9.3, 4.0.7] (18) [2010.6, 2016.11] 7.8 HIGH 4.0.7 16
CVE-2016-10093 Integer Overflow to OOB [3.9.3, 4.0.7] (18) [2010.6, 2016.11] 7.8 HIGH 4.0.7 17
CVE-2018-7456 Null Pointer Dereference [3.9.3, 4.0.9] (20) [2010.6, 2017.11] 6.5 MEDIUM 4.0.9 19
CVE-2018-12900 Integer Overflow to OOB [3.9.3, 4.0.9] (20) [2010.6, 2017.11] 8.8 HIGH 4.0.9 19
CVE-2018-17795 Heap Overflow [3.9.3, 4.0.9] (20) [2010.6, 2017.11] 8.8 HIGH 4.0.9 6
CVE-2018-18557 Heap Overflow [3.9.3, 4.0.9] (20) [2010.6, 2017.11] 8.8 HIGH 4.0.9 17

jasper

CVE-2016-9560 Stack Overflow [1.900.8, 1.900.29] (22) [2016.10, 2016.11] 7.8 HIGH < 1.900.30 0
CVE-2017-14132 Heap Overflow [1.900.8, 2.0.16] (41) [2016.10, 2019.3] 6.5 MEDIUM 2.0.13 40
CVE-2018-19540 Integer Overflow to OOB [1.900.8, 2.0.16] (41) [2016.10, 2019.3] 8.8 HIGH 2.0.14 40
CVE-2018-19541 Heap Overflow [1.900.8, 2.0.16] (41) [2016.10, 2019.3] 8.8 HIGH 2.0.14 40

SUM 30 5002 330
1 There are 4 unpatched versions of lame for CVE-2017-15046 that are unable to be tested with ASAN, so they are excluded from the dataset.
2 As illustrated in Table 2, the 500 unpatched versions consist of 30 reference versions and 470 target versions.

Table 7: Comparison results with AFL and AFLGo on PoC Migration.

Software CVE Target Version AFL AFLGO VulScope Software CVE Target Version AFL AFLGO VulScope

zziplib CVE-2018-6381

0.13.63 08m 17s 13m 03s 05m 05s

libtiff

CVE-2016-10095

3.9.3 ✗ ✗ ✗
0.13.64 00m 58s 15m 47s 04m 59s 3.9.4 ✗ ✗ ✗
0.13.65 01m 12s 03m 24s 06m 00s 3.9.5 ✗ ✗ ✗
0.13.66 01m 21s 03m 25s 05m 14s 3.9.6 ✗ ✗ ✗
0.13.67 01m 33s 02m 54s 07m 50s 3.9.7 ✗ ✗ ✗

audiofile

CVE-2017-6836 0.2.7 ✗ ✗ ✗

CVE-2016-10093

3.9.3 10m 04s 08m 54s 02m 56s

CVE-2017-6831

0.2.7 02h 34m 12s 01h 10m 38s 01m 21s 3.9.4 09m 46s 09m 32s 03m 13s
0.3.0 ✗ ✗ 00m 52s 3.9.5 01m 38s 01m 38s 04m 23s
0.3.1 05h 23m 16s 06h 20m 09s 01m 38s 3.9.6 01m 40s 02m 00s 04m 55s
0.3.2 06h 01m 24s 35m 11s 01m 37s 3.9.7 02m 26s 01m 41s 04m 45s
0.3.3 02h 03m 00s 01h 18m 51s 01m 37s 4.0.0alpha4 32m 43s 13m 26s 03m 44s
0.3.4 06h 33m 58s 04h 27m 04s 01m 38s 4.0.0alpha5 34m 16s 13m 11s 04m 05s

lame

CVE-2015-9101

3.97 ✗ ✗ ✗ 4.0.0alpha6 02h 18m 35s 01h 16m 01s 33m 14s
3.98 04m 12s 07m 13s 01m 40s

CVE-2018-17795

3.9.3 ✗ ✗ ✗
3.98.2 03m 57s 06m 25s 01m 00s 3.9.4 ✗ ✗ ✗
3.98.4 05m 04s 18m 58s 01m 06s 3.9.5 ✗ ✗ ✗

CVE-2017-15018 3.97 ✗ ✗ ✗ 3.9.6 ✗ ✗ ✗

CVE-2017-15045

3.97 ✗ ✗ ✗ 3.9.7 ✗ ✗ ✗
3.98 01m 01s 00m 19s 00m 35s 4.0.0alpha4 ✗ ✗ ✗
3.98.2 01m 11s 00m 19s 00m 29s 4.0.0alpha5 ✗ ✗ ✗
3.98.4 01m 23s 00m 45s 00m 27s 4.0.0alpha6 ✗ ✗ ✗

jasper CVE-2016-9560

1.900.26 ✗ ✗ 02m 08s 4.0.0 ✗ ✗ ✗
1.900.27 ✗ ✗ 02m 15s 4.0.1 ✗ ✗ ✗
1.900.28 ✗ ✗ 02m 22s 4.0.2 ✗ ✗ ✗
1.900.29 ✗ ✗ 02m 17s 4.0.3 ✗ ✗ ✗

libtiff

CVE-2016-10092

3.9.3 00m 19s 00m 13s 00m 20s 4.0.4 ✗ ✗ 01m 03s
3.9.4 00m 19s 00m 11s 00m 24s 4.0.4beta ✗ ✗ 01m 12s
3.9.5 00m 06s 00m 06s 00m 18s 4.0.5 ✗ ✗ 01m 01s
3.9.6 00m 06s 00m 05s 00m 18s 4.0.6 ✗ ✗ 01m 03s
3.9.7 00m 06s 00m 06s 00m 18s 4.0.7 ✗ ✗ 01m 03s

4.0.0alpha5 00m 13s 00m 17s 01m 18s 4.0.8 ✗ ✗ 00m 44s
4.0.0alpha6 00m 12s 00m 17s 00m 41s

CVE-2018-18557

3.9.3 ✗ ✗ ✗

CVE-2018-12900
4.0.0alpha4 01m 10s 00m 14s 00m 13s 3.9.4 ✗ ✗ ✗
4.0.0alpha5 01m 14s 00m 19s 00m 17s 4.0.0alpha4 ✗ ✗ 13m 23s
4.0.0alpha6 01m 19s 00m 18s 00m 16s 4.0.0alpha5 ✗ ✗ 12m 53s

CVE-2016-10269

4.0.0alpha4 02h 59m 23s 38m 41s 15m 25s 4.0.0alpha6 ✗ ✗ 13m 43s
4.0.0alpha5 02h 15m 34s 53m 56s 12m 30s 4.0.0beta7 ✗ ✗ 25m 27s
4.0.0alpha6 02h 07m 12s 51m 55s 36m 35s 4.0.0 ✗ ✗ 14m 25s
4.0.0beta7 05m 39s 01m 32s 59m 15s 4.0.1 ✗ ✗ 30m 37s

4.0.0 05m 52s 01m 11s 36m 02s 4.0.2 ✗ ✗ 22m 13s
4.0.1 05m 42s 00m 56s 31m 49s 4.0.3 ✗ ✗ 05m 33s
4.0.2 05m 51s 00m 56s 38m 25s 4.0.4 ✗ ✗ 14m 10s
4.0.3 05m 32s 00m 59s 30m 33s 4.0.4beta ✗ ✗ 05m 57s
4.0.4 05m 32s 00m 59s 31m 08s 4.0.5 ✗ ✗ 14m 39s

4.0.4beta 05m 14s 01m 02s 31m 28s 4.0.6 ✗ ✗ 05m 28s
4.0.5 05m 09s 01m 00s 31m 59s 4.0.7 ✗ ✗ 14m 10s
4.0.6 04m 38s 01m 02s 27m 26s 4.0.8 ✗ ✗ 14m 59s

1) This experiment is conducted on all 94 affected versions that need PoC migration (illustrated in Table 2).
2) ✗: fail to achieve PoC Migration in 8 hours

Table 8: Comparison results with AFL and AFLGo on the number of seeds that reach the buggy site.

Software CVE Target Version AFL AFLGO VulScope Software CVE Target Version AFL AFLGO VulScope

zziplib CVE-2018-6381

0.13.63 10 11 2

libtiff

CVE-2016-10093

3.9.3 2 2 2
0.13.64 1 2 2 3.9.4 2 2 2
0.13.65 2 2 1 3.9.5 1 1 5
0.13.66 2 2 1 3.9.6 1 1 5
0.13.67 2 2 1 3.9.7 1 1 5

audiofile CVE-2017-6831

0.2.7 3 1 1 4.0.0alpha4 1 1 1
0.3.0 0(✗) 0(✗) 1 4.0.0alpha5 1 1 1
0.3.1 2 1 1 4.0.0alpha6 1 1 2
0.3.2 1 1 1

CVE-2018-17795

4.0.4 250(✗) 161(✗) 3
0.3.3 2 5 1 4.0.4beta 129(✗) 42(✗) 3
0.3.4 2 4 1 4.0.5 118(✗) 157(✗) 3

lame

CVE-2015-9101
3.98 2 2 1 4.0.6 270(✗) 162(✗) 3
3.98.2 1 2 1 4.0.7 66(✗) 60(✗) 3
3.98.4 1 2 2 4.0.8 81(✗) 168(✗) 1

CVE-2017-15045
3.98 1 2 1

CVE-2018-18557

4.0.0alpha4 0(✗) 0(✗) 1
3.98.2 1 1 1 4.0.0alpha5 0(✗) 0(✗) 2
3.98.4 1 1 3 4.0.0alpha6 0(✗) 0(✗) 1

libtiff

CVE-2016-10092

3.9.3 3 5 2 4.0.0beta7 0(✗) 0(✗) 2
3.9.4 5 5 3 4.0.0 0(✗) 0(✗) 2
3.9.5 2 3 5 4.0.1 0(✗) 0(✗) 2
3.9.6 2 2 5 4.0.2 0(✗) 0(✗) 2
3.9.7 2 3 5 4.0.3 0(✗) 0(✗) 1

4.0.0alpha5 8 8 1 4.0.4 0(✗) 0(✗) 2
4.0.0alpha6 8 8 1 4.0.4beta 0(✗) 0(✗) 1

CVE-2016-10269

4.0.0alpha4 1 1 1 4.0.5 0(✗) 0(✗) 2
4.0.0alpha5 1 1 2 4.0.6 0(✗) 0(✗) 1
4.0.0alpha6 1 1 3 4.0.7 0(✗) 0(✗) 2
4.0.0beta7 1 1 1 4.0.8 0(✗) 0(✗) 3

4.0.0 1 1 1
CVE-2018-12900

4.0.0alpha4 8 3 6
4.0.1 1 1 1 4.0.0alpha5 5 6 4
4.0.2 1 1 1 4.0.0alpha6 8 6 4
4.0.3 1 1 1

jasper CVE-2016-9560

1.900.26 0(✗) 0(✗) 14.0.4 1 1 1
1.900.27 0(✗) 0(✗) 14.0.4beta 1 1 1
1.900.28 0(✗) 0(✗) 14.0.5 1 1 1
1.900.29 0(✗) 0(✗) 14.0.6 1 1 1

1) This experiment is conducted on all target versions that are successfully migrated by VulScope to help understand its superiority.
2)We record the number of the seeds that can reach the buggy site until the success of migration. For those versions that failed to bemigrated by AFL/AFLGO,
we record the number of the seeds that can reach the buggy site within the time limit of 8 hours.
3) ✗: fail to achieve PoC migration in 8 hours

	Abstract
	1 Introduction
	2 Design Overview
	2.1 Key Idea
	2.2 Workflow

	3 Cross-version Trace Alignment
	3.1 Cross-version Function Mapping
	3.2 Tree-structured Execution Trace
	3.3 Tree-based Trace Alignment

	4 Trace-guided PoC Adjustment
	4.1 Execution Detours Reasoning
	4.2 Fuzzing-based Detours Correction
	4.3 Crash Triage

	5 Evaluation
	5.1 Data Set
	5.2 Experiment Setup
	5.3 Experiment Design
	5.4 Experiment Results

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Implementation Details

